xref: /openbmc/linux/arch/riscv/mm/init.c (revision 8d1af5c6af5c665cfa35b8e6dcb1a729989a3669)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 Regents of the University of California
4  * Copyright (C) 2019 Western Digital Corporation or its affiliates.
5  * Copyright (C) 2020 FORTH-ICS/CARV
6  *  Nick Kossifidis <mick@ics.forth.gr>
7  */
8 
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/memblock.h>
12 #include <linux/initrd.h>
13 #include <linux/swap.h>
14 #include <linux/swiotlb.h>
15 #include <linux/sizes.h>
16 #include <linux/of_fdt.h>
17 #include <linux/of_reserved_mem.h>
18 #include <linux/libfdt.h>
19 #include <linux/set_memory.h>
20 #include <linux/dma-map-ops.h>
21 #include <linux/crash_dump.h>
22 #include <linux/hugetlb.h>
23 #ifdef CONFIG_RELOCATABLE
24 #include <linux/elf.h>
25 #endif
26 #include <linux/kfence.h>
27 
28 #include <asm/fixmap.h>
29 #include <asm/io.h>
30 #include <asm/numa.h>
31 #include <asm/pgtable.h>
32 #include <asm/ptdump.h>
33 #include <asm/sections.h>
34 #include <asm/soc.h>
35 #include <asm/tlbflush.h>
36 
37 #include "../kernel/head.h"
38 
39 struct kernel_mapping kernel_map __ro_after_init;
40 EXPORT_SYMBOL(kernel_map);
41 #ifdef CONFIG_XIP_KERNEL
42 #define kernel_map	(*(struct kernel_mapping *)XIP_FIXUP(&kernel_map))
43 #endif
44 
45 #ifdef CONFIG_64BIT
46 u64 satp_mode __ro_after_init = !IS_ENABLED(CONFIG_XIP_KERNEL) ? SATP_MODE_57 : SATP_MODE_39;
47 #else
48 u64 satp_mode __ro_after_init = SATP_MODE_32;
49 #endif
50 EXPORT_SYMBOL(satp_mode);
51 
52 bool pgtable_l4_enabled = IS_ENABLED(CONFIG_64BIT) && !IS_ENABLED(CONFIG_XIP_KERNEL);
53 bool pgtable_l5_enabled = IS_ENABLED(CONFIG_64BIT) && !IS_ENABLED(CONFIG_XIP_KERNEL);
54 EXPORT_SYMBOL(pgtable_l4_enabled);
55 EXPORT_SYMBOL(pgtable_l5_enabled);
56 
57 phys_addr_t phys_ram_base __ro_after_init;
58 EXPORT_SYMBOL(phys_ram_base);
59 
60 unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]
61 							__page_aligned_bss;
62 EXPORT_SYMBOL(empty_zero_page);
63 
64 extern char _start[];
65 void *_dtb_early_va __initdata;
66 uintptr_t _dtb_early_pa __initdata;
67 
68 static phys_addr_t dma32_phys_limit __initdata;
69 
70 static void __init zone_sizes_init(void)
71 {
72 	unsigned long max_zone_pfns[MAX_NR_ZONES] = { 0, };
73 
74 #ifdef CONFIG_ZONE_DMA32
75 	max_zone_pfns[ZONE_DMA32] = PFN_DOWN(dma32_phys_limit);
76 #endif
77 	max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
78 
79 	free_area_init(max_zone_pfns);
80 }
81 
82 #if defined(CONFIG_MMU) && defined(CONFIG_DEBUG_VM)
83 
84 #define LOG2_SZ_1K  ilog2(SZ_1K)
85 #define LOG2_SZ_1M  ilog2(SZ_1M)
86 #define LOG2_SZ_1G  ilog2(SZ_1G)
87 #define LOG2_SZ_1T  ilog2(SZ_1T)
88 
89 static inline void print_mlk(char *name, unsigned long b, unsigned long t)
90 {
91 	pr_notice("%12s : 0x%08lx - 0x%08lx   (%4ld kB)\n", name, b, t,
92 		  (((t) - (b)) >> LOG2_SZ_1K));
93 }
94 
95 static inline void print_mlm(char *name, unsigned long b, unsigned long t)
96 {
97 	pr_notice("%12s : 0x%08lx - 0x%08lx   (%4ld MB)\n", name, b, t,
98 		  (((t) - (b)) >> LOG2_SZ_1M));
99 }
100 
101 static inline void print_mlg(char *name, unsigned long b, unsigned long t)
102 {
103 	pr_notice("%12s : 0x%08lx - 0x%08lx   (%4ld GB)\n", name, b, t,
104 		   (((t) - (b)) >> LOG2_SZ_1G));
105 }
106 
107 #ifdef CONFIG_64BIT
108 static inline void print_mlt(char *name, unsigned long b, unsigned long t)
109 {
110 	pr_notice("%12s : 0x%08lx - 0x%08lx   (%4ld TB)\n", name, b, t,
111 		   (((t) - (b)) >> LOG2_SZ_1T));
112 }
113 #else
114 #define print_mlt(n, b, t) do {} while (0)
115 #endif
116 
117 static inline void print_ml(char *name, unsigned long b, unsigned long t)
118 {
119 	unsigned long diff = t - b;
120 
121 	if (IS_ENABLED(CONFIG_64BIT) && (diff >> LOG2_SZ_1T) >= 10)
122 		print_mlt(name, b, t);
123 	else if ((diff >> LOG2_SZ_1G) >= 10)
124 		print_mlg(name, b, t);
125 	else if ((diff >> LOG2_SZ_1M) >= 10)
126 		print_mlm(name, b, t);
127 	else
128 		print_mlk(name, b, t);
129 }
130 
131 static void __init print_vm_layout(void)
132 {
133 	pr_notice("Virtual kernel memory layout:\n");
134 	print_ml("fixmap", (unsigned long)FIXADDR_START,
135 		(unsigned long)FIXADDR_TOP);
136 	print_ml("pci io", (unsigned long)PCI_IO_START,
137 		(unsigned long)PCI_IO_END);
138 	print_ml("vmemmap", (unsigned long)VMEMMAP_START,
139 		(unsigned long)VMEMMAP_END);
140 	print_ml("vmalloc", (unsigned long)VMALLOC_START,
141 		(unsigned long)VMALLOC_END);
142 #ifdef CONFIG_64BIT
143 	print_ml("modules", (unsigned long)MODULES_VADDR,
144 		(unsigned long)MODULES_END);
145 #endif
146 	print_ml("lowmem", (unsigned long)PAGE_OFFSET,
147 		(unsigned long)high_memory);
148 	if (IS_ENABLED(CONFIG_64BIT)) {
149 #ifdef CONFIG_KASAN
150 		print_ml("kasan", KASAN_SHADOW_START, KASAN_SHADOW_END);
151 #endif
152 
153 		print_ml("kernel", (unsigned long)kernel_map.virt_addr,
154 			 (unsigned long)ADDRESS_SPACE_END);
155 	}
156 }
157 #else
158 static void print_vm_layout(void) { }
159 #endif /* CONFIG_DEBUG_VM */
160 
161 void __init mem_init(void)
162 {
163 #ifdef CONFIG_FLATMEM
164 	BUG_ON(!mem_map);
165 #endif /* CONFIG_FLATMEM */
166 
167 	swiotlb_init(max_pfn > PFN_DOWN(dma32_phys_limit), SWIOTLB_VERBOSE);
168 	memblock_free_all();
169 
170 	print_vm_layout();
171 }
172 
173 /* Limit the memory size via mem. */
174 static phys_addr_t memory_limit;
175 #ifdef CONFIG_XIP_KERNEL
176 #define memory_limit	(*(phys_addr_t *)XIP_FIXUP(&memory_limit))
177 #endif /* CONFIG_XIP_KERNEL */
178 
179 static int __init early_mem(char *p)
180 {
181 	u64 size;
182 
183 	if (!p)
184 		return 1;
185 
186 	size = memparse(p, &p) & PAGE_MASK;
187 	memory_limit = min_t(u64, size, memory_limit);
188 
189 	pr_notice("Memory limited to %lldMB\n", (u64)memory_limit >> 20);
190 
191 	return 0;
192 }
193 early_param("mem", early_mem);
194 
195 static void __init setup_bootmem(void)
196 {
197 	phys_addr_t vmlinux_end = __pa_symbol(&_end);
198 	phys_addr_t max_mapped_addr;
199 	phys_addr_t phys_ram_end, vmlinux_start;
200 
201 	if (IS_ENABLED(CONFIG_XIP_KERNEL))
202 		vmlinux_start = __pa_symbol(&_sdata);
203 	else
204 		vmlinux_start = __pa_symbol(&_start);
205 
206 	memblock_enforce_memory_limit(memory_limit);
207 
208 	/*
209 	 * Make sure we align the reservation on PMD_SIZE since we will
210 	 * map the kernel in the linear mapping as read-only: we do not want
211 	 * any allocation to happen between _end and the next pmd aligned page.
212 	 */
213 	if (IS_ENABLED(CONFIG_64BIT) && IS_ENABLED(CONFIG_STRICT_KERNEL_RWX))
214 		vmlinux_end = (vmlinux_end + PMD_SIZE - 1) & PMD_MASK;
215 	/*
216 	 * Reserve from the start of the kernel to the end of the kernel
217 	 */
218 	memblock_reserve(vmlinux_start, vmlinux_end - vmlinux_start);
219 
220 	/*
221 	 * Make sure we align the start of the memory on a PMD boundary so that
222 	 * at worst, we map the linear mapping with PMD mappings.
223 	 */
224 	if (!IS_ENABLED(CONFIG_XIP_KERNEL))
225 		phys_ram_base = memblock_start_of_DRAM() & PMD_MASK;
226 
227 	/*
228 	 * In 64-bit, any use of __va/__pa before this point is wrong as we
229 	 * did not know the start of DRAM before.
230 	 */
231 	if (IS_ENABLED(CONFIG_64BIT) && IS_ENABLED(CONFIG_MMU))
232 		kernel_map.va_pa_offset = PAGE_OFFSET - phys_ram_base;
233 
234 	/*
235 	 * The size of the linear page mapping may restrict the amount of
236 	 * usable RAM.
237 	 */
238 	if (IS_ENABLED(CONFIG_64BIT)) {
239 		max_mapped_addr = __pa(PAGE_OFFSET) + KERN_VIRT_SIZE;
240 		memblock_cap_memory_range(phys_ram_base,
241 					  max_mapped_addr - phys_ram_base);
242 	}
243 
244 	/*
245 	 * Reserve physical address space that would be mapped to virtual
246 	 * addresses greater than (void *)(-PAGE_SIZE) because:
247 	 *  - This memory would overlap with ERR_PTR
248 	 *  - This memory belongs to high memory, which is not supported
249 	 *
250 	 * This is not applicable to 64-bit kernel, because virtual addresses
251 	 * after (void *)(-PAGE_SIZE) are not linearly mapped: they are
252 	 * occupied by kernel mapping. Also it is unrealistic for high memory
253 	 * to exist on 64-bit platforms.
254 	 */
255 	if (!IS_ENABLED(CONFIG_64BIT)) {
256 		max_mapped_addr = __va_to_pa_nodebug(-PAGE_SIZE);
257 		memblock_reserve(max_mapped_addr, (phys_addr_t)-max_mapped_addr);
258 	}
259 
260 	phys_ram_end = memblock_end_of_DRAM();
261 	min_low_pfn = PFN_UP(phys_ram_base);
262 	max_low_pfn = max_pfn = PFN_DOWN(phys_ram_end);
263 	high_memory = (void *)(__va(PFN_PHYS(max_low_pfn)));
264 
265 	dma32_phys_limit = min(4UL * SZ_1G, (unsigned long)PFN_PHYS(max_low_pfn));
266 	set_max_mapnr(max_low_pfn - ARCH_PFN_OFFSET);
267 
268 	reserve_initrd_mem();
269 
270 	/*
271 	 * No allocation should be done before reserving the memory as defined
272 	 * in the device tree, otherwise the allocation could end up in a
273 	 * reserved region.
274 	 */
275 	early_init_fdt_scan_reserved_mem();
276 
277 	/*
278 	 * If DTB is built in, no need to reserve its memblock.
279 	 * Otherwise, do reserve it but avoid using
280 	 * early_init_fdt_reserve_self() since __pa() does
281 	 * not work for DTB pointers that are fixmap addresses
282 	 */
283 	if (!IS_ENABLED(CONFIG_BUILTIN_DTB))
284 		memblock_reserve(dtb_early_pa, fdt_totalsize(dtb_early_va));
285 
286 	dma_contiguous_reserve(dma32_phys_limit);
287 	if (IS_ENABLED(CONFIG_64BIT))
288 		hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT);
289 }
290 
291 #ifdef CONFIG_MMU
292 struct pt_alloc_ops pt_ops __initdata;
293 
294 pgd_t swapper_pg_dir[PTRS_PER_PGD] __page_aligned_bss;
295 pgd_t trampoline_pg_dir[PTRS_PER_PGD] __page_aligned_bss;
296 static pte_t fixmap_pte[PTRS_PER_PTE] __page_aligned_bss;
297 
298 pgd_t early_pg_dir[PTRS_PER_PGD] __initdata __aligned(PAGE_SIZE);
299 
300 #ifdef CONFIG_XIP_KERNEL
301 #define pt_ops			(*(struct pt_alloc_ops *)XIP_FIXUP(&pt_ops))
302 #define trampoline_pg_dir      ((pgd_t *)XIP_FIXUP(trampoline_pg_dir))
303 #define fixmap_pte             ((pte_t *)XIP_FIXUP(fixmap_pte))
304 #define early_pg_dir           ((pgd_t *)XIP_FIXUP(early_pg_dir))
305 #endif /* CONFIG_XIP_KERNEL */
306 
307 static const pgprot_t protection_map[16] = {
308 	[VM_NONE]					= PAGE_NONE,
309 	[VM_READ]					= PAGE_READ,
310 	[VM_WRITE]					= PAGE_COPY,
311 	[VM_WRITE | VM_READ]				= PAGE_COPY,
312 	[VM_EXEC]					= PAGE_EXEC,
313 	[VM_EXEC | VM_READ]				= PAGE_READ_EXEC,
314 	[VM_EXEC | VM_WRITE]				= PAGE_COPY_EXEC,
315 	[VM_EXEC | VM_WRITE | VM_READ]			= PAGE_COPY_EXEC,
316 	[VM_SHARED]					= PAGE_NONE,
317 	[VM_SHARED | VM_READ]				= PAGE_READ,
318 	[VM_SHARED | VM_WRITE]				= PAGE_SHARED,
319 	[VM_SHARED | VM_WRITE | VM_READ]		= PAGE_SHARED,
320 	[VM_SHARED | VM_EXEC]				= PAGE_EXEC,
321 	[VM_SHARED | VM_EXEC | VM_READ]			= PAGE_READ_EXEC,
322 	[VM_SHARED | VM_EXEC | VM_WRITE]		= PAGE_SHARED_EXEC,
323 	[VM_SHARED | VM_EXEC | VM_WRITE | VM_READ]	= PAGE_SHARED_EXEC
324 };
325 DECLARE_VM_GET_PAGE_PROT
326 
327 void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
328 {
329 	unsigned long addr = __fix_to_virt(idx);
330 	pte_t *ptep;
331 
332 	BUG_ON(idx <= FIX_HOLE || idx >= __end_of_fixed_addresses);
333 
334 	ptep = &fixmap_pte[pte_index(addr)];
335 
336 	if (pgprot_val(prot))
337 		set_pte(ptep, pfn_pte(phys >> PAGE_SHIFT, prot));
338 	else
339 		pte_clear(&init_mm, addr, ptep);
340 	local_flush_tlb_page(addr);
341 }
342 
343 static inline pte_t *__init get_pte_virt_early(phys_addr_t pa)
344 {
345 	return (pte_t *)((uintptr_t)pa);
346 }
347 
348 static inline pte_t *__init get_pte_virt_fixmap(phys_addr_t pa)
349 {
350 	clear_fixmap(FIX_PTE);
351 	return (pte_t *)set_fixmap_offset(FIX_PTE, pa);
352 }
353 
354 static inline pte_t *__init get_pte_virt_late(phys_addr_t pa)
355 {
356 	return (pte_t *) __va(pa);
357 }
358 
359 static inline phys_addr_t __init alloc_pte_early(uintptr_t va)
360 {
361 	/*
362 	 * We only create PMD or PGD early mappings so we
363 	 * should never reach here with MMU disabled.
364 	 */
365 	BUG();
366 }
367 
368 static inline phys_addr_t __init alloc_pte_fixmap(uintptr_t va)
369 {
370 	return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE);
371 }
372 
373 static phys_addr_t __init alloc_pte_late(uintptr_t va)
374 {
375 	struct ptdesc *ptdesc = pagetable_alloc(GFP_KERNEL & ~__GFP_HIGHMEM, 0);
376 
377 	BUG_ON(!ptdesc || !pagetable_pte_ctor(ptdesc));
378 	return __pa((pte_t *)ptdesc_address(ptdesc));
379 }
380 
381 static void __init create_pte_mapping(pte_t *ptep,
382 				      uintptr_t va, phys_addr_t pa,
383 				      phys_addr_t sz, pgprot_t prot)
384 {
385 	uintptr_t pte_idx = pte_index(va);
386 
387 	BUG_ON(sz != PAGE_SIZE);
388 
389 	if (pte_none(ptep[pte_idx]))
390 		ptep[pte_idx] = pfn_pte(PFN_DOWN(pa), prot);
391 }
392 
393 #ifndef __PAGETABLE_PMD_FOLDED
394 
395 static pmd_t trampoline_pmd[PTRS_PER_PMD] __page_aligned_bss;
396 static pmd_t fixmap_pmd[PTRS_PER_PMD] __page_aligned_bss;
397 static pmd_t early_pmd[PTRS_PER_PMD] __initdata __aligned(PAGE_SIZE);
398 
399 #ifdef CONFIG_XIP_KERNEL
400 #define trampoline_pmd ((pmd_t *)XIP_FIXUP(trampoline_pmd))
401 #define fixmap_pmd     ((pmd_t *)XIP_FIXUP(fixmap_pmd))
402 #define early_pmd      ((pmd_t *)XIP_FIXUP(early_pmd))
403 #endif /* CONFIG_XIP_KERNEL */
404 
405 static p4d_t trampoline_p4d[PTRS_PER_P4D] __page_aligned_bss;
406 static p4d_t fixmap_p4d[PTRS_PER_P4D] __page_aligned_bss;
407 static p4d_t early_p4d[PTRS_PER_P4D] __initdata __aligned(PAGE_SIZE);
408 
409 #ifdef CONFIG_XIP_KERNEL
410 #define trampoline_p4d ((p4d_t *)XIP_FIXUP(trampoline_p4d))
411 #define fixmap_p4d     ((p4d_t *)XIP_FIXUP(fixmap_p4d))
412 #define early_p4d      ((p4d_t *)XIP_FIXUP(early_p4d))
413 #endif /* CONFIG_XIP_KERNEL */
414 
415 static pud_t trampoline_pud[PTRS_PER_PUD] __page_aligned_bss;
416 static pud_t fixmap_pud[PTRS_PER_PUD] __page_aligned_bss;
417 static pud_t early_pud[PTRS_PER_PUD] __initdata __aligned(PAGE_SIZE);
418 
419 #ifdef CONFIG_XIP_KERNEL
420 #define trampoline_pud ((pud_t *)XIP_FIXUP(trampoline_pud))
421 #define fixmap_pud     ((pud_t *)XIP_FIXUP(fixmap_pud))
422 #define early_pud      ((pud_t *)XIP_FIXUP(early_pud))
423 #endif /* CONFIG_XIP_KERNEL */
424 
425 static pmd_t *__init get_pmd_virt_early(phys_addr_t pa)
426 {
427 	/* Before MMU is enabled */
428 	return (pmd_t *)((uintptr_t)pa);
429 }
430 
431 static pmd_t *__init get_pmd_virt_fixmap(phys_addr_t pa)
432 {
433 	clear_fixmap(FIX_PMD);
434 	return (pmd_t *)set_fixmap_offset(FIX_PMD, pa);
435 }
436 
437 static pmd_t *__init get_pmd_virt_late(phys_addr_t pa)
438 {
439 	return (pmd_t *) __va(pa);
440 }
441 
442 static phys_addr_t __init alloc_pmd_early(uintptr_t va)
443 {
444 	BUG_ON((va - kernel_map.virt_addr) >> PUD_SHIFT);
445 
446 	return (uintptr_t)early_pmd;
447 }
448 
449 static phys_addr_t __init alloc_pmd_fixmap(uintptr_t va)
450 {
451 	return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE);
452 }
453 
454 static phys_addr_t __init alloc_pmd_late(uintptr_t va)
455 {
456 	struct ptdesc *ptdesc = pagetable_alloc(GFP_KERNEL & ~__GFP_HIGHMEM, 0);
457 
458 	BUG_ON(!ptdesc || !pagetable_pmd_ctor(ptdesc));
459 	return __pa((pmd_t *)ptdesc_address(ptdesc));
460 }
461 
462 static void __init create_pmd_mapping(pmd_t *pmdp,
463 				      uintptr_t va, phys_addr_t pa,
464 				      phys_addr_t sz, pgprot_t prot)
465 {
466 	pte_t *ptep;
467 	phys_addr_t pte_phys;
468 	uintptr_t pmd_idx = pmd_index(va);
469 
470 	if (sz == PMD_SIZE) {
471 		if (pmd_none(pmdp[pmd_idx]))
472 			pmdp[pmd_idx] = pfn_pmd(PFN_DOWN(pa), prot);
473 		return;
474 	}
475 
476 	if (pmd_none(pmdp[pmd_idx])) {
477 		pte_phys = pt_ops.alloc_pte(va);
478 		pmdp[pmd_idx] = pfn_pmd(PFN_DOWN(pte_phys), PAGE_TABLE);
479 		ptep = pt_ops.get_pte_virt(pte_phys);
480 		memset(ptep, 0, PAGE_SIZE);
481 	} else {
482 		pte_phys = PFN_PHYS(_pmd_pfn(pmdp[pmd_idx]));
483 		ptep = pt_ops.get_pte_virt(pte_phys);
484 	}
485 
486 	create_pte_mapping(ptep, va, pa, sz, prot);
487 }
488 
489 static pud_t *__init get_pud_virt_early(phys_addr_t pa)
490 {
491 	return (pud_t *)((uintptr_t)pa);
492 }
493 
494 static pud_t *__init get_pud_virt_fixmap(phys_addr_t pa)
495 {
496 	clear_fixmap(FIX_PUD);
497 	return (pud_t *)set_fixmap_offset(FIX_PUD, pa);
498 }
499 
500 static pud_t *__init get_pud_virt_late(phys_addr_t pa)
501 {
502 	return (pud_t *)__va(pa);
503 }
504 
505 static phys_addr_t __init alloc_pud_early(uintptr_t va)
506 {
507 	/* Only one PUD is available for early mapping */
508 	BUG_ON((va - kernel_map.virt_addr) >> PGDIR_SHIFT);
509 
510 	return (uintptr_t)early_pud;
511 }
512 
513 static phys_addr_t __init alloc_pud_fixmap(uintptr_t va)
514 {
515 	return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE);
516 }
517 
518 static phys_addr_t alloc_pud_late(uintptr_t va)
519 {
520 	unsigned long vaddr;
521 
522 	vaddr = __get_free_page(GFP_KERNEL);
523 	BUG_ON(!vaddr);
524 	return __pa(vaddr);
525 }
526 
527 static p4d_t *__init get_p4d_virt_early(phys_addr_t pa)
528 {
529 	return (p4d_t *)((uintptr_t)pa);
530 }
531 
532 static p4d_t *__init get_p4d_virt_fixmap(phys_addr_t pa)
533 {
534 	clear_fixmap(FIX_P4D);
535 	return (p4d_t *)set_fixmap_offset(FIX_P4D, pa);
536 }
537 
538 static p4d_t *__init get_p4d_virt_late(phys_addr_t pa)
539 {
540 	return (p4d_t *)__va(pa);
541 }
542 
543 static phys_addr_t __init alloc_p4d_early(uintptr_t va)
544 {
545 	/* Only one P4D is available for early mapping */
546 	BUG_ON((va - kernel_map.virt_addr) >> PGDIR_SHIFT);
547 
548 	return (uintptr_t)early_p4d;
549 }
550 
551 static phys_addr_t __init alloc_p4d_fixmap(uintptr_t va)
552 {
553 	return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE);
554 }
555 
556 static phys_addr_t alloc_p4d_late(uintptr_t va)
557 {
558 	unsigned long vaddr;
559 
560 	vaddr = __get_free_page(GFP_KERNEL);
561 	BUG_ON(!vaddr);
562 	return __pa(vaddr);
563 }
564 
565 static void __init create_pud_mapping(pud_t *pudp,
566 				      uintptr_t va, phys_addr_t pa,
567 				      phys_addr_t sz, pgprot_t prot)
568 {
569 	pmd_t *nextp;
570 	phys_addr_t next_phys;
571 	uintptr_t pud_index = pud_index(va);
572 
573 	if (sz == PUD_SIZE) {
574 		if (pud_val(pudp[pud_index]) == 0)
575 			pudp[pud_index] = pfn_pud(PFN_DOWN(pa), prot);
576 		return;
577 	}
578 
579 	if (pud_val(pudp[pud_index]) == 0) {
580 		next_phys = pt_ops.alloc_pmd(va);
581 		pudp[pud_index] = pfn_pud(PFN_DOWN(next_phys), PAGE_TABLE);
582 		nextp = pt_ops.get_pmd_virt(next_phys);
583 		memset(nextp, 0, PAGE_SIZE);
584 	} else {
585 		next_phys = PFN_PHYS(_pud_pfn(pudp[pud_index]));
586 		nextp = pt_ops.get_pmd_virt(next_phys);
587 	}
588 
589 	create_pmd_mapping(nextp, va, pa, sz, prot);
590 }
591 
592 static void __init create_p4d_mapping(p4d_t *p4dp,
593 				      uintptr_t va, phys_addr_t pa,
594 				      phys_addr_t sz, pgprot_t prot)
595 {
596 	pud_t *nextp;
597 	phys_addr_t next_phys;
598 	uintptr_t p4d_index = p4d_index(va);
599 
600 	if (sz == P4D_SIZE) {
601 		if (p4d_val(p4dp[p4d_index]) == 0)
602 			p4dp[p4d_index] = pfn_p4d(PFN_DOWN(pa), prot);
603 		return;
604 	}
605 
606 	if (p4d_val(p4dp[p4d_index]) == 0) {
607 		next_phys = pt_ops.alloc_pud(va);
608 		p4dp[p4d_index] = pfn_p4d(PFN_DOWN(next_phys), PAGE_TABLE);
609 		nextp = pt_ops.get_pud_virt(next_phys);
610 		memset(nextp, 0, PAGE_SIZE);
611 	} else {
612 		next_phys = PFN_PHYS(_p4d_pfn(p4dp[p4d_index]));
613 		nextp = pt_ops.get_pud_virt(next_phys);
614 	}
615 
616 	create_pud_mapping(nextp, va, pa, sz, prot);
617 }
618 
619 #define pgd_next_t		p4d_t
620 #define alloc_pgd_next(__va)	(pgtable_l5_enabled ?			\
621 		pt_ops.alloc_p4d(__va) : (pgtable_l4_enabled ?		\
622 		pt_ops.alloc_pud(__va) : pt_ops.alloc_pmd(__va)))
623 #define get_pgd_next_virt(__pa)	(pgtable_l5_enabled ?			\
624 		pt_ops.get_p4d_virt(__pa) : (pgd_next_t *)(pgtable_l4_enabled ?	\
625 		pt_ops.get_pud_virt(__pa) : (pud_t *)pt_ops.get_pmd_virt(__pa)))
626 #define create_pgd_next_mapping(__nextp, __va, __pa, __sz, __prot)	\
627 				(pgtable_l5_enabled ?			\
628 		create_p4d_mapping(__nextp, __va, __pa, __sz, __prot) : \
629 				(pgtable_l4_enabled ?			\
630 		create_pud_mapping((pud_t *)__nextp, __va, __pa, __sz, __prot) :	\
631 		create_pmd_mapping((pmd_t *)__nextp, __va, __pa, __sz, __prot)))
632 #define fixmap_pgd_next		(pgtable_l5_enabled ?			\
633 		(uintptr_t)fixmap_p4d : (pgtable_l4_enabled ?		\
634 		(uintptr_t)fixmap_pud : (uintptr_t)fixmap_pmd))
635 #define trampoline_pgd_next	(pgtable_l5_enabled ?			\
636 		(uintptr_t)trampoline_p4d : (pgtable_l4_enabled ?	\
637 		(uintptr_t)trampoline_pud : (uintptr_t)trampoline_pmd))
638 #else
639 #define pgd_next_t		pte_t
640 #define alloc_pgd_next(__va)	pt_ops.alloc_pte(__va)
641 #define get_pgd_next_virt(__pa)	pt_ops.get_pte_virt(__pa)
642 #define create_pgd_next_mapping(__nextp, __va, __pa, __sz, __prot)	\
643 	create_pte_mapping(__nextp, __va, __pa, __sz, __prot)
644 #define fixmap_pgd_next		((uintptr_t)fixmap_pte)
645 #define create_p4d_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0)
646 #define create_pud_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0)
647 #define create_pmd_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0)
648 #endif /* __PAGETABLE_PMD_FOLDED */
649 
650 void __init create_pgd_mapping(pgd_t *pgdp,
651 				      uintptr_t va, phys_addr_t pa,
652 				      phys_addr_t sz, pgprot_t prot)
653 {
654 	pgd_next_t *nextp;
655 	phys_addr_t next_phys;
656 	uintptr_t pgd_idx = pgd_index(va);
657 
658 	if (sz == PGDIR_SIZE) {
659 		if (pgd_val(pgdp[pgd_idx]) == 0)
660 			pgdp[pgd_idx] = pfn_pgd(PFN_DOWN(pa), prot);
661 		return;
662 	}
663 
664 	if (pgd_val(pgdp[pgd_idx]) == 0) {
665 		next_phys = alloc_pgd_next(va);
666 		pgdp[pgd_idx] = pfn_pgd(PFN_DOWN(next_phys), PAGE_TABLE);
667 		nextp = get_pgd_next_virt(next_phys);
668 		memset(nextp, 0, PAGE_SIZE);
669 	} else {
670 		next_phys = PFN_PHYS(_pgd_pfn(pgdp[pgd_idx]));
671 		nextp = get_pgd_next_virt(next_phys);
672 	}
673 
674 	create_pgd_next_mapping(nextp, va, pa, sz, prot);
675 }
676 
677 static uintptr_t __init best_map_size(phys_addr_t pa, uintptr_t va,
678 				      phys_addr_t size)
679 {
680 	if (debug_pagealloc_enabled())
681 		return PAGE_SIZE;
682 
683 	if (pgtable_l5_enabled &&
684 	    !(pa & (P4D_SIZE - 1)) && !(va & (P4D_SIZE - 1)) && size >= P4D_SIZE)
685 		return P4D_SIZE;
686 
687 	if (pgtable_l4_enabled &&
688 	    !(pa & (PUD_SIZE - 1)) && !(va & (PUD_SIZE - 1)) && size >= PUD_SIZE)
689 		return PUD_SIZE;
690 
691 	if (IS_ENABLED(CONFIG_64BIT) &&
692 	    !(pa & (PMD_SIZE - 1)) && !(va & (PMD_SIZE - 1)) && size >= PMD_SIZE)
693 		return PMD_SIZE;
694 
695 	return PAGE_SIZE;
696 }
697 
698 #ifdef CONFIG_XIP_KERNEL
699 #define phys_ram_base  (*(phys_addr_t *)XIP_FIXUP(&phys_ram_base))
700 extern char _xiprom[], _exiprom[], __data_loc;
701 
702 /* called from head.S with MMU off */
703 asmlinkage void __init __copy_data(void)
704 {
705 	void *from = (void *)(&__data_loc);
706 	void *to = (void *)CONFIG_PHYS_RAM_BASE;
707 	size_t sz = (size_t)((uintptr_t)(&_end) - (uintptr_t)(&_sdata));
708 
709 	memcpy(to, from, sz);
710 }
711 #endif
712 
713 #ifdef CONFIG_STRICT_KERNEL_RWX
714 static __init pgprot_t pgprot_from_va(uintptr_t va)
715 {
716 	if (is_va_kernel_text(va))
717 		return PAGE_KERNEL_READ_EXEC;
718 
719 	/*
720 	 * In 64-bit kernel, the kernel mapping is outside the linear mapping so
721 	 * we must protect its linear mapping alias from being executed and
722 	 * written.
723 	 * And rodata section is marked readonly in mark_rodata_ro.
724 	 */
725 	if (IS_ENABLED(CONFIG_64BIT) && is_va_kernel_lm_alias_text(va))
726 		return PAGE_KERNEL_READ;
727 
728 	return PAGE_KERNEL;
729 }
730 
731 void mark_rodata_ro(void)
732 {
733 	set_kernel_memory(__start_rodata, _data, set_memory_ro);
734 	if (IS_ENABLED(CONFIG_64BIT))
735 		set_kernel_memory(lm_alias(__start_rodata), lm_alias(_data),
736 				  set_memory_ro);
737 
738 	debug_checkwx();
739 }
740 #else
741 static __init pgprot_t pgprot_from_va(uintptr_t va)
742 {
743 	if (IS_ENABLED(CONFIG_64BIT) && !is_kernel_mapping(va))
744 		return PAGE_KERNEL;
745 
746 	return PAGE_KERNEL_EXEC;
747 }
748 #endif /* CONFIG_STRICT_KERNEL_RWX */
749 
750 #if defined(CONFIG_64BIT) && !defined(CONFIG_XIP_KERNEL)
751 u64 __pi_set_satp_mode_from_cmdline(uintptr_t dtb_pa);
752 
753 static void __init disable_pgtable_l5(void)
754 {
755 	pgtable_l5_enabled = false;
756 	kernel_map.page_offset = PAGE_OFFSET_L4;
757 	satp_mode = SATP_MODE_48;
758 }
759 
760 static void __init disable_pgtable_l4(void)
761 {
762 	pgtable_l4_enabled = false;
763 	kernel_map.page_offset = PAGE_OFFSET_L3;
764 	satp_mode = SATP_MODE_39;
765 }
766 
767 static int __init print_no4lvl(char *p)
768 {
769 	pr_info("Disabled 4-level and 5-level paging");
770 	return 0;
771 }
772 early_param("no4lvl", print_no4lvl);
773 
774 static int __init print_no5lvl(char *p)
775 {
776 	pr_info("Disabled 5-level paging");
777 	return 0;
778 }
779 early_param("no5lvl", print_no5lvl);
780 
781 /*
782  * There is a simple way to determine if 4-level is supported by the
783  * underlying hardware: establish 1:1 mapping in 4-level page table mode
784  * then read SATP to see if the configuration was taken into account
785  * meaning sv48 is supported.
786  */
787 static __init void set_satp_mode(uintptr_t dtb_pa)
788 {
789 	u64 identity_satp, hw_satp;
790 	uintptr_t set_satp_mode_pmd = ((unsigned long)set_satp_mode) & PMD_MASK;
791 	u64 satp_mode_cmdline = __pi_set_satp_mode_from_cmdline(dtb_pa);
792 
793 	if (satp_mode_cmdline == SATP_MODE_57) {
794 		disable_pgtable_l5();
795 	} else if (satp_mode_cmdline == SATP_MODE_48) {
796 		disable_pgtable_l5();
797 		disable_pgtable_l4();
798 		return;
799 	}
800 
801 	create_p4d_mapping(early_p4d,
802 			set_satp_mode_pmd, (uintptr_t)early_pud,
803 			P4D_SIZE, PAGE_TABLE);
804 	create_pud_mapping(early_pud,
805 			   set_satp_mode_pmd, (uintptr_t)early_pmd,
806 			   PUD_SIZE, PAGE_TABLE);
807 	/* Handle the case where set_satp_mode straddles 2 PMDs */
808 	create_pmd_mapping(early_pmd,
809 			   set_satp_mode_pmd, set_satp_mode_pmd,
810 			   PMD_SIZE, PAGE_KERNEL_EXEC);
811 	create_pmd_mapping(early_pmd,
812 			   set_satp_mode_pmd + PMD_SIZE,
813 			   set_satp_mode_pmd + PMD_SIZE,
814 			   PMD_SIZE, PAGE_KERNEL_EXEC);
815 retry:
816 	create_pgd_mapping(early_pg_dir,
817 			   set_satp_mode_pmd,
818 			   pgtable_l5_enabled ?
819 				(uintptr_t)early_p4d : (uintptr_t)early_pud,
820 			   PGDIR_SIZE, PAGE_TABLE);
821 
822 	identity_satp = PFN_DOWN((uintptr_t)&early_pg_dir) | satp_mode;
823 
824 	local_flush_tlb_all();
825 	csr_write(CSR_SATP, identity_satp);
826 	hw_satp = csr_swap(CSR_SATP, 0ULL);
827 	local_flush_tlb_all();
828 
829 	if (hw_satp != identity_satp) {
830 		if (pgtable_l5_enabled) {
831 			disable_pgtable_l5();
832 			memset(early_pg_dir, 0, PAGE_SIZE);
833 			goto retry;
834 		}
835 		disable_pgtable_l4();
836 	}
837 
838 	memset(early_pg_dir, 0, PAGE_SIZE);
839 	memset(early_p4d, 0, PAGE_SIZE);
840 	memset(early_pud, 0, PAGE_SIZE);
841 	memset(early_pmd, 0, PAGE_SIZE);
842 }
843 #endif
844 
845 /*
846  * setup_vm() is called from head.S with MMU-off.
847  *
848  * Following requirements should be honoured for setup_vm() to work
849  * correctly:
850  * 1) It should use PC-relative addressing for accessing kernel symbols.
851  *    To achieve this we always use GCC cmodel=medany.
852  * 2) The compiler instrumentation for FTRACE will not work for setup_vm()
853  *    so disable compiler instrumentation when FTRACE is enabled.
854  *
855  * Currently, the above requirements are honoured by using custom CFLAGS
856  * for init.o in mm/Makefile.
857  */
858 
859 #ifndef __riscv_cmodel_medany
860 #error "setup_vm() is called from head.S before relocate so it should not use absolute addressing."
861 #endif
862 
863 #ifdef CONFIG_RELOCATABLE
864 extern unsigned long __rela_dyn_start, __rela_dyn_end;
865 
866 static void __init relocate_kernel(void)
867 {
868 	Elf64_Rela *rela = (Elf64_Rela *)&__rela_dyn_start;
869 	/*
870 	 * This holds the offset between the linked virtual address and the
871 	 * relocated virtual address.
872 	 */
873 	uintptr_t reloc_offset = kernel_map.virt_addr - KERNEL_LINK_ADDR;
874 	/*
875 	 * This holds the offset between kernel linked virtual address and
876 	 * physical address.
877 	 */
878 	uintptr_t va_kernel_link_pa_offset = KERNEL_LINK_ADDR - kernel_map.phys_addr;
879 
880 	for ( ; rela < (Elf64_Rela *)&__rela_dyn_end; rela++) {
881 		Elf64_Addr addr = (rela->r_offset - va_kernel_link_pa_offset);
882 		Elf64_Addr relocated_addr = rela->r_addend;
883 
884 		if (rela->r_info != R_RISCV_RELATIVE)
885 			continue;
886 
887 		/*
888 		 * Make sure to not relocate vdso symbols like rt_sigreturn
889 		 * which are linked from the address 0 in vmlinux since
890 		 * vdso symbol addresses are actually used as an offset from
891 		 * mm->context.vdso in VDSO_OFFSET macro.
892 		 */
893 		if (relocated_addr >= KERNEL_LINK_ADDR)
894 			relocated_addr += reloc_offset;
895 
896 		*(Elf64_Addr *)addr = relocated_addr;
897 	}
898 }
899 #endif /* CONFIG_RELOCATABLE */
900 
901 #ifdef CONFIG_XIP_KERNEL
902 static void __init create_kernel_page_table(pgd_t *pgdir,
903 					    __always_unused bool early)
904 {
905 	uintptr_t va, end_va;
906 
907 	/* Map the flash resident part */
908 	end_va = kernel_map.virt_addr + kernel_map.xiprom_sz;
909 	for (va = kernel_map.virt_addr; va < end_va; va += PMD_SIZE)
910 		create_pgd_mapping(pgdir, va,
911 				   kernel_map.xiprom + (va - kernel_map.virt_addr),
912 				   PMD_SIZE, PAGE_KERNEL_EXEC);
913 
914 	/* Map the data in RAM */
915 	end_va = kernel_map.virt_addr + kernel_map.size;
916 	for (va = kernel_map.virt_addr + XIP_OFFSET; va < end_va; va += PMD_SIZE)
917 		create_pgd_mapping(pgdir, va,
918 				   kernel_map.phys_addr + (va - (kernel_map.virt_addr + XIP_OFFSET)),
919 				   PMD_SIZE, PAGE_KERNEL);
920 }
921 #else
922 static void __init create_kernel_page_table(pgd_t *pgdir, bool early)
923 {
924 	uintptr_t va, end_va;
925 
926 	end_va = kernel_map.virt_addr + kernel_map.size;
927 	for (va = kernel_map.virt_addr; va < end_va; va += PMD_SIZE)
928 		create_pgd_mapping(pgdir, va,
929 				   kernel_map.phys_addr + (va - kernel_map.virt_addr),
930 				   PMD_SIZE,
931 				   early ?
932 					PAGE_KERNEL_EXEC : pgprot_from_va(va));
933 }
934 #endif
935 
936 /*
937  * Setup a 4MB mapping that encompasses the device tree: for 64-bit kernel,
938  * this means 2 PMD entries whereas for 32-bit kernel, this is only 1 PGDIR
939  * entry.
940  */
941 static void __init create_fdt_early_page_table(uintptr_t fix_fdt_va,
942 					       uintptr_t dtb_pa)
943 {
944 #ifndef CONFIG_BUILTIN_DTB
945 	uintptr_t pa = dtb_pa & ~(PMD_SIZE - 1);
946 
947 	/* Make sure the fdt fixmap address is always aligned on PMD size */
948 	BUILD_BUG_ON(FIX_FDT % (PMD_SIZE / PAGE_SIZE));
949 
950 	/* In 32-bit only, the fdt lies in its own PGD */
951 	if (!IS_ENABLED(CONFIG_64BIT)) {
952 		create_pgd_mapping(early_pg_dir, fix_fdt_va,
953 				   pa, MAX_FDT_SIZE, PAGE_KERNEL);
954 	} else {
955 		create_pmd_mapping(fixmap_pmd, fix_fdt_va,
956 				   pa, PMD_SIZE, PAGE_KERNEL);
957 		create_pmd_mapping(fixmap_pmd, fix_fdt_va + PMD_SIZE,
958 				   pa + PMD_SIZE, PMD_SIZE, PAGE_KERNEL);
959 	}
960 
961 	dtb_early_va = (void *)fix_fdt_va + (dtb_pa & (PMD_SIZE - 1));
962 #else
963 	/*
964 	 * For 64-bit kernel, __va can't be used since it would return a linear
965 	 * mapping address whereas dtb_early_va will be used before
966 	 * setup_vm_final installs the linear mapping. For 32-bit kernel, as the
967 	 * kernel is mapped in the linear mapping, that makes no difference.
968 	 */
969 	dtb_early_va = kernel_mapping_pa_to_va(dtb_pa);
970 #endif
971 
972 	dtb_early_pa = dtb_pa;
973 }
974 
975 /*
976  * MMU is not enabled, the page tables are allocated directly using
977  * early_pmd/pud/p4d and the address returned is the physical one.
978  */
979 static void __init pt_ops_set_early(void)
980 {
981 	pt_ops.alloc_pte = alloc_pte_early;
982 	pt_ops.get_pte_virt = get_pte_virt_early;
983 #ifndef __PAGETABLE_PMD_FOLDED
984 	pt_ops.alloc_pmd = alloc_pmd_early;
985 	pt_ops.get_pmd_virt = get_pmd_virt_early;
986 	pt_ops.alloc_pud = alloc_pud_early;
987 	pt_ops.get_pud_virt = get_pud_virt_early;
988 	pt_ops.alloc_p4d = alloc_p4d_early;
989 	pt_ops.get_p4d_virt = get_p4d_virt_early;
990 #endif
991 }
992 
993 /*
994  * MMU is enabled but page table setup is not complete yet.
995  * fixmap page table alloc functions must be used as a means to temporarily
996  * map the allocated physical pages since the linear mapping does not exist yet.
997  *
998  * Note that this is called with MMU disabled, hence kernel_mapping_pa_to_va,
999  * but it will be used as described above.
1000  */
1001 static void __init pt_ops_set_fixmap(void)
1002 {
1003 	pt_ops.alloc_pte = kernel_mapping_pa_to_va(alloc_pte_fixmap);
1004 	pt_ops.get_pte_virt = kernel_mapping_pa_to_va(get_pte_virt_fixmap);
1005 #ifndef __PAGETABLE_PMD_FOLDED
1006 	pt_ops.alloc_pmd = kernel_mapping_pa_to_va(alloc_pmd_fixmap);
1007 	pt_ops.get_pmd_virt = kernel_mapping_pa_to_va(get_pmd_virt_fixmap);
1008 	pt_ops.alloc_pud = kernel_mapping_pa_to_va(alloc_pud_fixmap);
1009 	pt_ops.get_pud_virt = kernel_mapping_pa_to_va(get_pud_virt_fixmap);
1010 	pt_ops.alloc_p4d = kernel_mapping_pa_to_va(alloc_p4d_fixmap);
1011 	pt_ops.get_p4d_virt = kernel_mapping_pa_to_va(get_p4d_virt_fixmap);
1012 #endif
1013 }
1014 
1015 /*
1016  * MMU is enabled and page table setup is complete, so from now, we can use
1017  * generic page allocation functions to setup page table.
1018  */
1019 static void __init pt_ops_set_late(void)
1020 {
1021 	pt_ops.alloc_pte = alloc_pte_late;
1022 	pt_ops.get_pte_virt = get_pte_virt_late;
1023 #ifndef __PAGETABLE_PMD_FOLDED
1024 	pt_ops.alloc_pmd = alloc_pmd_late;
1025 	pt_ops.get_pmd_virt = get_pmd_virt_late;
1026 	pt_ops.alloc_pud = alloc_pud_late;
1027 	pt_ops.get_pud_virt = get_pud_virt_late;
1028 	pt_ops.alloc_p4d = alloc_p4d_late;
1029 	pt_ops.get_p4d_virt = get_p4d_virt_late;
1030 #endif
1031 }
1032 
1033 #ifdef CONFIG_RANDOMIZE_BASE
1034 extern bool __init __pi_set_nokaslr_from_cmdline(uintptr_t dtb_pa);
1035 extern u64 __init __pi_get_kaslr_seed(uintptr_t dtb_pa);
1036 
1037 static int __init print_nokaslr(char *p)
1038 {
1039 	pr_info("Disabled KASLR");
1040 	return 0;
1041 }
1042 early_param("nokaslr", print_nokaslr);
1043 
1044 unsigned long kaslr_offset(void)
1045 {
1046 	return kernel_map.virt_offset;
1047 }
1048 #endif
1049 
1050 asmlinkage void __init setup_vm(uintptr_t dtb_pa)
1051 {
1052 	pmd_t __maybe_unused fix_bmap_spmd, fix_bmap_epmd;
1053 
1054 #ifdef CONFIG_RANDOMIZE_BASE
1055 	if (!__pi_set_nokaslr_from_cmdline(dtb_pa)) {
1056 		u64 kaslr_seed = __pi_get_kaslr_seed(dtb_pa);
1057 		u32 kernel_size = (uintptr_t)(&_end) - (uintptr_t)(&_start);
1058 		u32 nr_pos;
1059 
1060 		/*
1061 		 * Compute the number of positions available: we are limited
1062 		 * by the early page table that only has one PUD and we must
1063 		 * be aligned on PMD_SIZE.
1064 		 */
1065 		nr_pos = (PUD_SIZE - kernel_size) / PMD_SIZE;
1066 
1067 		kernel_map.virt_offset = (kaslr_seed % nr_pos) * PMD_SIZE;
1068 	}
1069 #endif
1070 
1071 	kernel_map.virt_addr = KERNEL_LINK_ADDR + kernel_map.virt_offset;
1072 
1073 #ifdef CONFIG_XIP_KERNEL
1074 #ifdef CONFIG_64BIT
1075 	kernel_map.page_offset = PAGE_OFFSET_L3;
1076 #else
1077 	kernel_map.page_offset = _AC(CONFIG_PAGE_OFFSET, UL);
1078 #endif
1079 	kernel_map.xiprom = (uintptr_t)CONFIG_XIP_PHYS_ADDR;
1080 	kernel_map.xiprom_sz = (uintptr_t)(&_exiprom) - (uintptr_t)(&_xiprom);
1081 
1082 	phys_ram_base = CONFIG_PHYS_RAM_BASE;
1083 	kernel_map.phys_addr = (uintptr_t)CONFIG_PHYS_RAM_BASE;
1084 	kernel_map.size = (uintptr_t)(&_end) - (uintptr_t)(&_start);
1085 
1086 	kernel_map.va_kernel_xip_pa_offset = kernel_map.virt_addr - kernel_map.xiprom;
1087 #else
1088 	kernel_map.page_offset = _AC(CONFIG_PAGE_OFFSET, UL);
1089 	kernel_map.phys_addr = (uintptr_t)(&_start);
1090 	kernel_map.size = (uintptr_t)(&_end) - kernel_map.phys_addr;
1091 #endif
1092 
1093 #if defined(CONFIG_64BIT) && !defined(CONFIG_XIP_KERNEL)
1094 	set_satp_mode(dtb_pa);
1095 #endif
1096 
1097 	/*
1098 	 * In 64-bit, we defer the setup of va_pa_offset to setup_bootmem,
1099 	 * where we have the system memory layout: this allows us to align
1100 	 * the physical and virtual mappings and then make use of PUD/P4D/PGD
1101 	 * for the linear mapping. This is only possible because the kernel
1102 	 * mapping lies outside the linear mapping.
1103 	 * In 32-bit however, as the kernel resides in the linear mapping,
1104 	 * setup_vm_final can not change the mapping established here,
1105 	 * otherwise the same kernel addresses would get mapped to different
1106 	 * physical addresses (if the start of dram is different from the
1107 	 * kernel physical address start).
1108 	 */
1109 	kernel_map.va_pa_offset = IS_ENABLED(CONFIG_64BIT) ?
1110 				0UL : PAGE_OFFSET - kernel_map.phys_addr;
1111 	kernel_map.va_kernel_pa_offset = kernel_map.virt_addr - kernel_map.phys_addr;
1112 
1113 	/*
1114 	 * The default maximal physical memory size is KERN_VIRT_SIZE for 32-bit
1115 	 * kernel, whereas for 64-bit kernel, the end of the virtual address
1116 	 * space is occupied by the modules/BPF/kernel mappings which reduces
1117 	 * the available size of the linear mapping.
1118 	 */
1119 	memory_limit = KERN_VIRT_SIZE - (IS_ENABLED(CONFIG_64BIT) ? SZ_4G : 0);
1120 
1121 	/* Sanity check alignment and size */
1122 	BUG_ON((PAGE_OFFSET % PGDIR_SIZE) != 0);
1123 	BUG_ON((kernel_map.phys_addr % PMD_SIZE) != 0);
1124 
1125 #ifdef CONFIG_64BIT
1126 	/*
1127 	 * The last 4K bytes of the addressable memory can not be mapped because
1128 	 * of IS_ERR_VALUE macro.
1129 	 */
1130 	BUG_ON((kernel_map.virt_addr + kernel_map.size) > ADDRESS_SPACE_END - SZ_4K);
1131 #endif
1132 
1133 #ifdef CONFIG_RELOCATABLE
1134 	/*
1135 	 * Early page table uses only one PUD, which makes it possible
1136 	 * to map PUD_SIZE aligned on PUD_SIZE: if the relocation offset
1137 	 * makes the kernel cross over a PUD_SIZE boundary, raise a bug
1138 	 * since a part of the kernel would not get mapped.
1139 	 */
1140 	BUG_ON(PUD_SIZE - (kernel_map.virt_addr & (PUD_SIZE - 1)) < kernel_map.size);
1141 	relocate_kernel();
1142 #endif
1143 
1144 	apply_early_boot_alternatives();
1145 	pt_ops_set_early();
1146 
1147 	/* Setup early PGD for fixmap */
1148 	create_pgd_mapping(early_pg_dir, FIXADDR_START,
1149 			   fixmap_pgd_next, PGDIR_SIZE, PAGE_TABLE);
1150 
1151 #ifndef __PAGETABLE_PMD_FOLDED
1152 	/* Setup fixmap P4D and PUD */
1153 	if (pgtable_l5_enabled)
1154 		create_p4d_mapping(fixmap_p4d, FIXADDR_START,
1155 				   (uintptr_t)fixmap_pud, P4D_SIZE, PAGE_TABLE);
1156 	/* Setup fixmap PUD and PMD */
1157 	if (pgtable_l4_enabled)
1158 		create_pud_mapping(fixmap_pud, FIXADDR_START,
1159 				   (uintptr_t)fixmap_pmd, PUD_SIZE, PAGE_TABLE);
1160 	create_pmd_mapping(fixmap_pmd, FIXADDR_START,
1161 			   (uintptr_t)fixmap_pte, PMD_SIZE, PAGE_TABLE);
1162 	/* Setup trampoline PGD and PMD */
1163 	create_pgd_mapping(trampoline_pg_dir, kernel_map.virt_addr,
1164 			   trampoline_pgd_next, PGDIR_SIZE, PAGE_TABLE);
1165 	if (pgtable_l5_enabled)
1166 		create_p4d_mapping(trampoline_p4d, kernel_map.virt_addr,
1167 				   (uintptr_t)trampoline_pud, P4D_SIZE, PAGE_TABLE);
1168 	if (pgtable_l4_enabled)
1169 		create_pud_mapping(trampoline_pud, kernel_map.virt_addr,
1170 				   (uintptr_t)trampoline_pmd, PUD_SIZE, PAGE_TABLE);
1171 #ifdef CONFIG_XIP_KERNEL
1172 	create_pmd_mapping(trampoline_pmd, kernel_map.virt_addr,
1173 			   kernel_map.xiprom, PMD_SIZE, PAGE_KERNEL_EXEC);
1174 #else
1175 	create_pmd_mapping(trampoline_pmd, kernel_map.virt_addr,
1176 			   kernel_map.phys_addr, PMD_SIZE, PAGE_KERNEL_EXEC);
1177 #endif
1178 #else
1179 	/* Setup trampoline PGD */
1180 	create_pgd_mapping(trampoline_pg_dir, kernel_map.virt_addr,
1181 			   kernel_map.phys_addr, PGDIR_SIZE, PAGE_KERNEL_EXEC);
1182 #endif
1183 
1184 	/*
1185 	 * Setup early PGD covering entire kernel which will allow
1186 	 * us to reach paging_init(). We map all memory banks later
1187 	 * in setup_vm_final() below.
1188 	 */
1189 	create_kernel_page_table(early_pg_dir, true);
1190 
1191 	/* Setup early mapping for FDT early scan */
1192 	create_fdt_early_page_table(__fix_to_virt(FIX_FDT), dtb_pa);
1193 
1194 	/*
1195 	 * Bootime fixmap only can handle PMD_SIZE mapping. Thus, boot-ioremap
1196 	 * range can not span multiple pmds.
1197 	 */
1198 	BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
1199 		     != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
1200 
1201 #ifndef __PAGETABLE_PMD_FOLDED
1202 	/*
1203 	 * Early ioremap fixmap is already created as it lies within first 2MB
1204 	 * of fixmap region. We always map PMD_SIZE. Thus, both FIX_BTMAP_END
1205 	 * FIX_BTMAP_BEGIN should lie in the same pmd. Verify that and warn
1206 	 * the user if not.
1207 	 */
1208 	fix_bmap_spmd = fixmap_pmd[pmd_index(__fix_to_virt(FIX_BTMAP_BEGIN))];
1209 	fix_bmap_epmd = fixmap_pmd[pmd_index(__fix_to_virt(FIX_BTMAP_END))];
1210 	if (pmd_val(fix_bmap_spmd) != pmd_val(fix_bmap_epmd)) {
1211 		WARN_ON(1);
1212 		pr_warn("fixmap btmap start [%08lx] != end [%08lx]\n",
1213 			pmd_val(fix_bmap_spmd), pmd_val(fix_bmap_epmd));
1214 		pr_warn("fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
1215 			fix_to_virt(FIX_BTMAP_BEGIN));
1216 		pr_warn("fix_to_virt(FIX_BTMAP_END):   %08lx\n",
1217 			fix_to_virt(FIX_BTMAP_END));
1218 
1219 		pr_warn("FIX_BTMAP_END:       %d\n", FIX_BTMAP_END);
1220 		pr_warn("FIX_BTMAP_BEGIN:     %d\n", FIX_BTMAP_BEGIN);
1221 	}
1222 #endif
1223 
1224 	pt_ops_set_fixmap();
1225 }
1226 
1227 static void __init create_linear_mapping_range(phys_addr_t start,
1228 					       phys_addr_t end,
1229 					       uintptr_t fixed_map_size)
1230 {
1231 	phys_addr_t pa;
1232 	uintptr_t va, map_size;
1233 
1234 	for (pa = start; pa < end; pa += map_size) {
1235 		va = (uintptr_t)__va(pa);
1236 		map_size = fixed_map_size ? fixed_map_size :
1237 					    best_map_size(pa, va, end - pa);
1238 
1239 		create_pgd_mapping(swapper_pg_dir, va, pa, map_size,
1240 				   pgprot_from_va(va));
1241 	}
1242 }
1243 
1244 static void __init create_linear_mapping_page_table(void)
1245 {
1246 	phys_addr_t start, end;
1247 	phys_addr_t kfence_pool __maybe_unused;
1248 	u64 i;
1249 
1250 #ifdef CONFIG_STRICT_KERNEL_RWX
1251 	phys_addr_t ktext_start = __pa_symbol(_start);
1252 	phys_addr_t ktext_size = __init_data_begin - _start;
1253 	phys_addr_t krodata_start = __pa_symbol(__start_rodata);
1254 	phys_addr_t krodata_size = _data - __start_rodata;
1255 
1256 	/* Isolate kernel text and rodata so they don't get mapped with a PUD */
1257 	memblock_mark_nomap(ktext_start,  ktext_size);
1258 	memblock_mark_nomap(krodata_start, krodata_size);
1259 #endif
1260 
1261 #ifdef CONFIG_KFENCE
1262 	/*
1263 	 *  kfence pool must be backed by PAGE_SIZE mappings, so allocate it
1264 	 *  before we setup the linear mapping so that we avoid using hugepages
1265 	 *  for this region.
1266 	 */
1267 	kfence_pool = memblock_phys_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
1268 	BUG_ON(!kfence_pool);
1269 
1270 	memblock_mark_nomap(kfence_pool, KFENCE_POOL_SIZE);
1271 	__kfence_pool = __va(kfence_pool);
1272 #endif
1273 
1274 	/* Map all memory banks in the linear mapping */
1275 	for_each_mem_range(i, &start, &end) {
1276 		if (start >= end)
1277 			break;
1278 		if (start <= __pa(PAGE_OFFSET) &&
1279 		    __pa(PAGE_OFFSET) < end)
1280 			start = __pa(PAGE_OFFSET);
1281 
1282 		create_linear_mapping_range(start, end, 0);
1283 	}
1284 
1285 #ifdef CONFIG_STRICT_KERNEL_RWX
1286 	create_linear_mapping_range(ktext_start, ktext_start + ktext_size, 0);
1287 	create_linear_mapping_range(krodata_start,
1288 				    krodata_start + krodata_size, 0);
1289 
1290 	memblock_clear_nomap(ktext_start,  ktext_size);
1291 	memblock_clear_nomap(krodata_start, krodata_size);
1292 #endif
1293 
1294 #ifdef CONFIG_KFENCE
1295 	create_linear_mapping_range(kfence_pool,
1296 				    kfence_pool + KFENCE_POOL_SIZE,
1297 				    PAGE_SIZE);
1298 
1299 	memblock_clear_nomap(kfence_pool, KFENCE_POOL_SIZE);
1300 #endif
1301 }
1302 
1303 static void __init setup_vm_final(void)
1304 {
1305 	/* Setup swapper PGD for fixmap */
1306 #if !defined(CONFIG_64BIT)
1307 	/*
1308 	 * In 32-bit, the device tree lies in a pgd entry, so it must be copied
1309 	 * directly in swapper_pg_dir in addition to the pgd entry that points
1310 	 * to fixmap_pte.
1311 	 */
1312 	unsigned long idx = pgd_index(__fix_to_virt(FIX_FDT));
1313 
1314 	set_pgd(&swapper_pg_dir[idx], early_pg_dir[idx]);
1315 #endif
1316 	create_pgd_mapping(swapper_pg_dir, FIXADDR_START,
1317 			   __pa_symbol(fixmap_pgd_next),
1318 			   PGDIR_SIZE, PAGE_TABLE);
1319 
1320 	/* Map the linear mapping */
1321 	create_linear_mapping_page_table();
1322 
1323 	/* Map the kernel */
1324 	if (IS_ENABLED(CONFIG_64BIT))
1325 		create_kernel_page_table(swapper_pg_dir, false);
1326 
1327 #ifdef CONFIG_KASAN
1328 	kasan_swapper_init();
1329 #endif
1330 
1331 	/* Clear fixmap PTE and PMD mappings */
1332 	clear_fixmap(FIX_PTE);
1333 	clear_fixmap(FIX_PMD);
1334 	clear_fixmap(FIX_PUD);
1335 	clear_fixmap(FIX_P4D);
1336 
1337 	/* Move to swapper page table */
1338 	csr_write(CSR_SATP, PFN_DOWN(__pa_symbol(swapper_pg_dir)) | satp_mode);
1339 	local_flush_tlb_all();
1340 
1341 	pt_ops_set_late();
1342 }
1343 #else
1344 asmlinkage void __init setup_vm(uintptr_t dtb_pa)
1345 {
1346 	dtb_early_va = (void *)dtb_pa;
1347 	dtb_early_pa = dtb_pa;
1348 }
1349 
1350 static inline void setup_vm_final(void)
1351 {
1352 }
1353 #endif /* CONFIG_MMU */
1354 
1355 /* Reserve 128M low memory by default for swiotlb buffer */
1356 #define DEFAULT_CRASH_KERNEL_LOW_SIZE	(128UL << 20)
1357 
1358 static int __init reserve_crashkernel_low(unsigned long long low_size)
1359 {
1360 	unsigned long long low_base;
1361 
1362 	low_base = memblock_phys_alloc_range(low_size, PMD_SIZE, 0, dma32_phys_limit);
1363 	if (!low_base) {
1364 		pr_err("cannot allocate crashkernel low memory (size:0x%llx).\n", low_size);
1365 		return -ENOMEM;
1366 	}
1367 
1368 	pr_info("crashkernel low memory reserved: 0x%016llx - 0x%016llx (%lld MB)\n",
1369 		low_base, low_base + low_size, low_size >> 20);
1370 
1371 	crashk_low_res.start = low_base;
1372 	crashk_low_res.end = low_base + low_size - 1;
1373 
1374 	return 0;
1375 }
1376 
1377 /*
1378  * reserve_crashkernel() - reserves memory for crash kernel
1379  *
1380  * This function reserves memory area given in "crashkernel=" kernel command
1381  * line parameter. The memory reserved is used by dump capture kernel when
1382  * primary kernel is crashing.
1383  */
1384 static void __init reserve_crashkernel(void)
1385 {
1386 	unsigned long long crash_base = 0;
1387 	unsigned long long crash_size = 0;
1388 	unsigned long long crash_low_size = 0;
1389 	unsigned long search_start = memblock_start_of_DRAM();
1390 	unsigned long search_end = (unsigned long)dma32_phys_limit;
1391 	char *cmdline = boot_command_line;
1392 	bool fixed_base = false;
1393 	bool high = false;
1394 
1395 	int ret = 0;
1396 
1397 	if (!IS_ENABLED(CONFIG_KEXEC_CORE))
1398 		return;
1399 	/*
1400 	 * Don't reserve a region for a crash kernel on a crash kernel
1401 	 * since it doesn't make much sense and we have limited memory
1402 	 * resources.
1403 	 */
1404 	if (is_kdump_kernel()) {
1405 		pr_info("crashkernel: ignoring reservation request\n");
1406 		return;
1407 	}
1408 
1409 	ret = parse_crashkernel(cmdline, memblock_phys_mem_size(),
1410 				&crash_size, &crash_base);
1411 	if (ret == -ENOENT) {
1412 		/* Fallback to crashkernel=X,[high,low] */
1413 		ret = parse_crashkernel_high(cmdline, 0, &crash_size, &crash_base);
1414 		if (ret || !crash_size)
1415 			return;
1416 
1417 		/*
1418 		 * crashkernel=Y,low is valid only when crashkernel=X,high
1419 		 * is passed.
1420 		 */
1421 		ret = parse_crashkernel_low(cmdline, 0, &crash_low_size, &crash_base);
1422 		if (ret == -ENOENT)
1423 			crash_low_size = DEFAULT_CRASH_KERNEL_LOW_SIZE;
1424 		else if (ret)
1425 			return;
1426 
1427 		search_start = (unsigned long)dma32_phys_limit;
1428 		search_end = memblock_end_of_DRAM();
1429 		high = true;
1430 	} else if (ret || !crash_size) {
1431 		/* Invalid argument value specified */
1432 		return;
1433 	}
1434 
1435 	crash_size = PAGE_ALIGN(crash_size);
1436 
1437 	if (crash_base) {
1438 		fixed_base = true;
1439 		search_start = crash_base;
1440 		search_end = crash_base + crash_size;
1441 	}
1442 
1443 	/*
1444 	 * Current riscv boot protocol requires 2MB alignment for
1445 	 * RV64 and 4MB alignment for RV32 (hugepage size)
1446 	 *
1447 	 * Try to alloc from 32bit addressible physical memory so that
1448 	 * swiotlb can work on the crash kernel.
1449 	 */
1450 	crash_base = memblock_phys_alloc_range(crash_size, PMD_SIZE,
1451 					       search_start, search_end);
1452 	if (crash_base == 0) {
1453 		/*
1454 		 * For crashkernel=size[KMG]@offset[KMG], print out failure
1455 		 * message if can't reserve the specified region.
1456 		 */
1457 		if (fixed_base) {
1458 			pr_warn("crashkernel: allocating failed with given size@offset\n");
1459 			return;
1460 		}
1461 
1462 		if (high) {
1463 			/*
1464 			 * For crashkernel=size[KMG],high, if the first attempt was
1465 			 * for high memory, fall back to low memory.
1466 			 */
1467 			search_start = memblock_start_of_DRAM();
1468 			search_end = (unsigned long)dma32_phys_limit;
1469 		} else {
1470 			/*
1471 			 * For crashkernel=size[KMG], if the first attempt was for
1472 			 * low memory, fall back to high memory, the minimum required
1473 			 * low memory will be reserved later.
1474 			 */
1475 			search_start = (unsigned long)dma32_phys_limit;
1476 			search_end = memblock_end_of_DRAM();
1477 			crash_low_size = DEFAULT_CRASH_KERNEL_LOW_SIZE;
1478 		}
1479 
1480 		crash_base = memblock_phys_alloc_range(crash_size, PMD_SIZE,
1481 						       search_start, search_end);
1482 		if (crash_base == 0) {
1483 			pr_warn("crashkernel: couldn't allocate %lldKB\n",
1484 				crash_size >> 10);
1485 			return;
1486 		}
1487 	}
1488 
1489 	if ((crash_base >= dma32_phys_limit) && crash_low_size &&
1490 	     reserve_crashkernel_low(crash_low_size)) {
1491 		memblock_phys_free(crash_base, crash_size);
1492 		return;
1493 	}
1494 
1495 	pr_info("crashkernel: reserved 0x%016llx - 0x%016llx (%lld MB)\n",
1496 		crash_base, crash_base + crash_size, crash_size >> 20);
1497 
1498 	crashk_res.start = crash_base;
1499 	crashk_res.end = crash_base + crash_size - 1;
1500 }
1501 
1502 void __init paging_init(void)
1503 {
1504 	setup_bootmem();
1505 	setup_vm_final();
1506 
1507 	/* Depend on that Linear Mapping is ready */
1508 	memblock_allow_resize();
1509 }
1510 
1511 void __init misc_mem_init(void)
1512 {
1513 	early_memtest(min_low_pfn << PAGE_SHIFT, max_low_pfn << PAGE_SHIFT);
1514 	arch_numa_init();
1515 	sparse_init();
1516 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1517 	/* The entire VMEMMAP region has been populated. Flush TLB for this region */
1518 	local_flush_tlb_kernel_range(VMEMMAP_START, VMEMMAP_END);
1519 #endif
1520 	zone_sizes_init();
1521 	reserve_crashkernel();
1522 	memblock_dump_all();
1523 }
1524 
1525 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1526 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1527 			       struct vmem_altmap *altmap)
1528 {
1529 	return vmemmap_populate_basepages(start, end, node, NULL);
1530 }
1531 #endif
1532 
1533 #if defined(CONFIG_MMU) && defined(CONFIG_64BIT)
1534 /*
1535  * Pre-allocates page-table pages for a specific area in the kernel
1536  * page-table. Only the level which needs to be synchronized between
1537  * all page-tables is allocated because the synchronization can be
1538  * expensive.
1539  */
1540 static void __init preallocate_pgd_pages_range(unsigned long start, unsigned long end,
1541 					       const char *area)
1542 {
1543 	unsigned long addr;
1544 	const char *lvl;
1545 
1546 	for (addr = start; addr < end && addr >= start; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
1547 		pgd_t *pgd = pgd_offset_k(addr);
1548 		p4d_t *p4d;
1549 		pud_t *pud;
1550 		pmd_t *pmd;
1551 
1552 		lvl = "p4d";
1553 		p4d = p4d_alloc(&init_mm, pgd, addr);
1554 		if (!p4d)
1555 			goto failed;
1556 
1557 		if (pgtable_l5_enabled)
1558 			continue;
1559 
1560 		lvl = "pud";
1561 		pud = pud_alloc(&init_mm, p4d, addr);
1562 		if (!pud)
1563 			goto failed;
1564 
1565 		if (pgtable_l4_enabled)
1566 			continue;
1567 
1568 		lvl = "pmd";
1569 		pmd = pmd_alloc(&init_mm, pud, addr);
1570 		if (!pmd)
1571 			goto failed;
1572 	}
1573 	return;
1574 
1575 failed:
1576 	/*
1577 	 * The pages have to be there now or they will be missing in
1578 	 * process page-tables later.
1579 	 */
1580 	panic("Failed to pre-allocate %s pages for %s area\n", lvl, area);
1581 }
1582 
1583 void __init pgtable_cache_init(void)
1584 {
1585 	preallocate_pgd_pages_range(VMALLOC_START, VMALLOC_END, "vmalloc");
1586 	if (IS_ENABLED(CONFIG_MODULES))
1587 		preallocate_pgd_pages_range(MODULES_VADDR, MODULES_END, "bpf/modules");
1588 }
1589 #endif
1590