xref: /openbmc/linux/arch/s390/boot/kaslr.c (revision b96c0546)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright IBM Corp. 2019
4  */
5 #include <linux/pgtable.h>
6 #include <asm/mem_detect.h>
7 #include <asm/cpacf.h>
8 #include <asm/timex.h>
9 #include <asm/sclp.h>
10 #include "compressed/decompressor.h"
11 #include "boot.h"
12 
13 #define PRNG_MODE_TDES	 1
14 #define PRNG_MODE_SHA512 2
15 #define PRNG_MODE_TRNG	 3
16 
17 struct prno_parm {
18 	u32 res;
19 	u32 reseed_counter;
20 	u64 stream_bytes;
21 	u8  V[112];
22 	u8  C[112];
23 };
24 
25 struct prng_parm {
26 	u8  parm_block[32];
27 	u32 reseed_counter;
28 	u64 byte_counter;
29 };
30 
31 static int check_prng(void)
32 {
33 	if (!cpacf_query_func(CPACF_KMC, CPACF_KMC_PRNG)) {
34 		sclp_early_printk("KASLR disabled: CPU has no PRNG\n");
35 		return 0;
36 	}
37 	if (cpacf_query_func(CPACF_PRNO, CPACF_PRNO_TRNG))
38 		return PRNG_MODE_TRNG;
39 	if (cpacf_query_func(CPACF_PRNO, CPACF_PRNO_SHA512_DRNG_GEN))
40 		return PRNG_MODE_SHA512;
41 	else
42 		return PRNG_MODE_TDES;
43 }
44 
45 static int get_random(unsigned long limit, unsigned long *value)
46 {
47 	struct prng_parm prng = {
48 		/* initial parameter block for tdes mode, copied from libica */
49 		.parm_block = {
50 			0x0F, 0x2B, 0x8E, 0x63, 0x8C, 0x8E, 0xD2, 0x52,
51 			0x64, 0xB7, 0xA0, 0x7B, 0x75, 0x28, 0xB8, 0xF4,
52 			0x75, 0x5F, 0xD2, 0xA6, 0x8D, 0x97, 0x11, 0xFF,
53 			0x49, 0xD8, 0x23, 0xF3, 0x7E, 0x21, 0xEC, 0xA0
54 		},
55 	};
56 	unsigned long seed, random;
57 	struct prno_parm prno;
58 	__u64 entropy[4];
59 	int mode, i;
60 
61 	mode = check_prng();
62 	seed = get_tod_clock_fast();
63 	switch (mode) {
64 	case PRNG_MODE_TRNG:
65 		cpacf_trng(NULL, 0, (u8 *) &random, sizeof(random));
66 		break;
67 	case PRNG_MODE_SHA512:
68 		cpacf_prno(CPACF_PRNO_SHA512_DRNG_SEED, &prno, NULL, 0,
69 			   (u8 *) &seed, sizeof(seed));
70 		cpacf_prno(CPACF_PRNO_SHA512_DRNG_GEN, &prno, (u8 *) &random,
71 			   sizeof(random), NULL, 0);
72 		break;
73 	case PRNG_MODE_TDES:
74 		/* add entropy */
75 		*(unsigned long *) prng.parm_block ^= seed;
76 		for (i = 0; i < 16; i++) {
77 			cpacf_kmc(CPACF_KMC_PRNG, prng.parm_block,
78 				  (u8 *) entropy, (u8 *) entropy,
79 				  sizeof(entropy));
80 			memcpy(prng.parm_block, entropy, sizeof(entropy));
81 		}
82 		random = seed;
83 		cpacf_kmc(CPACF_KMC_PRNG, prng.parm_block, (u8 *) &random,
84 			  (u8 *) &random, sizeof(random));
85 		break;
86 	default:
87 		return -1;
88 	}
89 	*value = random % limit;
90 	return 0;
91 }
92 
93 /*
94  * To randomize kernel base address we have to consider several facts:
95  * 1. physical online memory might not be continuous and have holes. mem_detect
96  *    info contains list of online memory ranges we should consider.
97  * 2. we have several memory regions which are occupied and we should not
98  *    overlap and destroy them. Currently safe_addr tells us the border below
99  *    which all those occupied regions are. We are safe to use anything above
100  *    safe_addr.
101  * 3. the upper limit might apply as well, even if memory above that limit is
102  *    online. Currently those limitations are:
103  *    3.1. Limit set by "mem=" kernel command line option
104  *    3.2. memory reserved at the end for kasan initialization.
105  * 4. kernel base address must be aligned to THREAD_SIZE (kernel stack size).
106  *    Which is required for CONFIG_CHECK_STACK. Currently THREAD_SIZE is 4 pages
107  *    (16 pages when the kernel is built with kasan enabled)
108  * Assumptions:
109  * 1. kernel size (including .bss size) and upper memory limit are page aligned.
110  * 2. mem_detect memory region start is THREAD_SIZE aligned / end is PAGE_SIZE
111  *    aligned (in practice memory configurations granularity on z/VM and LPAR
112  *    is 1mb).
113  *
114  * To guarantee uniform distribution of kernel base address among all suitable
115  * addresses we generate random value just once. For that we need to build a
116  * continuous range in which every value would be suitable. We can build this
117  * range by simply counting all suitable addresses (let's call them positions)
118  * which would be valid as kernel base address. To count positions we iterate
119  * over online memory ranges. For each range which is big enough for the
120  * kernel image we count all suitable addresses we can put the kernel image at
121  * that is
122  * (end - start - kernel_size) / THREAD_SIZE + 1
123  * Two functions count_valid_kernel_positions and position_to_address help
124  * to count positions in memory range given and then convert position back
125  * to address.
126  */
127 static unsigned long count_valid_kernel_positions(unsigned long kernel_size,
128 						  unsigned long _min,
129 						  unsigned long _max)
130 {
131 	unsigned long start, end, pos = 0;
132 	int i;
133 
134 	for_each_mem_detect_block(i, &start, &end) {
135 		if (_min >= end)
136 			continue;
137 		if (start >= _max)
138 			break;
139 		start = max(_min, start);
140 		end = min(_max, end);
141 		if (end - start < kernel_size)
142 			continue;
143 		pos += (end - start - kernel_size) / THREAD_SIZE + 1;
144 	}
145 
146 	return pos;
147 }
148 
149 static unsigned long position_to_address(unsigned long pos, unsigned long kernel_size,
150 				 unsigned long _min, unsigned long _max)
151 {
152 	unsigned long start, end;
153 	int i;
154 
155 	for_each_mem_detect_block(i, &start, &end) {
156 		if (_min >= end)
157 			continue;
158 		if (start >= _max)
159 			break;
160 		start = max(_min, start);
161 		end = min(_max, end);
162 		if (end - start < kernel_size)
163 			continue;
164 		if ((end - start - kernel_size) / THREAD_SIZE + 1 >= pos)
165 			return start + (pos - 1) * THREAD_SIZE;
166 		pos -= (end - start - kernel_size) / THREAD_SIZE + 1;
167 	}
168 
169 	return 0;
170 }
171 
172 unsigned long get_random_base(unsigned long safe_addr)
173 {
174 	unsigned long memory_limit = get_mem_detect_end();
175 	unsigned long base_pos, max_pos, kernel_size;
176 	unsigned long kasan_needs;
177 	int i;
178 
179 	if (memory_end_set)
180 		memory_limit = min(memory_limit, memory_end);
181 
182 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && INITRD_START && INITRD_SIZE) {
183 		if (safe_addr < INITRD_START + INITRD_SIZE)
184 			safe_addr = INITRD_START + INITRD_SIZE;
185 	}
186 	safe_addr = ALIGN(safe_addr, THREAD_SIZE);
187 
188 	if ((IS_ENABLED(CONFIG_KASAN))) {
189 		/*
190 		 * Estimate kasan memory requirements, which it will reserve
191 		 * at the very end of available physical memory. To estimate
192 		 * that, we take into account that kasan would require
193 		 * 1/8 of available physical memory (for shadow memory) +
194 		 * creating page tables for the whole memory + shadow memory
195 		 * region (1 + 1/8). To keep page tables estimates simple take
196 		 * the double of combined ptes size.
197 		 */
198 		memory_limit = get_mem_detect_end();
199 		if (memory_end_set && memory_limit > memory_end)
200 			memory_limit = memory_end;
201 
202 		/* for shadow memory */
203 		kasan_needs = memory_limit / 8;
204 		/* for paging structures */
205 		kasan_needs += (memory_limit + kasan_needs) / PAGE_SIZE /
206 			       _PAGE_ENTRIES * _PAGE_TABLE_SIZE * 2;
207 		memory_limit -= kasan_needs;
208 	}
209 
210 	kernel_size = vmlinux.image_size + vmlinux.bss_size;
211 	if (safe_addr + kernel_size > memory_limit)
212 		return 0;
213 
214 	max_pos = count_valid_kernel_positions(kernel_size, safe_addr, memory_limit);
215 	if (!max_pos) {
216 		sclp_early_printk("KASLR disabled: not enough memory\n");
217 		return 0;
218 	}
219 
220 	/* we need a value in the range [1, base_pos] inclusive */
221 	if (get_random(max_pos, &base_pos))
222 		return 0;
223 	return position_to_address(base_pos + 1, kernel_size, safe_addr, memory_limit);
224 }
225