xref: /openbmc/linux/arch/riscv/mm/init.c (revision 6b6c2ebd83f2bf97e8f221479372aaca97a4a9b2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 Regents of the University of California
4  * Copyright (C) 2019 Western Digital Corporation or its affiliates.
5  * Copyright (C) 2020 FORTH-ICS/CARV
6  *  Nick Kossifidis <mick@ics.forth.gr>
7  */
8 
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/memblock.h>
12 #include <linux/initrd.h>
13 #include <linux/swap.h>
14 #include <linux/swiotlb.h>
15 #include <linux/sizes.h>
16 #include <linux/of_fdt.h>
17 #include <linux/of_reserved_mem.h>
18 #include <linux/libfdt.h>
19 #include <linux/set_memory.h>
20 #include <linux/dma-map-ops.h>
21 #include <linux/crash_dump.h>
22 #include <linux/hugetlb.h>
23 #ifdef CONFIG_RELOCATABLE
24 #include <linux/elf.h>
25 #endif
26 #include <linux/kfence.h>
27 
28 #include <asm/fixmap.h>
29 #include <asm/io.h>
30 #include <asm/numa.h>
31 #include <asm/pgtable.h>
32 #include <asm/ptdump.h>
33 #include <asm/sections.h>
34 #include <asm/soc.h>
35 #include <asm/tlbflush.h>
36 
37 #include "../kernel/head.h"
38 
39 struct kernel_mapping kernel_map __ro_after_init;
40 EXPORT_SYMBOL(kernel_map);
41 #ifdef CONFIG_XIP_KERNEL
42 #define kernel_map	(*(struct kernel_mapping *)XIP_FIXUP(&kernel_map))
43 #endif
44 
45 #ifdef CONFIG_64BIT
46 u64 satp_mode __ro_after_init = !IS_ENABLED(CONFIG_XIP_KERNEL) ? SATP_MODE_57 : SATP_MODE_39;
47 #else
48 u64 satp_mode __ro_after_init = SATP_MODE_32;
49 #endif
50 EXPORT_SYMBOL(satp_mode);
51 
52 bool pgtable_l4_enabled = IS_ENABLED(CONFIG_64BIT) && !IS_ENABLED(CONFIG_XIP_KERNEL);
53 bool pgtable_l5_enabled = IS_ENABLED(CONFIG_64BIT) && !IS_ENABLED(CONFIG_XIP_KERNEL);
54 EXPORT_SYMBOL(pgtable_l4_enabled);
55 EXPORT_SYMBOL(pgtable_l5_enabled);
56 
57 phys_addr_t phys_ram_base __ro_after_init;
58 EXPORT_SYMBOL(phys_ram_base);
59 
60 unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]
61 							__page_aligned_bss;
62 EXPORT_SYMBOL(empty_zero_page);
63 
64 extern char _start[];
65 void *_dtb_early_va __initdata;
66 uintptr_t _dtb_early_pa __initdata;
67 
68 static phys_addr_t dma32_phys_limit __initdata;
69 
70 static void __init zone_sizes_init(void)
71 {
72 	unsigned long max_zone_pfns[MAX_NR_ZONES] = { 0, };
73 
74 #ifdef CONFIG_ZONE_DMA32
75 	max_zone_pfns[ZONE_DMA32] = PFN_DOWN(dma32_phys_limit);
76 #endif
77 	max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
78 
79 	free_area_init(max_zone_pfns);
80 }
81 
82 #if defined(CONFIG_MMU) && defined(CONFIG_DEBUG_VM)
83 
84 #define LOG2_SZ_1K  ilog2(SZ_1K)
85 #define LOG2_SZ_1M  ilog2(SZ_1M)
86 #define LOG2_SZ_1G  ilog2(SZ_1G)
87 #define LOG2_SZ_1T  ilog2(SZ_1T)
88 
89 static inline void print_mlk(char *name, unsigned long b, unsigned long t)
90 {
91 	pr_notice("%12s : 0x%08lx - 0x%08lx   (%4ld kB)\n", name, b, t,
92 		  (((t) - (b)) >> LOG2_SZ_1K));
93 }
94 
95 static inline void print_mlm(char *name, unsigned long b, unsigned long t)
96 {
97 	pr_notice("%12s : 0x%08lx - 0x%08lx   (%4ld MB)\n", name, b, t,
98 		  (((t) - (b)) >> LOG2_SZ_1M));
99 }
100 
101 static inline void print_mlg(char *name, unsigned long b, unsigned long t)
102 {
103 	pr_notice("%12s : 0x%08lx - 0x%08lx   (%4ld GB)\n", name, b, t,
104 		   (((t) - (b)) >> LOG2_SZ_1G));
105 }
106 
107 #ifdef CONFIG_64BIT
108 static inline void print_mlt(char *name, unsigned long b, unsigned long t)
109 {
110 	pr_notice("%12s : 0x%08lx - 0x%08lx   (%4ld TB)\n", name, b, t,
111 		   (((t) - (b)) >> LOG2_SZ_1T));
112 }
113 #else
114 #define print_mlt(n, b, t) do {} while (0)
115 #endif
116 
117 static inline void print_ml(char *name, unsigned long b, unsigned long t)
118 {
119 	unsigned long diff = t - b;
120 
121 	if (IS_ENABLED(CONFIG_64BIT) && (diff >> LOG2_SZ_1T) >= 10)
122 		print_mlt(name, b, t);
123 	else if ((diff >> LOG2_SZ_1G) >= 10)
124 		print_mlg(name, b, t);
125 	else if ((diff >> LOG2_SZ_1M) >= 10)
126 		print_mlm(name, b, t);
127 	else
128 		print_mlk(name, b, t);
129 }
130 
131 static void __init print_vm_layout(void)
132 {
133 	pr_notice("Virtual kernel memory layout:\n");
134 	print_ml("fixmap", (unsigned long)FIXADDR_START,
135 		(unsigned long)FIXADDR_TOP);
136 	print_ml("pci io", (unsigned long)PCI_IO_START,
137 		(unsigned long)PCI_IO_END);
138 	print_ml("vmemmap", (unsigned long)VMEMMAP_START,
139 		(unsigned long)VMEMMAP_END);
140 	print_ml("vmalloc", (unsigned long)VMALLOC_START,
141 		(unsigned long)VMALLOC_END);
142 #ifdef CONFIG_64BIT
143 	print_ml("modules", (unsigned long)MODULES_VADDR,
144 		(unsigned long)MODULES_END);
145 #endif
146 	print_ml("lowmem", (unsigned long)PAGE_OFFSET,
147 		(unsigned long)high_memory);
148 	if (IS_ENABLED(CONFIG_64BIT)) {
149 #ifdef CONFIG_KASAN
150 		print_ml("kasan", KASAN_SHADOW_START, KASAN_SHADOW_END);
151 #endif
152 
153 		print_ml("kernel", (unsigned long)kernel_map.virt_addr,
154 			 (unsigned long)ADDRESS_SPACE_END);
155 	}
156 }
157 #else
158 static void print_vm_layout(void) { }
159 #endif /* CONFIG_DEBUG_VM */
160 
161 void __init mem_init(void)
162 {
163 #ifdef CONFIG_FLATMEM
164 	BUG_ON(!mem_map);
165 #endif /* CONFIG_FLATMEM */
166 
167 	swiotlb_init(max_pfn > PFN_DOWN(dma32_phys_limit), SWIOTLB_VERBOSE);
168 	memblock_free_all();
169 
170 	print_vm_layout();
171 }
172 
173 /* Limit the memory size via mem. */
174 static phys_addr_t memory_limit;
175 #ifdef CONFIG_XIP_KERNEL
176 #define memory_limit	(*(phys_addr_t *)XIP_FIXUP(&memory_limit))
177 #endif /* CONFIG_XIP_KERNEL */
178 
179 static int __init early_mem(char *p)
180 {
181 	u64 size;
182 
183 	if (!p)
184 		return 1;
185 
186 	size = memparse(p, &p) & PAGE_MASK;
187 	memory_limit = min_t(u64, size, memory_limit);
188 
189 	pr_notice("Memory limited to %lldMB\n", (u64)memory_limit >> 20);
190 
191 	return 0;
192 }
193 early_param("mem", early_mem);
194 
195 static void __init setup_bootmem(void)
196 {
197 	phys_addr_t vmlinux_end = __pa_symbol(&_end);
198 	phys_addr_t max_mapped_addr;
199 	phys_addr_t phys_ram_end, vmlinux_start;
200 
201 	if (IS_ENABLED(CONFIG_XIP_KERNEL))
202 		vmlinux_start = __pa_symbol(&_sdata);
203 	else
204 		vmlinux_start = __pa_symbol(&_start);
205 
206 	memblock_enforce_memory_limit(memory_limit);
207 
208 	/*
209 	 * Make sure we align the reservation on PMD_SIZE since we will
210 	 * map the kernel in the linear mapping as read-only: we do not want
211 	 * any allocation to happen between _end and the next pmd aligned page.
212 	 */
213 	if (IS_ENABLED(CONFIG_64BIT) && IS_ENABLED(CONFIG_STRICT_KERNEL_RWX))
214 		vmlinux_end = (vmlinux_end + PMD_SIZE - 1) & PMD_MASK;
215 	/*
216 	 * Reserve from the start of the kernel to the end of the kernel
217 	 */
218 	memblock_reserve(vmlinux_start, vmlinux_end - vmlinux_start);
219 
220 	phys_ram_end = memblock_end_of_DRAM();
221 
222 	/*
223 	 * Make sure we align the start of the memory on a PMD boundary so that
224 	 * at worst, we map the linear mapping with PMD mappings.
225 	 */
226 	if (!IS_ENABLED(CONFIG_XIP_KERNEL))
227 		phys_ram_base = memblock_start_of_DRAM() & PMD_MASK;
228 
229 	/*
230 	 * In 64-bit, any use of __va/__pa before this point is wrong as we
231 	 * did not know the start of DRAM before.
232 	 */
233 	if (IS_ENABLED(CONFIG_64BIT) && IS_ENABLED(CONFIG_MMU))
234 		kernel_map.va_pa_offset = PAGE_OFFSET - phys_ram_base;
235 
236 	/*
237 	 * Reserve physical address space that would be mapped to virtual
238 	 * addresses greater than (void *)(-PAGE_SIZE) because:
239 	 *  - This memory would overlap with ERR_PTR
240 	 *  - This memory belongs to high memory, which is not supported
241 	 *
242 	 * This is not applicable to 64-bit kernel, because virtual addresses
243 	 * after (void *)(-PAGE_SIZE) are not linearly mapped: they are
244 	 * occupied by kernel mapping. Also it is unrealistic for high memory
245 	 * to exist on 64-bit platforms.
246 	 */
247 	if (!IS_ENABLED(CONFIG_64BIT)) {
248 		max_mapped_addr = __va_to_pa_nodebug(-PAGE_SIZE);
249 		memblock_reserve(max_mapped_addr, (phys_addr_t)-max_mapped_addr);
250 	}
251 
252 	min_low_pfn = PFN_UP(phys_ram_base);
253 	max_low_pfn = max_pfn = PFN_DOWN(phys_ram_end);
254 	high_memory = (void *)(__va(PFN_PHYS(max_low_pfn)));
255 
256 	dma32_phys_limit = min(4UL * SZ_1G, (unsigned long)PFN_PHYS(max_low_pfn));
257 	set_max_mapnr(max_low_pfn - ARCH_PFN_OFFSET);
258 
259 	reserve_initrd_mem();
260 
261 	/*
262 	 * No allocation should be done before reserving the memory as defined
263 	 * in the device tree, otherwise the allocation could end up in a
264 	 * reserved region.
265 	 */
266 	early_init_fdt_scan_reserved_mem();
267 
268 	/*
269 	 * If DTB is built in, no need to reserve its memblock.
270 	 * Otherwise, do reserve it but avoid using
271 	 * early_init_fdt_reserve_self() since __pa() does
272 	 * not work for DTB pointers that are fixmap addresses
273 	 */
274 	if (!IS_ENABLED(CONFIG_BUILTIN_DTB))
275 		memblock_reserve(dtb_early_pa, fdt_totalsize(dtb_early_va));
276 
277 	dma_contiguous_reserve(dma32_phys_limit);
278 	if (IS_ENABLED(CONFIG_64BIT))
279 		hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT);
280 }
281 
282 #ifdef CONFIG_MMU
283 struct pt_alloc_ops pt_ops __initdata;
284 
285 pgd_t swapper_pg_dir[PTRS_PER_PGD] __page_aligned_bss;
286 pgd_t trampoline_pg_dir[PTRS_PER_PGD] __page_aligned_bss;
287 static pte_t fixmap_pte[PTRS_PER_PTE] __page_aligned_bss;
288 
289 pgd_t early_pg_dir[PTRS_PER_PGD] __initdata __aligned(PAGE_SIZE);
290 
291 #ifdef CONFIG_XIP_KERNEL
292 #define pt_ops			(*(struct pt_alloc_ops *)XIP_FIXUP(&pt_ops))
293 #define trampoline_pg_dir      ((pgd_t *)XIP_FIXUP(trampoline_pg_dir))
294 #define fixmap_pte             ((pte_t *)XIP_FIXUP(fixmap_pte))
295 #define early_pg_dir           ((pgd_t *)XIP_FIXUP(early_pg_dir))
296 #endif /* CONFIG_XIP_KERNEL */
297 
298 static const pgprot_t protection_map[16] = {
299 	[VM_NONE]					= PAGE_NONE,
300 	[VM_READ]					= PAGE_READ,
301 	[VM_WRITE]					= PAGE_COPY,
302 	[VM_WRITE | VM_READ]				= PAGE_COPY,
303 	[VM_EXEC]					= PAGE_EXEC,
304 	[VM_EXEC | VM_READ]				= PAGE_READ_EXEC,
305 	[VM_EXEC | VM_WRITE]				= PAGE_COPY_EXEC,
306 	[VM_EXEC | VM_WRITE | VM_READ]			= PAGE_COPY_EXEC,
307 	[VM_SHARED]					= PAGE_NONE,
308 	[VM_SHARED | VM_READ]				= PAGE_READ,
309 	[VM_SHARED | VM_WRITE]				= PAGE_SHARED,
310 	[VM_SHARED | VM_WRITE | VM_READ]		= PAGE_SHARED,
311 	[VM_SHARED | VM_EXEC]				= PAGE_EXEC,
312 	[VM_SHARED | VM_EXEC | VM_READ]			= PAGE_READ_EXEC,
313 	[VM_SHARED | VM_EXEC | VM_WRITE]		= PAGE_SHARED_EXEC,
314 	[VM_SHARED | VM_EXEC | VM_WRITE | VM_READ]	= PAGE_SHARED_EXEC
315 };
316 DECLARE_VM_GET_PAGE_PROT
317 
318 void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
319 {
320 	unsigned long addr = __fix_to_virt(idx);
321 	pte_t *ptep;
322 
323 	BUG_ON(idx <= FIX_HOLE || idx >= __end_of_fixed_addresses);
324 
325 	ptep = &fixmap_pte[pte_index(addr)];
326 
327 	if (pgprot_val(prot))
328 		set_pte(ptep, pfn_pte(phys >> PAGE_SHIFT, prot));
329 	else
330 		pte_clear(&init_mm, addr, ptep);
331 	local_flush_tlb_page(addr);
332 }
333 
334 static inline pte_t *__init get_pte_virt_early(phys_addr_t pa)
335 {
336 	return (pte_t *)((uintptr_t)pa);
337 }
338 
339 static inline pte_t *__init get_pte_virt_fixmap(phys_addr_t pa)
340 {
341 	clear_fixmap(FIX_PTE);
342 	return (pte_t *)set_fixmap_offset(FIX_PTE, pa);
343 }
344 
345 static inline pte_t *__init get_pte_virt_late(phys_addr_t pa)
346 {
347 	return (pte_t *) __va(pa);
348 }
349 
350 static inline phys_addr_t __init alloc_pte_early(uintptr_t va)
351 {
352 	/*
353 	 * We only create PMD or PGD early mappings so we
354 	 * should never reach here with MMU disabled.
355 	 */
356 	BUG();
357 }
358 
359 static inline phys_addr_t __init alloc_pte_fixmap(uintptr_t va)
360 {
361 	return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE);
362 }
363 
364 static phys_addr_t __init alloc_pte_late(uintptr_t va)
365 {
366 	struct ptdesc *ptdesc = pagetable_alloc(GFP_KERNEL & ~__GFP_HIGHMEM, 0);
367 
368 	BUG_ON(!ptdesc || !pagetable_pte_ctor(ptdesc));
369 	return __pa((pte_t *)ptdesc_address(ptdesc));
370 }
371 
372 static void __init create_pte_mapping(pte_t *ptep,
373 				      uintptr_t va, phys_addr_t pa,
374 				      phys_addr_t sz, pgprot_t prot)
375 {
376 	uintptr_t pte_idx = pte_index(va);
377 
378 	BUG_ON(sz != PAGE_SIZE);
379 
380 	if (pte_none(ptep[pte_idx]))
381 		ptep[pte_idx] = pfn_pte(PFN_DOWN(pa), prot);
382 }
383 
384 #ifndef __PAGETABLE_PMD_FOLDED
385 
386 static pmd_t trampoline_pmd[PTRS_PER_PMD] __page_aligned_bss;
387 static pmd_t fixmap_pmd[PTRS_PER_PMD] __page_aligned_bss;
388 static pmd_t early_pmd[PTRS_PER_PMD] __initdata __aligned(PAGE_SIZE);
389 
390 #ifdef CONFIG_XIP_KERNEL
391 #define trampoline_pmd ((pmd_t *)XIP_FIXUP(trampoline_pmd))
392 #define fixmap_pmd     ((pmd_t *)XIP_FIXUP(fixmap_pmd))
393 #define early_pmd      ((pmd_t *)XIP_FIXUP(early_pmd))
394 #endif /* CONFIG_XIP_KERNEL */
395 
396 static p4d_t trampoline_p4d[PTRS_PER_P4D] __page_aligned_bss;
397 static p4d_t fixmap_p4d[PTRS_PER_P4D] __page_aligned_bss;
398 static p4d_t early_p4d[PTRS_PER_P4D] __initdata __aligned(PAGE_SIZE);
399 
400 #ifdef CONFIG_XIP_KERNEL
401 #define trampoline_p4d ((p4d_t *)XIP_FIXUP(trampoline_p4d))
402 #define fixmap_p4d     ((p4d_t *)XIP_FIXUP(fixmap_p4d))
403 #define early_p4d      ((p4d_t *)XIP_FIXUP(early_p4d))
404 #endif /* CONFIG_XIP_KERNEL */
405 
406 static pud_t trampoline_pud[PTRS_PER_PUD] __page_aligned_bss;
407 static pud_t fixmap_pud[PTRS_PER_PUD] __page_aligned_bss;
408 static pud_t early_pud[PTRS_PER_PUD] __initdata __aligned(PAGE_SIZE);
409 
410 #ifdef CONFIG_XIP_KERNEL
411 #define trampoline_pud ((pud_t *)XIP_FIXUP(trampoline_pud))
412 #define fixmap_pud     ((pud_t *)XIP_FIXUP(fixmap_pud))
413 #define early_pud      ((pud_t *)XIP_FIXUP(early_pud))
414 #endif /* CONFIG_XIP_KERNEL */
415 
416 static pmd_t *__init get_pmd_virt_early(phys_addr_t pa)
417 {
418 	/* Before MMU is enabled */
419 	return (pmd_t *)((uintptr_t)pa);
420 }
421 
422 static pmd_t *__init get_pmd_virt_fixmap(phys_addr_t pa)
423 {
424 	clear_fixmap(FIX_PMD);
425 	return (pmd_t *)set_fixmap_offset(FIX_PMD, pa);
426 }
427 
428 static pmd_t *__init get_pmd_virt_late(phys_addr_t pa)
429 {
430 	return (pmd_t *) __va(pa);
431 }
432 
433 static phys_addr_t __init alloc_pmd_early(uintptr_t va)
434 {
435 	BUG_ON((va - kernel_map.virt_addr) >> PUD_SHIFT);
436 
437 	return (uintptr_t)early_pmd;
438 }
439 
440 static phys_addr_t __init alloc_pmd_fixmap(uintptr_t va)
441 {
442 	return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE);
443 }
444 
445 static phys_addr_t __init alloc_pmd_late(uintptr_t va)
446 {
447 	struct ptdesc *ptdesc = pagetable_alloc(GFP_KERNEL & ~__GFP_HIGHMEM, 0);
448 
449 	BUG_ON(!ptdesc || !pagetable_pmd_ctor(ptdesc));
450 	return __pa((pmd_t *)ptdesc_address(ptdesc));
451 }
452 
453 static void __init create_pmd_mapping(pmd_t *pmdp,
454 				      uintptr_t va, phys_addr_t pa,
455 				      phys_addr_t sz, pgprot_t prot)
456 {
457 	pte_t *ptep;
458 	phys_addr_t pte_phys;
459 	uintptr_t pmd_idx = pmd_index(va);
460 
461 	if (sz == PMD_SIZE) {
462 		if (pmd_none(pmdp[pmd_idx]))
463 			pmdp[pmd_idx] = pfn_pmd(PFN_DOWN(pa), prot);
464 		return;
465 	}
466 
467 	if (pmd_none(pmdp[pmd_idx])) {
468 		pte_phys = pt_ops.alloc_pte(va);
469 		pmdp[pmd_idx] = pfn_pmd(PFN_DOWN(pte_phys), PAGE_TABLE);
470 		ptep = pt_ops.get_pte_virt(pte_phys);
471 		memset(ptep, 0, PAGE_SIZE);
472 	} else {
473 		pte_phys = PFN_PHYS(_pmd_pfn(pmdp[pmd_idx]));
474 		ptep = pt_ops.get_pte_virt(pte_phys);
475 	}
476 
477 	create_pte_mapping(ptep, va, pa, sz, prot);
478 }
479 
480 static pud_t *__init get_pud_virt_early(phys_addr_t pa)
481 {
482 	return (pud_t *)((uintptr_t)pa);
483 }
484 
485 static pud_t *__init get_pud_virt_fixmap(phys_addr_t pa)
486 {
487 	clear_fixmap(FIX_PUD);
488 	return (pud_t *)set_fixmap_offset(FIX_PUD, pa);
489 }
490 
491 static pud_t *__init get_pud_virt_late(phys_addr_t pa)
492 {
493 	return (pud_t *)__va(pa);
494 }
495 
496 static phys_addr_t __init alloc_pud_early(uintptr_t va)
497 {
498 	/* Only one PUD is available for early mapping */
499 	BUG_ON((va - kernel_map.virt_addr) >> PGDIR_SHIFT);
500 
501 	return (uintptr_t)early_pud;
502 }
503 
504 static phys_addr_t __init alloc_pud_fixmap(uintptr_t va)
505 {
506 	return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE);
507 }
508 
509 static phys_addr_t alloc_pud_late(uintptr_t va)
510 {
511 	unsigned long vaddr;
512 
513 	vaddr = __get_free_page(GFP_KERNEL);
514 	BUG_ON(!vaddr);
515 	return __pa(vaddr);
516 }
517 
518 static p4d_t *__init get_p4d_virt_early(phys_addr_t pa)
519 {
520 	return (p4d_t *)((uintptr_t)pa);
521 }
522 
523 static p4d_t *__init get_p4d_virt_fixmap(phys_addr_t pa)
524 {
525 	clear_fixmap(FIX_P4D);
526 	return (p4d_t *)set_fixmap_offset(FIX_P4D, pa);
527 }
528 
529 static p4d_t *__init get_p4d_virt_late(phys_addr_t pa)
530 {
531 	return (p4d_t *)__va(pa);
532 }
533 
534 static phys_addr_t __init alloc_p4d_early(uintptr_t va)
535 {
536 	/* Only one P4D is available for early mapping */
537 	BUG_ON((va - kernel_map.virt_addr) >> PGDIR_SHIFT);
538 
539 	return (uintptr_t)early_p4d;
540 }
541 
542 static phys_addr_t __init alloc_p4d_fixmap(uintptr_t va)
543 {
544 	return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE);
545 }
546 
547 static phys_addr_t alloc_p4d_late(uintptr_t va)
548 {
549 	unsigned long vaddr;
550 
551 	vaddr = __get_free_page(GFP_KERNEL);
552 	BUG_ON(!vaddr);
553 	return __pa(vaddr);
554 }
555 
556 static void __init create_pud_mapping(pud_t *pudp,
557 				      uintptr_t va, phys_addr_t pa,
558 				      phys_addr_t sz, pgprot_t prot)
559 {
560 	pmd_t *nextp;
561 	phys_addr_t next_phys;
562 	uintptr_t pud_index = pud_index(va);
563 
564 	if (sz == PUD_SIZE) {
565 		if (pud_val(pudp[pud_index]) == 0)
566 			pudp[pud_index] = pfn_pud(PFN_DOWN(pa), prot);
567 		return;
568 	}
569 
570 	if (pud_val(pudp[pud_index]) == 0) {
571 		next_phys = pt_ops.alloc_pmd(va);
572 		pudp[pud_index] = pfn_pud(PFN_DOWN(next_phys), PAGE_TABLE);
573 		nextp = pt_ops.get_pmd_virt(next_phys);
574 		memset(nextp, 0, PAGE_SIZE);
575 	} else {
576 		next_phys = PFN_PHYS(_pud_pfn(pudp[pud_index]));
577 		nextp = pt_ops.get_pmd_virt(next_phys);
578 	}
579 
580 	create_pmd_mapping(nextp, va, pa, sz, prot);
581 }
582 
583 static void __init create_p4d_mapping(p4d_t *p4dp,
584 				      uintptr_t va, phys_addr_t pa,
585 				      phys_addr_t sz, pgprot_t prot)
586 {
587 	pud_t *nextp;
588 	phys_addr_t next_phys;
589 	uintptr_t p4d_index = p4d_index(va);
590 
591 	if (sz == P4D_SIZE) {
592 		if (p4d_val(p4dp[p4d_index]) == 0)
593 			p4dp[p4d_index] = pfn_p4d(PFN_DOWN(pa), prot);
594 		return;
595 	}
596 
597 	if (p4d_val(p4dp[p4d_index]) == 0) {
598 		next_phys = pt_ops.alloc_pud(va);
599 		p4dp[p4d_index] = pfn_p4d(PFN_DOWN(next_phys), PAGE_TABLE);
600 		nextp = pt_ops.get_pud_virt(next_phys);
601 		memset(nextp, 0, PAGE_SIZE);
602 	} else {
603 		next_phys = PFN_PHYS(_p4d_pfn(p4dp[p4d_index]));
604 		nextp = pt_ops.get_pud_virt(next_phys);
605 	}
606 
607 	create_pud_mapping(nextp, va, pa, sz, prot);
608 }
609 
610 #define pgd_next_t		p4d_t
611 #define alloc_pgd_next(__va)	(pgtable_l5_enabled ?			\
612 		pt_ops.alloc_p4d(__va) : (pgtable_l4_enabled ?		\
613 		pt_ops.alloc_pud(__va) : pt_ops.alloc_pmd(__va)))
614 #define get_pgd_next_virt(__pa)	(pgtable_l5_enabled ?			\
615 		pt_ops.get_p4d_virt(__pa) : (pgd_next_t *)(pgtable_l4_enabled ?	\
616 		pt_ops.get_pud_virt(__pa) : (pud_t *)pt_ops.get_pmd_virt(__pa)))
617 #define create_pgd_next_mapping(__nextp, __va, __pa, __sz, __prot)	\
618 				(pgtable_l5_enabled ?			\
619 		create_p4d_mapping(__nextp, __va, __pa, __sz, __prot) : \
620 				(pgtable_l4_enabled ?			\
621 		create_pud_mapping((pud_t *)__nextp, __va, __pa, __sz, __prot) :	\
622 		create_pmd_mapping((pmd_t *)__nextp, __va, __pa, __sz, __prot)))
623 #define fixmap_pgd_next		(pgtable_l5_enabled ?			\
624 		(uintptr_t)fixmap_p4d : (pgtable_l4_enabled ?		\
625 		(uintptr_t)fixmap_pud : (uintptr_t)fixmap_pmd))
626 #define trampoline_pgd_next	(pgtable_l5_enabled ?			\
627 		(uintptr_t)trampoline_p4d : (pgtable_l4_enabled ?	\
628 		(uintptr_t)trampoline_pud : (uintptr_t)trampoline_pmd))
629 #else
630 #define pgd_next_t		pte_t
631 #define alloc_pgd_next(__va)	pt_ops.alloc_pte(__va)
632 #define get_pgd_next_virt(__pa)	pt_ops.get_pte_virt(__pa)
633 #define create_pgd_next_mapping(__nextp, __va, __pa, __sz, __prot)	\
634 	create_pte_mapping(__nextp, __va, __pa, __sz, __prot)
635 #define fixmap_pgd_next		((uintptr_t)fixmap_pte)
636 #define create_p4d_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0)
637 #define create_pud_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0)
638 #define create_pmd_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0)
639 #endif /* __PAGETABLE_PMD_FOLDED */
640 
641 void __init create_pgd_mapping(pgd_t *pgdp,
642 				      uintptr_t va, phys_addr_t pa,
643 				      phys_addr_t sz, pgprot_t prot)
644 {
645 	pgd_next_t *nextp;
646 	phys_addr_t next_phys;
647 	uintptr_t pgd_idx = pgd_index(va);
648 
649 	if (sz == PGDIR_SIZE) {
650 		if (pgd_val(pgdp[pgd_idx]) == 0)
651 			pgdp[pgd_idx] = pfn_pgd(PFN_DOWN(pa), prot);
652 		return;
653 	}
654 
655 	if (pgd_val(pgdp[pgd_idx]) == 0) {
656 		next_phys = alloc_pgd_next(va);
657 		pgdp[pgd_idx] = pfn_pgd(PFN_DOWN(next_phys), PAGE_TABLE);
658 		nextp = get_pgd_next_virt(next_phys);
659 		memset(nextp, 0, PAGE_SIZE);
660 	} else {
661 		next_phys = PFN_PHYS(_pgd_pfn(pgdp[pgd_idx]));
662 		nextp = get_pgd_next_virt(next_phys);
663 	}
664 
665 	create_pgd_next_mapping(nextp, va, pa, sz, prot);
666 }
667 
668 static uintptr_t __init best_map_size(phys_addr_t pa, uintptr_t va,
669 				      phys_addr_t size)
670 {
671 	if (debug_pagealloc_enabled())
672 		return PAGE_SIZE;
673 
674 	if (pgtable_l5_enabled &&
675 	    !(pa & (P4D_SIZE - 1)) && !(va & (P4D_SIZE - 1)) && size >= P4D_SIZE)
676 		return P4D_SIZE;
677 
678 	if (pgtable_l4_enabled &&
679 	    !(pa & (PUD_SIZE - 1)) && !(va & (PUD_SIZE - 1)) && size >= PUD_SIZE)
680 		return PUD_SIZE;
681 
682 	if (IS_ENABLED(CONFIG_64BIT) &&
683 	    !(pa & (PMD_SIZE - 1)) && !(va & (PMD_SIZE - 1)) && size >= PMD_SIZE)
684 		return PMD_SIZE;
685 
686 	return PAGE_SIZE;
687 }
688 
689 #ifdef CONFIG_XIP_KERNEL
690 #define phys_ram_base  (*(phys_addr_t *)XIP_FIXUP(&phys_ram_base))
691 extern char _xiprom[], _exiprom[], __data_loc;
692 
693 /* called from head.S with MMU off */
694 asmlinkage void __init __copy_data(void)
695 {
696 	void *from = (void *)(&__data_loc);
697 	void *to = (void *)CONFIG_PHYS_RAM_BASE;
698 	size_t sz = (size_t)((uintptr_t)(&_end) - (uintptr_t)(&_sdata));
699 
700 	memcpy(to, from, sz);
701 }
702 #endif
703 
704 #ifdef CONFIG_STRICT_KERNEL_RWX
705 static __init pgprot_t pgprot_from_va(uintptr_t va)
706 {
707 	if (is_va_kernel_text(va))
708 		return PAGE_KERNEL_READ_EXEC;
709 
710 	/*
711 	 * In 64-bit kernel, the kernel mapping is outside the linear mapping so
712 	 * we must protect its linear mapping alias from being executed and
713 	 * written.
714 	 * And rodata section is marked readonly in mark_rodata_ro.
715 	 */
716 	if (IS_ENABLED(CONFIG_64BIT) && is_va_kernel_lm_alias_text(va))
717 		return PAGE_KERNEL_READ;
718 
719 	return PAGE_KERNEL;
720 }
721 
722 void mark_rodata_ro(void)
723 {
724 	set_kernel_memory(__start_rodata, _data, set_memory_ro);
725 	if (IS_ENABLED(CONFIG_64BIT))
726 		set_kernel_memory(lm_alias(__start_rodata), lm_alias(_data),
727 				  set_memory_ro);
728 
729 	debug_checkwx();
730 }
731 #else
732 static __init pgprot_t pgprot_from_va(uintptr_t va)
733 {
734 	if (IS_ENABLED(CONFIG_64BIT) && !is_kernel_mapping(va))
735 		return PAGE_KERNEL;
736 
737 	return PAGE_KERNEL_EXEC;
738 }
739 #endif /* CONFIG_STRICT_KERNEL_RWX */
740 
741 #if defined(CONFIG_64BIT) && !defined(CONFIG_XIP_KERNEL)
742 u64 __pi_set_satp_mode_from_cmdline(uintptr_t dtb_pa);
743 
744 static void __init disable_pgtable_l5(void)
745 {
746 	pgtable_l5_enabled = false;
747 	kernel_map.page_offset = PAGE_OFFSET_L4;
748 	satp_mode = SATP_MODE_48;
749 }
750 
751 static void __init disable_pgtable_l4(void)
752 {
753 	pgtable_l4_enabled = false;
754 	kernel_map.page_offset = PAGE_OFFSET_L3;
755 	satp_mode = SATP_MODE_39;
756 }
757 
758 static int __init print_no4lvl(char *p)
759 {
760 	pr_info("Disabled 4-level and 5-level paging");
761 	return 0;
762 }
763 early_param("no4lvl", print_no4lvl);
764 
765 static int __init print_no5lvl(char *p)
766 {
767 	pr_info("Disabled 5-level paging");
768 	return 0;
769 }
770 early_param("no5lvl", print_no5lvl);
771 
772 /*
773  * There is a simple way to determine if 4-level is supported by the
774  * underlying hardware: establish 1:1 mapping in 4-level page table mode
775  * then read SATP to see if the configuration was taken into account
776  * meaning sv48 is supported.
777  */
778 static __init void set_satp_mode(uintptr_t dtb_pa)
779 {
780 	u64 identity_satp, hw_satp;
781 	uintptr_t set_satp_mode_pmd = ((unsigned long)set_satp_mode) & PMD_MASK;
782 	u64 satp_mode_cmdline = __pi_set_satp_mode_from_cmdline(dtb_pa);
783 
784 	if (satp_mode_cmdline == SATP_MODE_57) {
785 		disable_pgtable_l5();
786 	} else if (satp_mode_cmdline == SATP_MODE_48) {
787 		disable_pgtable_l5();
788 		disable_pgtable_l4();
789 		return;
790 	}
791 
792 	create_p4d_mapping(early_p4d,
793 			set_satp_mode_pmd, (uintptr_t)early_pud,
794 			P4D_SIZE, PAGE_TABLE);
795 	create_pud_mapping(early_pud,
796 			   set_satp_mode_pmd, (uintptr_t)early_pmd,
797 			   PUD_SIZE, PAGE_TABLE);
798 	/* Handle the case where set_satp_mode straddles 2 PMDs */
799 	create_pmd_mapping(early_pmd,
800 			   set_satp_mode_pmd, set_satp_mode_pmd,
801 			   PMD_SIZE, PAGE_KERNEL_EXEC);
802 	create_pmd_mapping(early_pmd,
803 			   set_satp_mode_pmd + PMD_SIZE,
804 			   set_satp_mode_pmd + PMD_SIZE,
805 			   PMD_SIZE, PAGE_KERNEL_EXEC);
806 retry:
807 	create_pgd_mapping(early_pg_dir,
808 			   set_satp_mode_pmd,
809 			   pgtable_l5_enabled ?
810 				(uintptr_t)early_p4d : (uintptr_t)early_pud,
811 			   PGDIR_SIZE, PAGE_TABLE);
812 
813 	identity_satp = PFN_DOWN((uintptr_t)&early_pg_dir) | satp_mode;
814 
815 	local_flush_tlb_all();
816 	csr_write(CSR_SATP, identity_satp);
817 	hw_satp = csr_swap(CSR_SATP, 0ULL);
818 	local_flush_tlb_all();
819 
820 	if (hw_satp != identity_satp) {
821 		if (pgtable_l5_enabled) {
822 			disable_pgtable_l5();
823 			memset(early_pg_dir, 0, PAGE_SIZE);
824 			goto retry;
825 		}
826 		disable_pgtable_l4();
827 	}
828 
829 	memset(early_pg_dir, 0, PAGE_SIZE);
830 	memset(early_p4d, 0, PAGE_SIZE);
831 	memset(early_pud, 0, PAGE_SIZE);
832 	memset(early_pmd, 0, PAGE_SIZE);
833 }
834 #endif
835 
836 /*
837  * setup_vm() is called from head.S with MMU-off.
838  *
839  * Following requirements should be honoured for setup_vm() to work
840  * correctly:
841  * 1) It should use PC-relative addressing for accessing kernel symbols.
842  *    To achieve this we always use GCC cmodel=medany.
843  * 2) The compiler instrumentation for FTRACE will not work for setup_vm()
844  *    so disable compiler instrumentation when FTRACE is enabled.
845  *
846  * Currently, the above requirements are honoured by using custom CFLAGS
847  * for init.o in mm/Makefile.
848  */
849 
850 #ifndef __riscv_cmodel_medany
851 #error "setup_vm() is called from head.S before relocate so it should not use absolute addressing."
852 #endif
853 
854 #ifdef CONFIG_RELOCATABLE
855 extern unsigned long __rela_dyn_start, __rela_dyn_end;
856 
857 static void __init relocate_kernel(void)
858 {
859 	Elf64_Rela *rela = (Elf64_Rela *)&__rela_dyn_start;
860 	/*
861 	 * This holds the offset between the linked virtual address and the
862 	 * relocated virtual address.
863 	 */
864 	uintptr_t reloc_offset = kernel_map.virt_addr - KERNEL_LINK_ADDR;
865 	/*
866 	 * This holds the offset between kernel linked virtual address and
867 	 * physical address.
868 	 */
869 	uintptr_t va_kernel_link_pa_offset = KERNEL_LINK_ADDR - kernel_map.phys_addr;
870 
871 	for ( ; rela < (Elf64_Rela *)&__rela_dyn_end; rela++) {
872 		Elf64_Addr addr = (rela->r_offset - va_kernel_link_pa_offset);
873 		Elf64_Addr relocated_addr = rela->r_addend;
874 
875 		if (rela->r_info != R_RISCV_RELATIVE)
876 			continue;
877 
878 		/*
879 		 * Make sure to not relocate vdso symbols like rt_sigreturn
880 		 * which are linked from the address 0 in vmlinux since
881 		 * vdso symbol addresses are actually used as an offset from
882 		 * mm->context.vdso in VDSO_OFFSET macro.
883 		 */
884 		if (relocated_addr >= KERNEL_LINK_ADDR)
885 			relocated_addr += reloc_offset;
886 
887 		*(Elf64_Addr *)addr = relocated_addr;
888 	}
889 }
890 #endif /* CONFIG_RELOCATABLE */
891 
892 #ifdef CONFIG_XIP_KERNEL
893 static void __init create_kernel_page_table(pgd_t *pgdir,
894 					    __always_unused bool early)
895 {
896 	uintptr_t va, end_va;
897 
898 	/* Map the flash resident part */
899 	end_va = kernel_map.virt_addr + kernel_map.xiprom_sz;
900 	for (va = kernel_map.virt_addr; va < end_va; va += PMD_SIZE)
901 		create_pgd_mapping(pgdir, va,
902 				   kernel_map.xiprom + (va - kernel_map.virt_addr),
903 				   PMD_SIZE, PAGE_KERNEL_EXEC);
904 
905 	/* Map the data in RAM */
906 	end_va = kernel_map.virt_addr + XIP_OFFSET + kernel_map.size;
907 	for (va = kernel_map.virt_addr + XIP_OFFSET; va < end_va; va += PMD_SIZE)
908 		create_pgd_mapping(pgdir, va,
909 				   kernel_map.phys_addr + (va - (kernel_map.virt_addr + XIP_OFFSET)),
910 				   PMD_SIZE, PAGE_KERNEL);
911 }
912 #else
913 static void __init create_kernel_page_table(pgd_t *pgdir, bool early)
914 {
915 	uintptr_t va, end_va;
916 
917 	end_va = kernel_map.virt_addr + kernel_map.size;
918 	for (va = kernel_map.virt_addr; va < end_va; va += PMD_SIZE)
919 		create_pgd_mapping(pgdir, va,
920 				   kernel_map.phys_addr + (va - kernel_map.virt_addr),
921 				   PMD_SIZE,
922 				   early ?
923 					PAGE_KERNEL_EXEC : pgprot_from_va(va));
924 }
925 #endif
926 
927 /*
928  * Setup a 4MB mapping that encompasses the device tree: for 64-bit kernel,
929  * this means 2 PMD entries whereas for 32-bit kernel, this is only 1 PGDIR
930  * entry.
931  */
932 static void __init create_fdt_early_page_table(uintptr_t fix_fdt_va,
933 					       uintptr_t dtb_pa)
934 {
935 #ifndef CONFIG_BUILTIN_DTB
936 	uintptr_t pa = dtb_pa & ~(PMD_SIZE - 1);
937 
938 	/* Make sure the fdt fixmap address is always aligned on PMD size */
939 	BUILD_BUG_ON(FIX_FDT % (PMD_SIZE / PAGE_SIZE));
940 
941 	/* In 32-bit only, the fdt lies in its own PGD */
942 	if (!IS_ENABLED(CONFIG_64BIT)) {
943 		create_pgd_mapping(early_pg_dir, fix_fdt_va,
944 				   pa, MAX_FDT_SIZE, PAGE_KERNEL);
945 	} else {
946 		create_pmd_mapping(fixmap_pmd, fix_fdt_va,
947 				   pa, PMD_SIZE, PAGE_KERNEL);
948 		create_pmd_mapping(fixmap_pmd, fix_fdt_va + PMD_SIZE,
949 				   pa + PMD_SIZE, PMD_SIZE, PAGE_KERNEL);
950 	}
951 
952 	dtb_early_va = (void *)fix_fdt_va + (dtb_pa & (PMD_SIZE - 1));
953 #else
954 	/*
955 	 * For 64-bit kernel, __va can't be used since it would return a linear
956 	 * mapping address whereas dtb_early_va will be used before
957 	 * setup_vm_final installs the linear mapping. For 32-bit kernel, as the
958 	 * kernel is mapped in the linear mapping, that makes no difference.
959 	 */
960 	dtb_early_va = kernel_mapping_pa_to_va(dtb_pa);
961 #endif
962 
963 	dtb_early_pa = dtb_pa;
964 }
965 
966 /*
967  * MMU is not enabled, the page tables are allocated directly using
968  * early_pmd/pud/p4d and the address returned is the physical one.
969  */
970 static void __init pt_ops_set_early(void)
971 {
972 	pt_ops.alloc_pte = alloc_pte_early;
973 	pt_ops.get_pte_virt = get_pte_virt_early;
974 #ifndef __PAGETABLE_PMD_FOLDED
975 	pt_ops.alloc_pmd = alloc_pmd_early;
976 	pt_ops.get_pmd_virt = get_pmd_virt_early;
977 	pt_ops.alloc_pud = alloc_pud_early;
978 	pt_ops.get_pud_virt = get_pud_virt_early;
979 	pt_ops.alloc_p4d = alloc_p4d_early;
980 	pt_ops.get_p4d_virt = get_p4d_virt_early;
981 #endif
982 }
983 
984 /*
985  * MMU is enabled but page table setup is not complete yet.
986  * fixmap page table alloc functions must be used as a means to temporarily
987  * map the allocated physical pages since the linear mapping does not exist yet.
988  *
989  * Note that this is called with MMU disabled, hence kernel_mapping_pa_to_va,
990  * but it will be used as described above.
991  */
992 static void __init pt_ops_set_fixmap(void)
993 {
994 	pt_ops.alloc_pte = kernel_mapping_pa_to_va(alloc_pte_fixmap);
995 	pt_ops.get_pte_virt = kernel_mapping_pa_to_va(get_pte_virt_fixmap);
996 #ifndef __PAGETABLE_PMD_FOLDED
997 	pt_ops.alloc_pmd = kernel_mapping_pa_to_va(alloc_pmd_fixmap);
998 	pt_ops.get_pmd_virt = kernel_mapping_pa_to_va(get_pmd_virt_fixmap);
999 	pt_ops.alloc_pud = kernel_mapping_pa_to_va(alloc_pud_fixmap);
1000 	pt_ops.get_pud_virt = kernel_mapping_pa_to_va(get_pud_virt_fixmap);
1001 	pt_ops.alloc_p4d = kernel_mapping_pa_to_va(alloc_p4d_fixmap);
1002 	pt_ops.get_p4d_virt = kernel_mapping_pa_to_va(get_p4d_virt_fixmap);
1003 #endif
1004 }
1005 
1006 /*
1007  * MMU is enabled and page table setup is complete, so from now, we can use
1008  * generic page allocation functions to setup page table.
1009  */
1010 static void __init pt_ops_set_late(void)
1011 {
1012 	pt_ops.alloc_pte = alloc_pte_late;
1013 	pt_ops.get_pte_virt = get_pte_virt_late;
1014 #ifndef __PAGETABLE_PMD_FOLDED
1015 	pt_ops.alloc_pmd = alloc_pmd_late;
1016 	pt_ops.get_pmd_virt = get_pmd_virt_late;
1017 	pt_ops.alloc_pud = alloc_pud_late;
1018 	pt_ops.get_pud_virt = get_pud_virt_late;
1019 	pt_ops.alloc_p4d = alloc_p4d_late;
1020 	pt_ops.get_p4d_virt = get_p4d_virt_late;
1021 #endif
1022 }
1023 
1024 #ifdef CONFIG_RANDOMIZE_BASE
1025 extern bool __init __pi_set_nokaslr_from_cmdline(uintptr_t dtb_pa);
1026 extern u64 __init __pi_get_kaslr_seed(uintptr_t dtb_pa);
1027 
1028 static int __init print_nokaslr(char *p)
1029 {
1030 	pr_info("Disabled KASLR");
1031 	return 0;
1032 }
1033 early_param("nokaslr", print_nokaslr);
1034 
1035 unsigned long kaslr_offset(void)
1036 {
1037 	return kernel_map.virt_offset;
1038 }
1039 #endif
1040 
1041 asmlinkage void __init setup_vm(uintptr_t dtb_pa)
1042 {
1043 	pmd_t __maybe_unused fix_bmap_spmd, fix_bmap_epmd;
1044 
1045 #ifdef CONFIG_RANDOMIZE_BASE
1046 	if (!__pi_set_nokaslr_from_cmdline(dtb_pa)) {
1047 		u64 kaslr_seed = __pi_get_kaslr_seed(dtb_pa);
1048 		u32 kernel_size = (uintptr_t)(&_end) - (uintptr_t)(&_start);
1049 		u32 nr_pos;
1050 
1051 		/*
1052 		 * Compute the number of positions available: we are limited
1053 		 * by the early page table that only has one PUD and we must
1054 		 * be aligned on PMD_SIZE.
1055 		 */
1056 		nr_pos = (PUD_SIZE - kernel_size) / PMD_SIZE;
1057 
1058 		kernel_map.virt_offset = (kaslr_seed % nr_pos) * PMD_SIZE;
1059 	}
1060 #endif
1061 
1062 	kernel_map.virt_addr = KERNEL_LINK_ADDR + kernel_map.virt_offset;
1063 
1064 #ifdef CONFIG_XIP_KERNEL
1065 #ifdef CONFIG_64BIT
1066 	kernel_map.page_offset = PAGE_OFFSET_L3;
1067 #else
1068 	kernel_map.page_offset = _AC(CONFIG_PAGE_OFFSET, UL);
1069 #endif
1070 	kernel_map.xiprom = (uintptr_t)CONFIG_XIP_PHYS_ADDR;
1071 	kernel_map.xiprom_sz = (uintptr_t)(&_exiprom) - (uintptr_t)(&_xiprom);
1072 
1073 	phys_ram_base = CONFIG_PHYS_RAM_BASE;
1074 	kernel_map.phys_addr = (uintptr_t)CONFIG_PHYS_RAM_BASE;
1075 	kernel_map.size = (uintptr_t)(&_end) - (uintptr_t)(&_sdata);
1076 
1077 	kernel_map.va_kernel_xip_pa_offset = kernel_map.virt_addr - kernel_map.xiprom;
1078 #else
1079 	kernel_map.page_offset = _AC(CONFIG_PAGE_OFFSET, UL);
1080 	kernel_map.phys_addr = (uintptr_t)(&_start);
1081 	kernel_map.size = (uintptr_t)(&_end) - kernel_map.phys_addr;
1082 #endif
1083 
1084 #if defined(CONFIG_64BIT) && !defined(CONFIG_XIP_KERNEL)
1085 	set_satp_mode(dtb_pa);
1086 #endif
1087 
1088 	/*
1089 	 * In 64-bit, we defer the setup of va_pa_offset to setup_bootmem,
1090 	 * where we have the system memory layout: this allows us to align
1091 	 * the physical and virtual mappings and then make use of PUD/P4D/PGD
1092 	 * for the linear mapping. This is only possible because the kernel
1093 	 * mapping lies outside the linear mapping.
1094 	 * In 32-bit however, as the kernel resides in the linear mapping,
1095 	 * setup_vm_final can not change the mapping established here,
1096 	 * otherwise the same kernel addresses would get mapped to different
1097 	 * physical addresses (if the start of dram is different from the
1098 	 * kernel physical address start).
1099 	 */
1100 	kernel_map.va_pa_offset = IS_ENABLED(CONFIG_64BIT) ?
1101 				0UL : PAGE_OFFSET - kernel_map.phys_addr;
1102 	kernel_map.va_kernel_pa_offset = kernel_map.virt_addr - kernel_map.phys_addr;
1103 
1104 	/*
1105 	 * The default maximal physical memory size is KERN_VIRT_SIZE for 32-bit
1106 	 * kernel, whereas for 64-bit kernel, the end of the virtual address
1107 	 * space is occupied by the modules/BPF/kernel mappings which reduces
1108 	 * the available size of the linear mapping.
1109 	 */
1110 	memory_limit = KERN_VIRT_SIZE - (IS_ENABLED(CONFIG_64BIT) ? SZ_4G : 0);
1111 
1112 	/* Sanity check alignment and size */
1113 	BUG_ON((PAGE_OFFSET % PGDIR_SIZE) != 0);
1114 	BUG_ON((kernel_map.phys_addr % PMD_SIZE) != 0);
1115 
1116 #ifdef CONFIG_64BIT
1117 	/*
1118 	 * The last 4K bytes of the addressable memory can not be mapped because
1119 	 * of IS_ERR_VALUE macro.
1120 	 */
1121 	BUG_ON((kernel_map.virt_addr + kernel_map.size) > ADDRESS_SPACE_END - SZ_4K);
1122 #endif
1123 
1124 #ifdef CONFIG_RELOCATABLE
1125 	/*
1126 	 * Early page table uses only one PUD, which makes it possible
1127 	 * to map PUD_SIZE aligned on PUD_SIZE: if the relocation offset
1128 	 * makes the kernel cross over a PUD_SIZE boundary, raise a bug
1129 	 * since a part of the kernel would not get mapped.
1130 	 */
1131 	BUG_ON(PUD_SIZE - (kernel_map.virt_addr & (PUD_SIZE - 1)) < kernel_map.size);
1132 	relocate_kernel();
1133 #endif
1134 
1135 	apply_early_boot_alternatives();
1136 	pt_ops_set_early();
1137 
1138 	/* Setup early PGD for fixmap */
1139 	create_pgd_mapping(early_pg_dir, FIXADDR_START,
1140 			   fixmap_pgd_next, PGDIR_SIZE, PAGE_TABLE);
1141 
1142 #ifndef __PAGETABLE_PMD_FOLDED
1143 	/* Setup fixmap P4D and PUD */
1144 	if (pgtable_l5_enabled)
1145 		create_p4d_mapping(fixmap_p4d, FIXADDR_START,
1146 				   (uintptr_t)fixmap_pud, P4D_SIZE, PAGE_TABLE);
1147 	/* Setup fixmap PUD and PMD */
1148 	if (pgtable_l4_enabled)
1149 		create_pud_mapping(fixmap_pud, FIXADDR_START,
1150 				   (uintptr_t)fixmap_pmd, PUD_SIZE, PAGE_TABLE);
1151 	create_pmd_mapping(fixmap_pmd, FIXADDR_START,
1152 			   (uintptr_t)fixmap_pte, PMD_SIZE, PAGE_TABLE);
1153 	/* Setup trampoline PGD and PMD */
1154 	create_pgd_mapping(trampoline_pg_dir, kernel_map.virt_addr,
1155 			   trampoline_pgd_next, PGDIR_SIZE, PAGE_TABLE);
1156 	if (pgtable_l5_enabled)
1157 		create_p4d_mapping(trampoline_p4d, kernel_map.virt_addr,
1158 				   (uintptr_t)trampoline_pud, P4D_SIZE, PAGE_TABLE);
1159 	if (pgtable_l4_enabled)
1160 		create_pud_mapping(trampoline_pud, kernel_map.virt_addr,
1161 				   (uintptr_t)trampoline_pmd, PUD_SIZE, PAGE_TABLE);
1162 #ifdef CONFIG_XIP_KERNEL
1163 	create_pmd_mapping(trampoline_pmd, kernel_map.virt_addr,
1164 			   kernel_map.xiprom, PMD_SIZE, PAGE_KERNEL_EXEC);
1165 #else
1166 	create_pmd_mapping(trampoline_pmd, kernel_map.virt_addr,
1167 			   kernel_map.phys_addr, PMD_SIZE, PAGE_KERNEL_EXEC);
1168 #endif
1169 #else
1170 	/* Setup trampoline PGD */
1171 	create_pgd_mapping(trampoline_pg_dir, kernel_map.virt_addr,
1172 			   kernel_map.phys_addr, PGDIR_SIZE, PAGE_KERNEL_EXEC);
1173 #endif
1174 
1175 	/*
1176 	 * Setup early PGD covering entire kernel which will allow
1177 	 * us to reach paging_init(). We map all memory banks later
1178 	 * in setup_vm_final() below.
1179 	 */
1180 	create_kernel_page_table(early_pg_dir, true);
1181 
1182 	/* Setup early mapping for FDT early scan */
1183 	create_fdt_early_page_table(__fix_to_virt(FIX_FDT), dtb_pa);
1184 
1185 	/*
1186 	 * Bootime fixmap only can handle PMD_SIZE mapping. Thus, boot-ioremap
1187 	 * range can not span multiple pmds.
1188 	 */
1189 	BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
1190 		     != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
1191 
1192 #ifndef __PAGETABLE_PMD_FOLDED
1193 	/*
1194 	 * Early ioremap fixmap is already created as it lies within first 2MB
1195 	 * of fixmap region. We always map PMD_SIZE. Thus, both FIX_BTMAP_END
1196 	 * FIX_BTMAP_BEGIN should lie in the same pmd. Verify that and warn
1197 	 * the user if not.
1198 	 */
1199 	fix_bmap_spmd = fixmap_pmd[pmd_index(__fix_to_virt(FIX_BTMAP_BEGIN))];
1200 	fix_bmap_epmd = fixmap_pmd[pmd_index(__fix_to_virt(FIX_BTMAP_END))];
1201 	if (pmd_val(fix_bmap_spmd) != pmd_val(fix_bmap_epmd)) {
1202 		WARN_ON(1);
1203 		pr_warn("fixmap btmap start [%08lx] != end [%08lx]\n",
1204 			pmd_val(fix_bmap_spmd), pmd_val(fix_bmap_epmd));
1205 		pr_warn("fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
1206 			fix_to_virt(FIX_BTMAP_BEGIN));
1207 		pr_warn("fix_to_virt(FIX_BTMAP_END):   %08lx\n",
1208 			fix_to_virt(FIX_BTMAP_END));
1209 
1210 		pr_warn("FIX_BTMAP_END:       %d\n", FIX_BTMAP_END);
1211 		pr_warn("FIX_BTMAP_BEGIN:     %d\n", FIX_BTMAP_BEGIN);
1212 	}
1213 #endif
1214 
1215 	pt_ops_set_fixmap();
1216 }
1217 
1218 static void __init create_linear_mapping_range(phys_addr_t start,
1219 					       phys_addr_t end,
1220 					       uintptr_t fixed_map_size)
1221 {
1222 	phys_addr_t pa;
1223 	uintptr_t va, map_size;
1224 
1225 	for (pa = start; pa < end; pa += map_size) {
1226 		va = (uintptr_t)__va(pa);
1227 		map_size = fixed_map_size ? fixed_map_size :
1228 					    best_map_size(pa, va, end - pa);
1229 
1230 		create_pgd_mapping(swapper_pg_dir, va, pa, map_size,
1231 				   pgprot_from_va(va));
1232 	}
1233 }
1234 
1235 static void __init create_linear_mapping_page_table(void)
1236 {
1237 	phys_addr_t start, end;
1238 	phys_addr_t kfence_pool __maybe_unused;
1239 	u64 i;
1240 
1241 #ifdef CONFIG_STRICT_KERNEL_RWX
1242 	phys_addr_t ktext_start = __pa_symbol(_start);
1243 	phys_addr_t ktext_size = __init_data_begin - _start;
1244 	phys_addr_t krodata_start = __pa_symbol(__start_rodata);
1245 	phys_addr_t krodata_size = _data - __start_rodata;
1246 
1247 	/* Isolate kernel text and rodata so they don't get mapped with a PUD */
1248 	memblock_mark_nomap(ktext_start,  ktext_size);
1249 	memblock_mark_nomap(krodata_start, krodata_size);
1250 #endif
1251 
1252 #ifdef CONFIG_KFENCE
1253 	/*
1254 	 *  kfence pool must be backed by PAGE_SIZE mappings, so allocate it
1255 	 *  before we setup the linear mapping so that we avoid using hugepages
1256 	 *  for this region.
1257 	 */
1258 	kfence_pool = memblock_phys_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
1259 	BUG_ON(!kfence_pool);
1260 
1261 	memblock_mark_nomap(kfence_pool, KFENCE_POOL_SIZE);
1262 	__kfence_pool = __va(kfence_pool);
1263 #endif
1264 
1265 	/* Map all memory banks in the linear mapping */
1266 	for_each_mem_range(i, &start, &end) {
1267 		if (start >= end)
1268 			break;
1269 		if (start <= __pa(PAGE_OFFSET) &&
1270 		    __pa(PAGE_OFFSET) < end)
1271 			start = __pa(PAGE_OFFSET);
1272 		if (end >= __pa(PAGE_OFFSET) + memory_limit)
1273 			end = __pa(PAGE_OFFSET) + memory_limit;
1274 
1275 		create_linear_mapping_range(start, end, 0);
1276 	}
1277 
1278 #ifdef CONFIG_STRICT_KERNEL_RWX
1279 	create_linear_mapping_range(ktext_start, ktext_start + ktext_size, 0);
1280 	create_linear_mapping_range(krodata_start,
1281 				    krodata_start + krodata_size, 0);
1282 
1283 	memblock_clear_nomap(ktext_start,  ktext_size);
1284 	memblock_clear_nomap(krodata_start, krodata_size);
1285 #endif
1286 
1287 #ifdef CONFIG_KFENCE
1288 	create_linear_mapping_range(kfence_pool,
1289 				    kfence_pool + KFENCE_POOL_SIZE,
1290 				    PAGE_SIZE);
1291 
1292 	memblock_clear_nomap(kfence_pool, KFENCE_POOL_SIZE);
1293 #endif
1294 }
1295 
1296 static void __init setup_vm_final(void)
1297 {
1298 	/* Setup swapper PGD for fixmap */
1299 #if !defined(CONFIG_64BIT)
1300 	/*
1301 	 * In 32-bit, the device tree lies in a pgd entry, so it must be copied
1302 	 * directly in swapper_pg_dir in addition to the pgd entry that points
1303 	 * to fixmap_pte.
1304 	 */
1305 	unsigned long idx = pgd_index(__fix_to_virt(FIX_FDT));
1306 
1307 	set_pgd(&swapper_pg_dir[idx], early_pg_dir[idx]);
1308 #endif
1309 	create_pgd_mapping(swapper_pg_dir, FIXADDR_START,
1310 			   __pa_symbol(fixmap_pgd_next),
1311 			   PGDIR_SIZE, PAGE_TABLE);
1312 
1313 	/* Map the linear mapping */
1314 	create_linear_mapping_page_table();
1315 
1316 	/* Map the kernel */
1317 	if (IS_ENABLED(CONFIG_64BIT))
1318 		create_kernel_page_table(swapper_pg_dir, false);
1319 
1320 #ifdef CONFIG_KASAN
1321 	kasan_swapper_init();
1322 #endif
1323 
1324 	/* Clear fixmap PTE and PMD mappings */
1325 	clear_fixmap(FIX_PTE);
1326 	clear_fixmap(FIX_PMD);
1327 	clear_fixmap(FIX_PUD);
1328 	clear_fixmap(FIX_P4D);
1329 
1330 	/* Move to swapper page table */
1331 	csr_write(CSR_SATP, PFN_DOWN(__pa_symbol(swapper_pg_dir)) | satp_mode);
1332 	local_flush_tlb_all();
1333 
1334 	pt_ops_set_late();
1335 }
1336 #else
1337 asmlinkage void __init setup_vm(uintptr_t dtb_pa)
1338 {
1339 	dtb_early_va = (void *)dtb_pa;
1340 	dtb_early_pa = dtb_pa;
1341 }
1342 
1343 static inline void setup_vm_final(void)
1344 {
1345 }
1346 #endif /* CONFIG_MMU */
1347 
1348 /* Reserve 128M low memory by default for swiotlb buffer */
1349 #define DEFAULT_CRASH_KERNEL_LOW_SIZE	(128UL << 20)
1350 
1351 static int __init reserve_crashkernel_low(unsigned long long low_size)
1352 {
1353 	unsigned long long low_base;
1354 
1355 	low_base = memblock_phys_alloc_range(low_size, PMD_SIZE, 0, dma32_phys_limit);
1356 	if (!low_base) {
1357 		pr_err("cannot allocate crashkernel low memory (size:0x%llx).\n", low_size);
1358 		return -ENOMEM;
1359 	}
1360 
1361 	pr_info("crashkernel low memory reserved: 0x%016llx - 0x%016llx (%lld MB)\n",
1362 		low_base, low_base + low_size, low_size >> 20);
1363 
1364 	crashk_low_res.start = low_base;
1365 	crashk_low_res.end = low_base + low_size - 1;
1366 
1367 	return 0;
1368 }
1369 
1370 /*
1371  * reserve_crashkernel() - reserves memory for crash kernel
1372  *
1373  * This function reserves memory area given in "crashkernel=" kernel command
1374  * line parameter. The memory reserved is used by dump capture kernel when
1375  * primary kernel is crashing.
1376  */
1377 static void __init reserve_crashkernel(void)
1378 {
1379 	unsigned long long crash_base = 0;
1380 	unsigned long long crash_size = 0;
1381 	unsigned long long crash_low_size = 0;
1382 	unsigned long search_start = memblock_start_of_DRAM();
1383 	unsigned long search_end = (unsigned long)dma32_phys_limit;
1384 	char *cmdline = boot_command_line;
1385 	bool fixed_base = false;
1386 	bool high = false;
1387 
1388 	int ret = 0;
1389 
1390 	if (!IS_ENABLED(CONFIG_KEXEC_CORE))
1391 		return;
1392 	/*
1393 	 * Don't reserve a region for a crash kernel on a crash kernel
1394 	 * since it doesn't make much sense and we have limited memory
1395 	 * resources.
1396 	 */
1397 	if (is_kdump_kernel()) {
1398 		pr_info("crashkernel: ignoring reservation request\n");
1399 		return;
1400 	}
1401 
1402 	ret = parse_crashkernel(cmdline, memblock_phys_mem_size(),
1403 				&crash_size, &crash_base);
1404 	if (ret == -ENOENT) {
1405 		/* Fallback to crashkernel=X,[high,low] */
1406 		ret = parse_crashkernel_high(cmdline, 0, &crash_size, &crash_base);
1407 		if (ret || !crash_size)
1408 			return;
1409 
1410 		/*
1411 		 * crashkernel=Y,low is valid only when crashkernel=X,high
1412 		 * is passed.
1413 		 */
1414 		ret = parse_crashkernel_low(cmdline, 0, &crash_low_size, &crash_base);
1415 		if (ret == -ENOENT)
1416 			crash_low_size = DEFAULT_CRASH_KERNEL_LOW_SIZE;
1417 		else if (ret)
1418 			return;
1419 
1420 		search_start = (unsigned long)dma32_phys_limit;
1421 		search_end = memblock_end_of_DRAM();
1422 		high = true;
1423 	} else if (ret || !crash_size) {
1424 		/* Invalid argument value specified */
1425 		return;
1426 	}
1427 
1428 	crash_size = PAGE_ALIGN(crash_size);
1429 
1430 	if (crash_base) {
1431 		fixed_base = true;
1432 		search_start = crash_base;
1433 		search_end = crash_base + crash_size;
1434 	}
1435 
1436 	/*
1437 	 * Current riscv boot protocol requires 2MB alignment for
1438 	 * RV64 and 4MB alignment for RV32 (hugepage size)
1439 	 *
1440 	 * Try to alloc from 32bit addressible physical memory so that
1441 	 * swiotlb can work on the crash kernel.
1442 	 */
1443 	crash_base = memblock_phys_alloc_range(crash_size, PMD_SIZE,
1444 					       search_start, search_end);
1445 	if (crash_base == 0) {
1446 		/*
1447 		 * For crashkernel=size[KMG]@offset[KMG], print out failure
1448 		 * message if can't reserve the specified region.
1449 		 */
1450 		if (fixed_base) {
1451 			pr_warn("crashkernel: allocating failed with given size@offset\n");
1452 			return;
1453 		}
1454 
1455 		if (high) {
1456 			/*
1457 			 * For crashkernel=size[KMG],high, if the first attempt was
1458 			 * for high memory, fall back to low memory.
1459 			 */
1460 			search_start = memblock_start_of_DRAM();
1461 			search_end = (unsigned long)dma32_phys_limit;
1462 		} else {
1463 			/*
1464 			 * For crashkernel=size[KMG], if the first attempt was for
1465 			 * low memory, fall back to high memory, the minimum required
1466 			 * low memory will be reserved later.
1467 			 */
1468 			search_start = (unsigned long)dma32_phys_limit;
1469 			search_end = memblock_end_of_DRAM();
1470 			crash_low_size = DEFAULT_CRASH_KERNEL_LOW_SIZE;
1471 		}
1472 
1473 		crash_base = memblock_phys_alloc_range(crash_size, PMD_SIZE,
1474 						       search_start, search_end);
1475 		if (crash_base == 0) {
1476 			pr_warn("crashkernel: couldn't allocate %lldKB\n",
1477 				crash_size >> 10);
1478 			return;
1479 		}
1480 	}
1481 
1482 	if ((crash_base >= dma32_phys_limit) && crash_low_size &&
1483 	     reserve_crashkernel_low(crash_low_size)) {
1484 		memblock_phys_free(crash_base, crash_size);
1485 		return;
1486 	}
1487 
1488 	pr_info("crashkernel: reserved 0x%016llx - 0x%016llx (%lld MB)\n",
1489 		crash_base, crash_base + crash_size, crash_size >> 20);
1490 
1491 	crashk_res.start = crash_base;
1492 	crashk_res.end = crash_base + crash_size - 1;
1493 }
1494 
1495 void __init paging_init(void)
1496 {
1497 	setup_bootmem();
1498 	setup_vm_final();
1499 
1500 	/* Depend on that Linear Mapping is ready */
1501 	memblock_allow_resize();
1502 }
1503 
1504 void __init misc_mem_init(void)
1505 {
1506 	early_memtest(min_low_pfn << PAGE_SHIFT, max_low_pfn << PAGE_SHIFT);
1507 	arch_numa_init();
1508 	sparse_init();
1509 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1510 	/* The entire VMEMMAP region has been populated. Flush TLB for this region */
1511 	local_flush_tlb_kernel_range(VMEMMAP_START, VMEMMAP_END);
1512 #endif
1513 	zone_sizes_init();
1514 	reserve_crashkernel();
1515 	memblock_dump_all();
1516 }
1517 
1518 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1519 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1520 			       struct vmem_altmap *altmap)
1521 {
1522 	return vmemmap_populate_basepages(start, end, node, NULL);
1523 }
1524 #endif
1525 
1526 #if defined(CONFIG_MMU) && defined(CONFIG_64BIT)
1527 /*
1528  * Pre-allocates page-table pages for a specific area in the kernel
1529  * page-table. Only the level which needs to be synchronized between
1530  * all page-tables is allocated because the synchronization can be
1531  * expensive.
1532  */
1533 static void __init preallocate_pgd_pages_range(unsigned long start, unsigned long end,
1534 					       const char *area)
1535 {
1536 	unsigned long addr;
1537 	const char *lvl;
1538 
1539 	for (addr = start; addr < end && addr >= start; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
1540 		pgd_t *pgd = pgd_offset_k(addr);
1541 		p4d_t *p4d;
1542 		pud_t *pud;
1543 		pmd_t *pmd;
1544 
1545 		lvl = "p4d";
1546 		p4d = p4d_alloc(&init_mm, pgd, addr);
1547 		if (!p4d)
1548 			goto failed;
1549 
1550 		if (pgtable_l5_enabled)
1551 			continue;
1552 
1553 		lvl = "pud";
1554 		pud = pud_alloc(&init_mm, p4d, addr);
1555 		if (!pud)
1556 			goto failed;
1557 
1558 		if (pgtable_l4_enabled)
1559 			continue;
1560 
1561 		lvl = "pmd";
1562 		pmd = pmd_alloc(&init_mm, pud, addr);
1563 		if (!pmd)
1564 			goto failed;
1565 	}
1566 	return;
1567 
1568 failed:
1569 	/*
1570 	 * The pages have to be there now or they will be missing in
1571 	 * process page-tables later.
1572 	 */
1573 	panic("Failed to pre-allocate %s pages for %s area\n", lvl, area);
1574 }
1575 
1576 void __init pgtable_cache_init(void)
1577 {
1578 	preallocate_pgd_pages_range(VMALLOC_START, VMALLOC_END, "vmalloc");
1579 	if (IS_ENABLED(CONFIG_MODULES))
1580 		preallocate_pgd_pages_range(MODULES_VADDR, MODULES_END, "bpf/modules");
1581 }
1582 #endif
1583