1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 Regents of the University of California 4 * Copyright (C) 2019 Western Digital Corporation or its affiliates. 5 * Copyright (C) 2020 FORTH-ICS/CARV 6 * Nick Kossifidis <mick@ics.forth.gr> 7 */ 8 9 #include <linux/init.h> 10 #include <linux/mm.h> 11 #include <linux/memblock.h> 12 #include <linux/initrd.h> 13 #include <linux/swap.h> 14 #include <linux/swiotlb.h> 15 #include <linux/sizes.h> 16 #include <linux/of_fdt.h> 17 #include <linux/of_reserved_mem.h> 18 #include <linux/libfdt.h> 19 #include <linux/set_memory.h> 20 #include <linux/dma-map-ops.h> 21 #include <linux/crash_dump.h> 22 #include <linux/hugetlb.h> 23 #ifdef CONFIG_RELOCATABLE 24 #include <linux/elf.h> 25 #endif 26 #include <linux/kfence.h> 27 28 #include <asm/fixmap.h> 29 #include <asm/tlbflush.h> 30 #include <asm/sections.h> 31 #include <asm/soc.h> 32 #include <asm/io.h> 33 #include <asm/ptdump.h> 34 #include <asm/numa.h> 35 36 #include "../kernel/head.h" 37 38 struct kernel_mapping kernel_map __ro_after_init; 39 EXPORT_SYMBOL(kernel_map); 40 #ifdef CONFIG_XIP_KERNEL 41 #define kernel_map (*(struct kernel_mapping *)XIP_FIXUP(&kernel_map)) 42 #endif 43 44 #ifdef CONFIG_64BIT 45 u64 satp_mode __ro_after_init = !IS_ENABLED(CONFIG_XIP_KERNEL) ? SATP_MODE_57 : SATP_MODE_39; 46 #else 47 u64 satp_mode __ro_after_init = SATP_MODE_32; 48 #endif 49 EXPORT_SYMBOL(satp_mode); 50 51 bool pgtable_l4_enabled = IS_ENABLED(CONFIG_64BIT) && !IS_ENABLED(CONFIG_XIP_KERNEL); 52 bool pgtable_l5_enabled = IS_ENABLED(CONFIG_64BIT) && !IS_ENABLED(CONFIG_XIP_KERNEL); 53 EXPORT_SYMBOL(pgtable_l4_enabled); 54 EXPORT_SYMBOL(pgtable_l5_enabled); 55 56 phys_addr_t phys_ram_base __ro_after_init; 57 EXPORT_SYMBOL(phys_ram_base); 58 59 unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)] 60 __page_aligned_bss; 61 EXPORT_SYMBOL(empty_zero_page); 62 63 extern char _start[]; 64 void *_dtb_early_va __initdata; 65 uintptr_t _dtb_early_pa __initdata; 66 67 static phys_addr_t dma32_phys_limit __initdata; 68 69 static void __init zone_sizes_init(void) 70 { 71 unsigned long max_zone_pfns[MAX_NR_ZONES] = { 0, }; 72 73 #ifdef CONFIG_ZONE_DMA32 74 max_zone_pfns[ZONE_DMA32] = PFN_DOWN(dma32_phys_limit); 75 #endif 76 max_zone_pfns[ZONE_NORMAL] = max_low_pfn; 77 78 free_area_init(max_zone_pfns); 79 } 80 81 #if defined(CONFIG_MMU) && defined(CONFIG_DEBUG_VM) 82 83 #define LOG2_SZ_1K ilog2(SZ_1K) 84 #define LOG2_SZ_1M ilog2(SZ_1M) 85 #define LOG2_SZ_1G ilog2(SZ_1G) 86 #define LOG2_SZ_1T ilog2(SZ_1T) 87 88 static inline void print_mlk(char *name, unsigned long b, unsigned long t) 89 { 90 pr_notice("%12s : 0x%08lx - 0x%08lx (%4ld kB)\n", name, b, t, 91 (((t) - (b)) >> LOG2_SZ_1K)); 92 } 93 94 static inline void print_mlm(char *name, unsigned long b, unsigned long t) 95 { 96 pr_notice("%12s : 0x%08lx - 0x%08lx (%4ld MB)\n", name, b, t, 97 (((t) - (b)) >> LOG2_SZ_1M)); 98 } 99 100 static inline void print_mlg(char *name, unsigned long b, unsigned long t) 101 { 102 pr_notice("%12s : 0x%08lx - 0x%08lx (%4ld GB)\n", name, b, t, 103 (((t) - (b)) >> LOG2_SZ_1G)); 104 } 105 106 #ifdef CONFIG_64BIT 107 static inline void print_mlt(char *name, unsigned long b, unsigned long t) 108 { 109 pr_notice("%12s : 0x%08lx - 0x%08lx (%4ld TB)\n", name, b, t, 110 (((t) - (b)) >> LOG2_SZ_1T)); 111 } 112 #else 113 #define print_mlt(n, b, t) do {} while (0) 114 #endif 115 116 static inline void print_ml(char *name, unsigned long b, unsigned long t) 117 { 118 unsigned long diff = t - b; 119 120 if (IS_ENABLED(CONFIG_64BIT) && (diff >> LOG2_SZ_1T) >= 10) 121 print_mlt(name, b, t); 122 else if ((diff >> LOG2_SZ_1G) >= 10) 123 print_mlg(name, b, t); 124 else if ((diff >> LOG2_SZ_1M) >= 10) 125 print_mlm(name, b, t); 126 else 127 print_mlk(name, b, t); 128 } 129 130 static void __init print_vm_layout(void) 131 { 132 pr_notice("Virtual kernel memory layout:\n"); 133 print_ml("fixmap", (unsigned long)FIXADDR_START, 134 (unsigned long)FIXADDR_TOP); 135 print_ml("pci io", (unsigned long)PCI_IO_START, 136 (unsigned long)PCI_IO_END); 137 print_ml("vmemmap", (unsigned long)VMEMMAP_START, 138 (unsigned long)VMEMMAP_END); 139 print_ml("vmalloc", (unsigned long)VMALLOC_START, 140 (unsigned long)VMALLOC_END); 141 #ifdef CONFIG_64BIT 142 print_ml("modules", (unsigned long)MODULES_VADDR, 143 (unsigned long)MODULES_END); 144 #endif 145 print_ml("lowmem", (unsigned long)PAGE_OFFSET, 146 (unsigned long)high_memory); 147 if (IS_ENABLED(CONFIG_64BIT)) { 148 #ifdef CONFIG_KASAN 149 print_ml("kasan", KASAN_SHADOW_START, KASAN_SHADOW_END); 150 #endif 151 152 print_ml("kernel", (unsigned long)kernel_map.virt_addr, 153 (unsigned long)ADDRESS_SPACE_END); 154 } 155 } 156 #else 157 static void print_vm_layout(void) { } 158 #endif /* CONFIG_DEBUG_VM */ 159 160 void __init mem_init(void) 161 { 162 #ifdef CONFIG_FLATMEM 163 BUG_ON(!mem_map); 164 #endif /* CONFIG_FLATMEM */ 165 166 swiotlb_init(max_pfn > PFN_DOWN(dma32_phys_limit), SWIOTLB_VERBOSE); 167 memblock_free_all(); 168 169 print_vm_layout(); 170 } 171 172 /* Limit the memory size via mem. */ 173 static phys_addr_t memory_limit; 174 175 static int __init early_mem(char *p) 176 { 177 u64 size; 178 179 if (!p) 180 return 1; 181 182 size = memparse(p, &p) & PAGE_MASK; 183 memory_limit = min_t(u64, size, memory_limit); 184 185 pr_notice("Memory limited to %lldMB\n", (u64)memory_limit >> 20); 186 187 return 0; 188 } 189 early_param("mem", early_mem); 190 191 static void __init setup_bootmem(void) 192 { 193 phys_addr_t vmlinux_end = __pa_symbol(&_end); 194 phys_addr_t max_mapped_addr; 195 phys_addr_t phys_ram_end, vmlinux_start; 196 197 if (IS_ENABLED(CONFIG_XIP_KERNEL)) 198 vmlinux_start = __pa_symbol(&_sdata); 199 else 200 vmlinux_start = __pa_symbol(&_start); 201 202 memblock_enforce_memory_limit(memory_limit); 203 204 /* 205 * Make sure we align the reservation on PMD_SIZE since we will 206 * map the kernel in the linear mapping as read-only: we do not want 207 * any allocation to happen between _end and the next pmd aligned page. 208 */ 209 if (IS_ENABLED(CONFIG_64BIT) && IS_ENABLED(CONFIG_STRICT_KERNEL_RWX)) 210 vmlinux_end = (vmlinux_end + PMD_SIZE - 1) & PMD_MASK; 211 /* 212 * Reserve from the start of the kernel to the end of the kernel 213 */ 214 memblock_reserve(vmlinux_start, vmlinux_end - vmlinux_start); 215 216 phys_ram_end = memblock_end_of_DRAM(); 217 if (!IS_ENABLED(CONFIG_XIP_KERNEL)) 218 phys_ram_base = memblock_start_of_DRAM(); 219 220 /* 221 * In 64-bit, any use of __va/__pa before this point is wrong as we 222 * did not know the start of DRAM before. 223 */ 224 if (IS_ENABLED(CONFIG_64BIT)) 225 kernel_map.va_pa_offset = PAGE_OFFSET - phys_ram_base; 226 227 /* 228 * memblock allocator is not aware of the fact that last 4K bytes of 229 * the addressable memory can not be mapped because of IS_ERR_VALUE 230 * macro. Make sure that last 4k bytes are not usable by memblock 231 * if end of dram is equal to maximum addressable memory. For 64-bit 232 * kernel, this problem can't happen here as the end of the virtual 233 * address space is occupied by the kernel mapping then this check must 234 * be done as soon as the kernel mapping base address is determined. 235 */ 236 if (!IS_ENABLED(CONFIG_64BIT)) { 237 max_mapped_addr = __pa(~(ulong)0); 238 if (max_mapped_addr == (phys_ram_end - 1)) 239 memblock_set_current_limit(max_mapped_addr - 4096); 240 } 241 242 min_low_pfn = PFN_UP(phys_ram_base); 243 max_low_pfn = max_pfn = PFN_DOWN(phys_ram_end); 244 high_memory = (void *)(__va(PFN_PHYS(max_low_pfn))); 245 246 dma32_phys_limit = min(4UL * SZ_1G, (unsigned long)PFN_PHYS(max_low_pfn)); 247 set_max_mapnr(max_low_pfn - ARCH_PFN_OFFSET); 248 249 reserve_initrd_mem(); 250 251 /* 252 * No allocation should be done before reserving the memory as defined 253 * in the device tree, otherwise the allocation could end up in a 254 * reserved region. 255 */ 256 early_init_fdt_scan_reserved_mem(); 257 258 /* 259 * If DTB is built in, no need to reserve its memblock. 260 * Otherwise, do reserve it but avoid using 261 * early_init_fdt_reserve_self() since __pa() does 262 * not work for DTB pointers that are fixmap addresses 263 */ 264 if (!IS_ENABLED(CONFIG_BUILTIN_DTB)) 265 memblock_reserve(dtb_early_pa, fdt_totalsize(dtb_early_va)); 266 267 dma_contiguous_reserve(dma32_phys_limit); 268 if (IS_ENABLED(CONFIG_64BIT)) 269 hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT); 270 memblock_allow_resize(); 271 } 272 273 #ifdef CONFIG_MMU 274 struct pt_alloc_ops pt_ops __initdata; 275 276 pgd_t swapper_pg_dir[PTRS_PER_PGD] __page_aligned_bss; 277 pgd_t trampoline_pg_dir[PTRS_PER_PGD] __page_aligned_bss; 278 static pte_t fixmap_pte[PTRS_PER_PTE] __page_aligned_bss; 279 280 pgd_t early_pg_dir[PTRS_PER_PGD] __initdata __aligned(PAGE_SIZE); 281 282 #ifdef CONFIG_XIP_KERNEL 283 #define pt_ops (*(struct pt_alloc_ops *)XIP_FIXUP(&pt_ops)) 284 #define trampoline_pg_dir ((pgd_t *)XIP_FIXUP(trampoline_pg_dir)) 285 #define fixmap_pte ((pte_t *)XIP_FIXUP(fixmap_pte)) 286 #define early_pg_dir ((pgd_t *)XIP_FIXUP(early_pg_dir)) 287 #endif /* CONFIG_XIP_KERNEL */ 288 289 static const pgprot_t protection_map[16] = { 290 [VM_NONE] = PAGE_NONE, 291 [VM_READ] = PAGE_READ, 292 [VM_WRITE] = PAGE_COPY, 293 [VM_WRITE | VM_READ] = PAGE_COPY, 294 [VM_EXEC] = PAGE_EXEC, 295 [VM_EXEC | VM_READ] = PAGE_READ_EXEC, 296 [VM_EXEC | VM_WRITE] = PAGE_COPY_EXEC, 297 [VM_EXEC | VM_WRITE | VM_READ] = PAGE_COPY_EXEC, 298 [VM_SHARED] = PAGE_NONE, 299 [VM_SHARED | VM_READ] = PAGE_READ, 300 [VM_SHARED | VM_WRITE] = PAGE_SHARED, 301 [VM_SHARED | VM_WRITE | VM_READ] = PAGE_SHARED, 302 [VM_SHARED | VM_EXEC] = PAGE_EXEC, 303 [VM_SHARED | VM_EXEC | VM_READ] = PAGE_READ_EXEC, 304 [VM_SHARED | VM_EXEC | VM_WRITE] = PAGE_SHARED_EXEC, 305 [VM_SHARED | VM_EXEC | VM_WRITE | VM_READ] = PAGE_SHARED_EXEC 306 }; 307 DECLARE_VM_GET_PAGE_PROT 308 309 void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot) 310 { 311 unsigned long addr = __fix_to_virt(idx); 312 pte_t *ptep; 313 314 BUG_ON(idx <= FIX_HOLE || idx >= __end_of_fixed_addresses); 315 316 ptep = &fixmap_pte[pte_index(addr)]; 317 318 if (pgprot_val(prot)) 319 set_pte(ptep, pfn_pte(phys >> PAGE_SHIFT, prot)); 320 else 321 pte_clear(&init_mm, addr, ptep); 322 local_flush_tlb_page(addr); 323 } 324 325 static inline pte_t *__init get_pte_virt_early(phys_addr_t pa) 326 { 327 return (pte_t *)((uintptr_t)pa); 328 } 329 330 static inline pte_t *__init get_pte_virt_fixmap(phys_addr_t pa) 331 { 332 clear_fixmap(FIX_PTE); 333 return (pte_t *)set_fixmap_offset(FIX_PTE, pa); 334 } 335 336 static inline pte_t *__init get_pte_virt_late(phys_addr_t pa) 337 { 338 return (pte_t *) __va(pa); 339 } 340 341 static inline phys_addr_t __init alloc_pte_early(uintptr_t va) 342 { 343 /* 344 * We only create PMD or PGD early mappings so we 345 * should never reach here with MMU disabled. 346 */ 347 BUG(); 348 } 349 350 static inline phys_addr_t __init alloc_pte_fixmap(uintptr_t va) 351 { 352 return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE); 353 } 354 355 static phys_addr_t __init alloc_pte_late(uintptr_t va) 356 { 357 unsigned long vaddr; 358 359 vaddr = __get_free_page(GFP_KERNEL); 360 BUG_ON(!vaddr || !pgtable_pte_page_ctor(virt_to_page(vaddr))); 361 362 return __pa(vaddr); 363 } 364 365 static void __init create_pte_mapping(pte_t *ptep, 366 uintptr_t va, phys_addr_t pa, 367 phys_addr_t sz, pgprot_t prot) 368 { 369 uintptr_t pte_idx = pte_index(va); 370 371 BUG_ON(sz != PAGE_SIZE); 372 373 if (pte_none(ptep[pte_idx])) 374 ptep[pte_idx] = pfn_pte(PFN_DOWN(pa), prot); 375 } 376 377 #ifndef __PAGETABLE_PMD_FOLDED 378 379 static pmd_t trampoline_pmd[PTRS_PER_PMD] __page_aligned_bss; 380 static pmd_t fixmap_pmd[PTRS_PER_PMD] __page_aligned_bss; 381 static pmd_t early_pmd[PTRS_PER_PMD] __initdata __aligned(PAGE_SIZE); 382 383 #ifdef CONFIG_XIP_KERNEL 384 #define trampoline_pmd ((pmd_t *)XIP_FIXUP(trampoline_pmd)) 385 #define fixmap_pmd ((pmd_t *)XIP_FIXUP(fixmap_pmd)) 386 #define early_pmd ((pmd_t *)XIP_FIXUP(early_pmd)) 387 #endif /* CONFIG_XIP_KERNEL */ 388 389 static p4d_t trampoline_p4d[PTRS_PER_P4D] __page_aligned_bss; 390 static p4d_t fixmap_p4d[PTRS_PER_P4D] __page_aligned_bss; 391 static p4d_t early_p4d[PTRS_PER_P4D] __initdata __aligned(PAGE_SIZE); 392 393 #ifdef CONFIG_XIP_KERNEL 394 #define trampoline_p4d ((p4d_t *)XIP_FIXUP(trampoline_p4d)) 395 #define fixmap_p4d ((p4d_t *)XIP_FIXUP(fixmap_p4d)) 396 #define early_p4d ((p4d_t *)XIP_FIXUP(early_p4d)) 397 #endif /* CONFIG_XIP_KERNEL */ 398 399 static pud_t trampoline_pud[PTRS_PER_PUD] __page_aligned_bss; 400 static pud_t fixmap_pud[PTRS_PER_PUD] __page_aligned_bss; 401 static pud_t early_pud[PTRS_PER_PUD] __initdata __aligned(PAGE_SIZE); 402 403 #ifdef CONFIG_XIP_KERNEL 404 #define trampoline_pud ((pud_t *)XIP_FIXUP(trampoline_pud)) 405 #define fixmap_pud ((pud_t *)XIP_FIXUP(fixmap_pud)) 406 #define early_pud ((pud_t *)XIP_FIXUP(early_pud)) 407 #endif /* CONFIG_XIP_KERNEL */ 408 409 static pmd_t *__init get_pmd_virt_early(phys_addr_t pa) 410 { 411 /* Before MMU is enabled */ 412 return (pmd_t *)((uintptr_t)pa); 413 } 414 415 static pmd_t *__init get_pmd_virt_fixmap(phys_addr_t pa) 416 { 417 clear_fixmap(FIX_PMD); 418 return (pmd_t *)set_fixmap_offset(FIX_PMD, pa); 419 } 420 421 static pmd_t *__init get_pmd_virt_late(phys_addr_t pa) 422 { 423 return (pmd_t *) __va(pa); 424 } 425 426 static phys_addr_t __init alloc_pmd_early(uintptr_t va) 427 { 428 BUG_ON((va - kernel_map.virt_addr) >> PUD_SHIFT); 429 430 return (uintptr_t)early_pmd; 431 } 432 433 static phys_addr_t __init alloc_pmd_fixmap(uintptr_t va) 434 { 435 return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE); 436 } 437 438 static phys_addr_t __init alloc_pmd_late(uintptr_t va) 439 { 440 unsigned long vaddr; 441 442 vaddr = __get_free_page(GFP_KERNEL); 443 BUG_ON(!vaddr || !pgtable_pmd_page_ctor(virt_to_page(vaddr))); 444 445 return __pa(vaddr); 446 } 447 448 static void __init create_pmd_mapping(pmd_t *pmdp, 449 uintptr_t va, phys_addr_t pa, 450 phys_addr_t sz, pgprot_t prot) 451 { 452 pte_t *ptep; 453 phys_addr_t pte_phys; 454 uintptr_t pmd_idx = pmd_index(va); 455 456 if (sz == PMD_SIZE) { 457 if (pmd_none(pmdp[pmd_idx])) 458 pmdp[pmd_idx] = pfn_pmd(PFN_DOWN(pa), prot); 459 return; 460 } 461 462 if (pmd_none(pmdp[pmd_idx])) { 463 pte_phys = pt_ops.alloc_pte(va); 464 pmdp[pmd_idx] = pfn_pmd(PFN_DOWN(pte_phys), PAGE_TABLE); 465 ptep = pt_ops.get_pte_virt(pte_phys); 466 memset(ptep, 0, PAGE_SIZE); 467 } else { 468 pte_phys = PFN_PHYS(_pmd_pfn(pmdp[pmd_idx])); 469 ptep = pt_ops.get_pte_virt(pte_phys); 470 } 471 472 create_pte_mapping(ptep, va, pa, sz, prot); 473 } 474 475 static pud_t *__init get_pud_virt_early(phys_addr_t pa) 476 { 477 return (pud_t *)((uintptr_t)pa); 478 } 479 480 static pud_t *__init get_pud_virt_fixmap(phys_addr_t pa) 481 { 482 clear_fixmap(FIX_PUD); 483 return (pud_t *)set_fixmap_offset(FIX_PUD, pa); 484 } 485 486 static pud_t *__init get_pud_virt_late(phys_addr_t pa) 487 { 488 return (pud_t *)__va(pa); 489 } 490 491 static phys_addr_t __init alloc_pud_early(uintptr_t va) 492 { 493 /* Only one PUD is available for early mapping */ 494 BUG_ON((va - kernel_map.virt_addr) >> PGDIR_SHIFT); 495 496 return (uintptr_t)early_pud; 497 } 498 499 static phys_addr_t __init alloc_pud_fixmap(uintptr_t va) 500 { 501 return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE); 502 } 503 504 static phys_addr_t alloc_pud_late(uintptr_t va) 505 { 506 unsigned long vaddr; 507 508 vaddr = __get_free_page(GFP_KERNEL); 509 BUG_ON(!vaddr); 510 return __pa(vaddr); 511 } 512 513 static p4d_t *__init get_p4d_virt_early(phys_addr_t pa) 514 { 515 return (p4d_t *)((uintptr_t)pa); 516 } 517 518 static p4d_t *__init get_p4d_virt_fixmap(phys_addr_t pa) 519 { 520 clear_fixmap(FIX_P4D); 521 return (p4d_t *)set_fixmap_offset(FIX_P4D, pa); 522 } 523 524 static p4d_t *__init get_p4d_virt_late(phys_addr_t pa) 525 { 526 return (p4d_t *)__va(pa); 527 } 528 529 static phys_addr_t __init alloc_p4d_early(uintptr_t va) 530 { 531 /* Only one P4D is available for early mapping */ 532 BUG_ON((va - kernel_map.virt_addr) >> PGDIR_SHIFT); 533 534 return (uintptr_t)early_p4d; 535 } 536 537 static phys_addr_t __init alloc_p4d_fixmap(uintptr_t va) 538 { 539 return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE); 540 } 541 542 static phys_addr_t alloc_p4d_late(uintptr_t va) 543 { 544 unsigned long vaddr; 545 546 vaddr = __get_free_page(GFP_KERNEL); 547 BUG_ON(!vaddr); 548 return __pa(vaddr); 549 } 550 551 static void __init create_pud_mapping(pud_t *pudp, 552 uintptr_t va, phys_addr_t pa, 553 phys_addr_t sz, pgprot_t prot) 554 { 555 pmd_t *nextp; 556 phys_addr_t next_phys; 557 uintptr_t pud_index = pud_index(va); 558 559 if (sz == PUD_SIZE) { 560 if (pud_val(pudp[pud_index]) == 0) 561 pudp[pud_index] = pfn_pud(PFN_DOWN(pa), prot); 562 return; 563 } 564 565 if (pud_val(pudp[pud_index]) == 0) { 566 next_phys = pt_ops.alloc_pmd(va); 567 pudp[pud_index] = pfn_pud(PFN_DOWN(next_phys), PAGE_TABLE); 568 nextp = pt_ops.get_pmd_virt(next_phys); 569 memset(nextp, 0, PAGE_SIZE); 570 } else { 571 next_phys = PFN_PHYS(_pud_pfn(pudp[pud_index])); 572 nextp = pt_ops.get_pmd_virt(next_phys); 573 } 574 575 create_pmd_mapping(nextp, va, pa, sz, prot); 576 } 577 578 static void __init create_p4d_mapping(p4d_t *p4dp, 579 uintptr_t va, phys_addr_t pa, 580 phys_addr_t sz, pgprot_t prot) 581 { 582 pud_t *nextp; 583 phys_addr_t next_phys; 584 uintptr_t p4d_index = p4d_index(va); 585 586 if (sz == P4D_SIZE) { 587 if (p4d_val(p4dp[p4d_index]) == 0) 588 p4dp[p4d_index] = pfn_p4d(PFN_DOWN(pa), prot); 589 return; 590 } 591 592 if (p4d_val(p4dp[p4d_index]) == 0) { 593 next_phys = pt_ops.alloc_pud(va); 594 p4dp[p4d_index] = pfn_p4d(PFN_DOWN(next_phys), PAGE_TABLE); 595 nextp = pt_ops.get_pud_virt(next_phys); 596 memset(nextp, 0, PAGE_SIZE); 597 } else { 598 next_phys = PFN_PHYS(_p4d_pfn(p4dp[p4d_index])); 599 nextp = pt_ops.get_pud_virt(next_phys); 600 } 601 602 create_pud_mapping(nextp, va, pa, sz, prot); 603 } 604 605 #define pgd_next_t p4d_t 606 #define alloc_pgd_next(__va) (pgtable_l5_enabled ? \ 607 pt_ops.alloc_p4d(__va) : (pgtable_l4_enabled ? \ 608 pt_ops.alloc_pud(__va) : pt_ops.alloc_pmd(__va))) 609 #define get_pgd_next_virt(__pa) (pgtable_l5_enabled ? \ 610 pt_ops.get_p4d_virt(__pa) : (pgd_next_t *)(pgtable_l4_enabled ? \ 611 pt_ops.get_pud_virt(__pa) : (pud_t *)pt_ops.get_pmd_virt(__pa))) 612 #define create_pgd_next_mapping(__nextp, __va, __pa, __sz, __prot) \ 613 (pgtable_l5_enabled ? \ 614 create_p4d_mapping(__nextp, __va, __pa, __sz, __prot) : \ 615 (pgtable_l4_enabled ? \ 616 create_pud_mapping((pud_t *)__nextp, __va, __pa, __sz, __prot) : \ 617 create_pmd_mapping((pmd_t *)__nextp, __va, __pa, __sz, __prot))) 618 #define fixmap_pgd_next (pgtable_l5_enabled ? \ 619 (uintptr_t)fixmap_p4d : (pgtable_l4_enabled ? \ 620 (uintptr_t)fixmap_pud : (uintptr_t)fixmap_pmd)) 621 #define trampoline_pgd_next (pgtable_l5_enabled ? \ 622 (uintptr_t)trampoline_p4d : (pgtable_l4_enabled ? \ 623 (uintptr_t)trampoline_pud : (uintptr_t)trampoline_pmd)) 624 #else 625 #define pgd_next_t pte_t 626 #define alloc_pgd_next(__va) pt_ops.alloc_pte(__va) 627 #define get_pgd_next_virt(__pa) pt_ops.get_pte_virt(__pa) 628 #define create_pgd_next_mapping(__nextp, __va, __pa, __sz, __prot) \ 629 create_pte_mapping(__nextp, __va, __pa, __sz, __prot) 630 #define fixmap_pgd_next ((uintptr_t)fixmap_pte) 631 #define create_p4d_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0) 632 #define create_pud_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0) 633 #define create_pmd_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0) 634 #endif /* __PAGETABLE_PMD_FOLDED */ 635 636 void __init create_pgd_mapping(pgd_t *pgdp, 637 uintptr_t va, phys_addr_t pa, 638 phys_addr_t sz, pgprot_t prot) 639 { 640 pgd_next_t *nextp; 641 phys_addr_t next_phys; 642 uintptr_t pgd_idx = pgd_index(va); 643 644 if (sz == PGDIR_SIZE) { 645 if (pgd_val(pgdp[pgd_idx]) == 0) 646 pgdp[pgd_idx] = pfn_pgd(PFN_DOWN(pa), prot); 647 return; 648 } 649 650 if (pgd_val(pgdp[pgd_idx]) == 0) { 651 next_phys = alloc_pgd_next(va); 652 pgdp[pgd_idx] = pfn_pgd(PFN_DOWN(next_phys), PAGE_TABLE); 653 nextp = get_pgd_next_virt(next_phys); 654 memset(nextp, 0, PAGE_SIZE); 655 } else { 656 next_phys = PFN_PHYS(_pgd_pfn(pgdp[pgd_idx])); 657 nextp = get_pgd_next_virt(next_phys); 658 } 659 660 create_pgd_next_mapping(nextp, va, pa, sz, prot); 661 } 662 663 static uintptr_t __init best_map_size(phys_addr_t pa, uintptr_t va, 664 phys_addr_t size) 665 { 666 if (!(pa & (PGDIR_SIZE - 1)) && !(va & (PGDIR_SIZE - 1)) && size >= PGDIR_SIZE) 667 return PGDIR_SIZE; 668 669 if (!(pa & (P4D_SIZE - 1)) && !(va & (P4D_SIZE - 1)) && size >= P4D_SIZE) 670 return P4D_SIZE; 671 672 if (!(pa & (PUD_SIZE - 1)) && !(va & (PUD_SIZE - 1)) && size >= PUD_SIZE) 673 return PUD_SIZE; 674 675 if (!(pa & (PMD_SIZE - 1)) && !(va & (PMD_SIZE - 1)) && size >= PMD_SIZE) 676 return PMD_SIZE; 677 678 return PAGE_SIZE; 679 } 680 681 #ifdef CONFIG_XIP_KERNEL 682 #define phys_ram_base (*(phys_addr_t *)XIP_FIXUP(&phys_ram_base)) 683 extern char _xiprom[], _exiprom[], __data_loc; 684 685 /* called from head.S with MMU off */ 686 asmlinkage void __init __copy_data(void) 687 { 688 void *from = (void *)(&__data_loc); 689 void *to = (void *)CONFIG_PHYS_RAM_BASE; 690 size_t sz = (size_t)((uintptr_t)(&_end) - (uintptr_t)(&_sdata)); 691 692 memcpy(to, from, sz); 693 } 694 #endif 695 696 #ifdef CONFIG_STRICT_KERNEL_RWX 697 static __init pgprot_t pgprot_from_va(uintptr_t va) 698 { 699 if (is_va_kernel_text(va)) 700 return PAGE_KERNEL_READ_EXEC; 701 702 /* 703 * In 64-bit kernel, the kernel mapping is outside the linear mapping so 704 * we must protect its linear mapping alias from being executed and 705 * written. 706 * And rodata section is marked readonly in mark_rodata_ro. 707 */ 708 if (IS_ENABLED(CONFIG_64BIT) && is_va_kernel_lm_alias_text(va)) 709 return PAGE_KERNEL_READ; 710 711 return PAGE_KERNEL; 712 } 713 714 void mark_rodata_ro(void) 715 { 716 set_kernel_memory(__start_rodata, _data, set_memory_ro); 717 if (IS_ENABLED(CONFIG_64BIT)) 718 set_kernel_memory(lm_alias(__start_rodata), lm_alias(_data), 719 set_memory_ro); 720 721 debug_checkwx(); 722 } 723 #else 724 static __init pgprot_t pgprot_from_va(uintptr_t va) 725 { 726 if (IS_ENABLED(CONFIG_64BIT) && !is_kernel_mapping(va)) 727 return PAGE_KERNEL; 728 729 return PAGE_KERNEL_EXEC; 730 } 731 #endif /* CONFIG_STRICT_KERNEL_RWX */ 732 733 #if defined(CONFIG_64BIT) && !defined(CONFIG_XIP_KERNEL) 734 u64 __pi_set_satp_mode_from_cmdline(uintptr_t dtb_pa); 735 736 static void __init disable_pgtable_l5(void) 737 { 738 pgtable_l5_enabled = false; 739 kernel_map.page_offset = PAGE_OFFSET_L4; 740 satp_mode = SATP_MODE_48; 741 } 742 743 static void __init disable_pgtable_l4(void) 744 { 745 pgtable_l4_enabled = false; 746 kernel_map.page_offset = PAGE_OFFSET_L3; 747 satp_mode = SATP_MODE_39; 748 } 749 750 static int __init print_no4lvl(char *p) 751 { 752 pr_info("Disabled 4-level and 5-level paging"); 753 return 0; 754 } 755 early_param("no4lvl", print_no4lvl); 756 757 static int __init print_no5lvl(char *p) 758 { 759 pr_info("Disabled 5-level paging"); 760 return 0; 761 } 762 early_param("no5lvl", print_no5lvl); 763 764 /* 765 * There is a simple way to determine if 4-level is supported by the 766 * underlying hardware: establish 1:1 mapping in 4-level page table mode 767 * then read SATP to see if the configuration was taken into account 768 * meaning sv48 is supported. 769 */ 770 static __init void set_satp_mode(uintptr_t dtb_pa) 771 { 772 u64 identity_satp, hw_satp; 773 uintptr_t set_satp_mode_pmd = ((unsigned long)set_satp_mode) & PMD_MASK; 774 u64 satp_mode_cmdline = __pi_set_satp_mode_from_cmdline(dtb_pa); 775 776 if (satp_mode_cmdline == SATP_MODE_57) { 777 disable_pgtable_l5(); 778 } else if (satp_mode_cmdline == SATP_MODE_48) { 779 disable_pgtable_l5(); 780 disable_pgtable_l4(); 781 return; 782 } 783 784 create_p4d_mapping(early_p4d, 785 set_satp_mode_pmd, (uintptr_t)early_pud, 786 P4D_SIZE, PAGE_TABLE); 787 create_pud_mapping(early_pud, 788 set_satp_mode_pmd, (uintptr_t)early_pmd, 789 PUD_SIZE, PAGE_TABLE); 790 /* Handle the case where set_satp_mode straddles 2 PMDs */ 791 create_pmd_mapping(early_pmd, 792 set_satp_mode_pmd, set_satp_mode_pmd, 793 PMD_SIZE, PAGE_KERNEL_EXEC); 794 create_pmd_mapping(early_pmd, 795 set_satp_mode_pmd + PMD_SIZE, 796 set_satp_mode_pmd + PMD_SIZE, 797 PMD_SIZE, PAGE_KERNEL_EXEC); 798 retry: 799 create_pgd_mapping(early_pg_dir, 800 set_satp_mode_pmd, 801 pgtable_l5_enabled ? 802 (uintptr_t)early_p4d : (uintptr_t)early_pud, 803 PGDIR_SIZE, PAGE_TABLE); 804 805 identity_satp = PFN_DOWN((uintptr_t)&early_pg_dir) | satp_mode; 806 807 local_flush_tlb_all(); 808 csr_write(CSR_SATP, identity_satp); 809 hw_satp = csr_swap(CSR_SATP, 0ULL); 810 local_flush_tlb_all(); 811 812 if (hw_satp != identity_satp) { 813 if (pgtable_l5_enabled) { 814 disable_pgtable_l5(); 815 memset(early_pg_dir, 0, PAGE_SIZE); 816 goto retry; 817 } 818 disable_pgtable_l4(); 819 } 820 821 memset(early_pg_dir, 0, PAGE_SIZE); 822 memset(early_p4d, 0, PAGE_SIZE); 823 memset(early_pud, 0, PAGE_SIZE); 824 memset(early_pmd, 0, PAGE_SIZE); 825 } 826 #endif 827 828 /* 829 * setup_vm() is called from head.S with MMU-off. 830 * 831 * Following requirements should be honoured for setup_vm() to work 832 * correctly: 833 * 1) It should use PC-relative addressing for accessing kernel symbols. 834 * To achieve this we always use GCC cmodel=medany. 835 * 2) The compiler instrumentation for FTRACE will not work for setup_vm() 836 * so disable compiler instrumentation when FTRACE is enabled. 837 * 838 * Currently, the above requirements are honoured by using custom CFLAGS 839 * for init.o in mm/Makefile. 840 */ 841 842 #ifndef __riscv_cmodel_medany 843 #error "setup_vm() is called from head.S before relocate so it should not use absolute addressing." 844 #endif 845 846 #ifdef CONFIG_RELOCATABLE 847 extern unsigned long __rela_dyn_start, __rela_dyn_end; 848 849 static void __init relocate_kernel(void) 850 { 851 Elf64_Rela *rela = (Elf64_Rela *)&__rela_dyn_start; 852 /* 853 * This holds the offset between the linked virtual address and the 854 * relocated virtual address. 855 */ 856 uintptr_t reloc_offset = kernel_map.virt_addr - KERNEL_LINK_ADDR; 857 /* 858 * This holds the offset between kernel linked virtual address and 859 * physical address. 860 */ 861 uintptr_t va_kernel_link_pa_offset = KERNEL_LINK_ADDR - kernel_map.phys_addr; 862 863 for ( ; rela < (Elf64_Rela *)&__rela_dyn_end; rela++) { 864 Elf64_Addr addr = (rela->r_offset - va_kernel_link_pa_offset); 865 Elf64_Addr relocated_addr = rela->r_addend; 866 867 if (rela->r_info != R_RISCV_RELATIVE) 868 continue; 869 870 /* 871 * Make sure to not relocate vdso symbols like rt_sigreturn 872 * which are linked from the address 0 in vmlinux since 873 * vdso symbol addresses are actually used as an offset from 874 * mm->context.vdso in VDSO_OFFSET macro. 875 */ 876 if (relocated_addr >= KERNEL_LINK_ADDR) 877 relocated_addr += reloc_offset; 878 879 *(Elf64_Addr *)addr = relocated_addr; 880 } 881 } 882 #endif /* CONFIG_RELOCATABLE */ 883 884 #ifdef CONFIG_XIP_KERNEL 885 static void __init create_kernel_page_table(pgd_t *pgdir, 886 __always_unused bool early) 887 { 888 uintptr_t va, end_va; 889 890 /* Map the flash resident part */ 891 end_va = kernel_map.virt_addr + kernel_map.xiprom_sz; 892 for (va = kernel_map.virt_addr; va < end_va; va += PMD_SIZE) 893 create_pgd_mapping(pgdir, va, 894 kernel_map.xiprom + (va - kernel_map.virt_addr), 895 PMD_SIZE, PAGE_KERNEL_EXEC); 896 897 /* Map the data in RAM */ 898 end_va = kernel_map.virt_addr + XIP_OFFSET + kernel_map.size; 899 for (va = kernel_map.virt_addr + XIP_OFFSET; va < end_va; va += PMD_SIZE) 900 create_pgd_mapping(pgdir, va, 901 kernel_map.phys_addr + (va - (kernel_map.virt_addr + XIP_OFFSET)), 902 PMD_SIZE, PAGE_KERNEL); 903 } 904 #else 905 static void __init create_kernel_page_table(pgd_t *pgdir, bool early) 906 { 907 uintptr_t va, end_va; 908 909 end_va = kernel_map.virt_addr + kernel_map.size; 910 for (va = kernel_map.virt_addr; va < end_va; va += PMD_SIZE) 911 create_pgd_mapping(pgdir, va, 912 kernel_map.phys_addr + (va - kernel_map.virt_addr), 913 PMD_SIZE, 914 early ? 915 PAGE_KERNEL_EXEC : pgprot_from_va(va)); 916 } 917 #endif 918 919 /* 920 * Setup a 4MB mapping that encompasses the device tree: for 64-bit kernel, 921 * this means 2 PMD entries whereas for 32-bit kernel, this is only 1 PGDIR 922 * entry. 923 */ 924 static void __init create_fdt_early_page_table(uintptr_t fix_fdt_va, 925 uintptr_t dtb_pa) 926 { 927 #ifndef CONFIG_BUILTIN_DTB 928 uintptr_t pa = dtb_pa & ~(PMD_SIZE - 1); 929 930 /* Make sure the fdt fixmap address is always aligned on PMD size */ 931 BUILD_BUG_ON(FIX_FDT % (PMD_SIZE / PAGE_SIZE)); 932 933 /* In 32-bit only, the fdt lies in its own PGD */ 934 if (!IS_ENABLED(CONFIG_64BIT)) { 935 create_pgd_mapping(early_pg_dir, fix_fdt_va, 936 pa, MAX_FDT_SIZE, PAGE_KERNEL); 937 } else { 938 create_pmd_mapping(fixmap_pmd, fix_fdt_va, 939 pa, PMD_SIZE, PAGE_KERNEL); 940 create_pmd_mapping(fixmap_pmd, fix_fdt_va + PMD_SIZE, 941 pa + PMD_SIZE, PMD_SIZE, PAGE_KERNEL); 942 } 943 944 dtb_early_va = (void *)fix_fdt_va + (dtb_pa & (PMD_SIZE - 1)); 945 #else 946 /* 947 * For 64-bit kernel, __va can't be used since it would return a linear 948 * mapping address whereas dtb_early_va will be used before 949 * setup_vm_final installs the linear mapping. For 32-bit kernel, as the 950 * kernel is mapped in the linear mapping, that makes no difference. 951 */ 952 dtb_early_va = kernel_mapping_pa_to_va(XIP_FIXUP(dtb_pa)); 953 #endif 954 955 dtb_early_pa = dtb_pa; 956 } 957 958 /* 959 * MMU is not enabled, the page tables are allocated directly using 960 * early_pmd/pud/p4d and the address returned is the physical one. 961 */ 962 static void __init pt_ops_set_early(void) 963 { 964 pt_ops.alloc_pte = alloc_pte_early; 965 pt_ops.get_pte_virt = get_pte_virt_early; 966 #ifndef __PAGETABLE_PMD_FOLDED 967 pt_ops.alloc_pmd = alloc_pmd_early; 968 pt_ops.get_pmd_virt = get_pmd_virt_early; 969 pt_ops.alloc_pud = alloc_pud_early; 970 pt_ops.get_pud_virt = get_pud_virt_early; 971 pt_ops.alloc_p4d = alloc_p4d_early; 972 pt_ops.get_p4d_virt = get_p4d_virt_early; 973 #endif 974 } 975 976 /* 977 * MMU is enabled but page table setup is not complete yet. 978 * fixmap page table alloc functions must be used as a means to temporarily 979 * map the allocated physical pages since the linear mapping does not exist yet. 980 * 981 * Note that this is called with MMU disabled, hence kernel_mapping_pa_to_va, 982 * but it will be used as described above. 983 */ 984 static void __init pt_ops_set_fixmap(void) 985 { 986 pt_ops.alloc_pte = kernel_mapping_pa_to_va(alloc_pte_fixmap); 987 pt_ops.get_pte_virt = kernel_mapping_pa_to_va(get_pte_virt_fixmap); 988 #ifndef __PAGETABLE_PMD_FOLDED 989 pt_ops.alloc_pmd = kernel_mapping_pa_to_va(alloc_pmd_fixmap); 990 pt_ops.get_pmd_virt = kernel_mapping_pa_to_va(get_pmd_virt_fixmap); 991 pt_ops.alloc_pud = kernel_mapping_pa_to_va(alloc_pud_fixmap); 992 pt_ops.get_pud_virt = kernel_mapping_pa_to_va(get_pud_virt_fixmap); 993 pt_ops.alloc_p4d = kernel_mapping_pa_to_va(alloc_p4d_fixmap); 994 pt_ops.get_p4d_virt = kernel_mapping_pa_to_va(get_p4d_virt_fixmap); 995 #endif 996 } 997 998 /* 999 * MMU is enabled and page table setup is complete, so from now, we can use 1000 * generic page allocation functions to setup page table. 1001 */ 1002 static void __init pt_ops_set_late(void) 1003 { 1004 pt_ops.alloc_pte = alloc_pte_late; 1005 pt_ops.get_pte_virt = get_pte_virt_late; 1006 #ifndef __PAGETABLE_PMD_FOLDED 1007 pt_ops.alloc_pmd = alloc_pmd_late; 1008 pt_ops.get_pmd_virt = get_pmd_virt_late; 1009 pt_ops.alloc_pud = alloc_pud_late; 1010 pt_ops.get_pud_virt = get_pud_virt_late; 1011 pt_ops.alloc_p4d = alloc_p4d_late; 1012 pt_ops.get_p4d_virt = get_p4d_virt_late; 1013 #endif 1014 } 1015 1016 asmlinkage void __init setup_vm(uintptr_t dtb_pa) 1017 { 1018 pmd_t __maybe_unused fix_bmap_spmd, fix_bmap_epmd; 1019 1020 kernel_map.virt_addr = KERNEL_LINK_ADDR; 1021 kernel_map.page_offset = _AC(CONFIG_PAGE_OFFSET, UL); 1022 1023 #ifdef CONFIG_XIP_KERNEL 1024 kernel_map.xiprom = (uintptr_t)CONFIG_XIP_PHYS_ADDR; 1025 kernel_map.xiprom_sz = (uintptr_t)(&_exiprom) - (uintptr_t)(&_xiprom); 1026 1027 phys_ram_base = CONFIG_PHYS_RAM_BASE; 1028 kernel_map.phys_addr = (uintptr_t)CONFIG_PHYS_RAM_BASE; 1029 kernel_map.size = (uintptr_t)(&_end) - (uintptr_t)(&_sdata); 1030 1031 kernel_map.va_kernel_xip_pa_offset = kernel_map.virt_addr - kernel_map.xiprom; 1032 #else 1033 kernel_map.phys_addr = (uintptr_t)(&_start); 1034 kernel_map.size = (uintptr_t)(&_end) - kernel_map.phys_addr; 1035 #endif 1036 1037 #if defined(CONFIG_64BIT) && !defined(CONFIG_XIP_KERNEL) 1038 set_satp_mode(dtb_pa); 1039 #endif 1040 1041 /* 1042 * In 64-bit, we defer the setup of va_pa_offset to setup_bootmem, 1043 * where we have the system memory layout: this allows us to align 1044 * the physical and virtual mappings and then make use of PUD/P4D/PGD 1045 * for the linear mapping. This is only possible because the kernel 1046 * mapping lies outside the linear mapping. 1047 * In 32-bit however, as the kernel resides in the linear mapping, 1048 * setup_vm_final can not change the mapping established here, 1049 * otherwise the same kernel addresses would get mapped to different 1050 * physical addresses (if the start of dram is different from the 1051 * kernel physical address start). 1052 */ 1053 kernel_map.va_pa_offset = IS_ENABLED(CONFIG_64BIT) ? 1054 0UL : PAGE_OFFSET - kernel_map.phys_addr; 1055 kernel_map.va_kernel_pa_offset = kernel_map.virt_addr - kernel_map.phys_addr; 1056 1057 /* 1058 * The default maximal physical memory size is KERN_VIRT_SIZE for 32-bit 1059 * kernel, whereas for 64-bit kernel, the end of the virtual address 1060 * space is occupied by the modules/BPF/kernel mappings which reduces 1061 * the available size of the linear mapping. 1062 */ 1063 memory_limit = KERN_VIRT_SIZE - (IS_ENABLED(CONFIG_64BIT) ? SZ_4G : 0); 1064 1065 /* Sanity check alignment and size */ 1066 BUG_ON((PAGE_OFFSET % PGDIR_SIZE) != 0); 1067 BUG_ON((kernel_map.phys_addr % PMD_SIZE) != 0); 1068 1069 #ifdef CONFIG_64BIT 1070 /* 1071 * The last 4K bytes of the addressable memory can not be mapped because 1072 * of IS_ERR_VALUE macro. 1073 */ 1074 BUG_ON((kernel_map.virt_addr + kernel_map.size) > ADDRESS_SPACE_END - SZ_4K); 1075 #endif 1076 1077 #ifdef CONFIG_RELOCATABLE 1078 /* 1079 * Early page table uses only one PUD, which makes it possible 1080 * to map PUD_SIZE aligned on PUD_SIZE: if the relocation offset 1081 * makes the kernel cross over a PUD_SIZE boundary, raise a bug 1082 * since a part of the kernel would not get mapped. 1083 */ 1084 BUG_ON(PUD_SIZE - (kernel_map.virt_addr & (PUD_SIZE - 1)) < kernel_map.size); 1085 relocate_kernel(); 1086 #endif 1087 1088 apply_early_boot_alternatives(); 1089 pt_ops_set_early(); 1090 1091 /* Setup early PGD for fixmap */ 1092 create_pgd_mapping(early_pg_dir, FIXADDR_START, 1093 fixmap_pgd_next, PGDIR_SIZE, PAGE_TABLE); 1094 1095 #ifndef __PAGETABLE_PMD_FOLDED 1096 /* Setup fixmap P4D and PUD */ 1097 if (pgtable_l5_enabled) 1098 create_p4d_mapping(fixmap_p4d, FIXADDR_START, 1099 (uintptr_t)fixmap_pud, P4D_SIZE, PAGE_TABLE); 1100 /* Setup fixmap PUD and PMD */ 1101 if (pgtable_l4_enabled) 1102 create_pud_mapping(fixmap_pud, FIXADDR_START, 1103 (uintptr_t)fixmap_pmd, PUD_SIZE, PAGE_TABLE); 1104 create_pmd_mapping(fixmap_pmd, FIXADDR_START, 1105 (uintptr_t)fixmap_pte, PMD_SIZE, PAGE_TABLE); 1106 /* Setup trampoline PGD and PMD */ 1107 create_pgd_mapping(trampoline_pg_dir, kernel_map.virt_addr, 1108 trampoline_pgd_next, PGDIR_SIZE, PAGE_TABLE); 1109 if (pgtable_l5_enabled) 1110 create_p4d_mapping(trampoline_p4d, kernel_map.virt_addr, 1111 (uintptr_t)trampoline_pud, P4D_SIZE, PAGE_TABLE); 1112 if (pgtable_l4_enabled) 1113 create_pud_mapping(trampoline_pud, kernel_map.virt_addr, 1114 (uintptr_t)trampoline_pmd, PUD_SIZE, PAGE_TABLE); 1115 #ifdef CONFIG_XIP_KERNEL 1116 create_pmd_mapping(trampoline_pmd, kernel_map.virt_addr, 1117 kernel_map.xiprom, PMD_SIZE, PAGE_KERNEL_EXEC); 1118 #else 1119 create_pmd_mapping(trampoline_pmd, kernel_map.virt_addr, 1120 kernel_map.phys_addr, PMD_SIZE, PAGE_KERNEL_EXEC); 1121 #endif 1122 #else 1123 /* Setup trampoline PGD */ 1124 create_pgd_mapping(trampoline_pg_dir, kernel_map.virt_addr, 1125 kernel_map.phys_addr, PGDIR_SIZE, PAGE_KERNEL_EXEC); 1126 #endif 1127 1128 /* 1129 * Setup early PGD covering entire kernel which will allow 1130 * us to reach paging_init(). We map all memory banks later 1131 * in setup_vm_final() below. 1132 */ 1133 create_kernel_page_table(early_pg_dir, true); 1134 1135 /* Setup early mapping for FDT early scan */ 1136 create_fdt_early_page_table(__fix_to_virt(FIX_FDT), dtb_pa); 1137 1138 /* 1139 * Bootime fixmap only can handle PMD_SIZE mapping. Thus, boot-ioremap 1140 * range can not span multiple pmds. 1141 */ 1142 BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT) 1143 != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT)); 1144 1145 #ifndef __PAGETABLE_PMD_FOLDED 1146 /* 1147 * Early ioremap fixmap is already created as it lies within first 2MB 1148 * of fixmap region. We always map PMD_SIZE. Thus, both FIX_BTMAP_END 1149 * FIX_BTMAP_BEGIN should lie in the same pmd. Verify that and warn 1150 * the user if not. 1151 */ 1152 fix_bmap_spmd = fixmap_pmd[pmd_index(__fix_to_virt(FIX_BTMAP_BEGIN))]; 1153 fix_bmap_epmd = fixmap_pmd[pmd_index(__fix_to_virt(FIX_BTMAP_END))]; 1154 if (pmd_val(fix_bmap_spmd) != pmd_val(fix_bmap_epmd)) { 1155 WARN_ON(1); 1156 pr_warn("fixmap btmap start [%08lx] != end [%08lx]\n", 1157 pmd_val(fix_bmap_spmd), pmd_val(fix_bmap_epmd)); 1158 pr_warn("fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n", 1159 fix_to_virt(FIX_BTMAP_BEGIN)); 1160 pr_warn("fix_to_virt(FIX_BTMAP_END): %08lx\n", 1161 fix_to_virt(FIX_BTMAP_END)); 1162 1163 pr_warn("FIX_BTMAP_END: %d\n", FIX_BTMAP_END); 1164 pr_warn("FIX_BTMAP_BEGIN: %d\n", FIX_BTMAP_BEGIN); 1165 } 1166 #endif 1167 1168 pt_ops_set_fixmap(); 1169 } 1170 1171 static void __init create_linear_mapping_range(phys_addr_t start, 1172 phys_addr_t end, 1173 uintptr_t fixed_map_size) 1174 { 1175 phys_addr_t pa; 1176 uintptr_t va, map_size; 1177 1178 for (pa = start; pa < end; pa += map_size) { 1179 va = (uintptr_t)__va(pa); 1180 map_size = fixed_map_size ? fixed_map_size : 1181 best_map_size(pa, va, end - pa); 1182 1183 create_pgd_mapping(swapper_pg_dir, va, pa, map_size, 1184 pgprot_from_va(va)); 1185 } 1186 } 1187 1188 static void __init create_linear_mapping_page_table(void) 1189 { 1190 phys_addr_t start, end; 1191 phys_addr_t kfence_pool __maybe_unused; 1192 u64 i; 1193 1194 #ifdef CONFIG_STRICT_KERNEL_RWX 1195 phys_addr_t ktext_start = __pa_symbol(_start); 1196 phys_addr_t ktext_size = __init_data_begin - _start; 1197 phys_addr_t krodata_start = __pa_symbol(__start_rodata); 1198 phys_addr_t krodata_size = _data - __start_rodata; 1199 1200 /* Isolate kernel text and rodata so they don't get mapped with a PUD */ 1201 memblock_mark_nomap(ktext_start, ktext_size); 1202 memblock_mark_nomap(krodata_start, krodata_size); 1203 #endif 1204 1205 #ifdef CONFIG_KFENCE 1206 /* 1207 * kfence pool must be backed by PAGE_SIZE mappings, so allocate it 1208 * before we setup the linear mapping so that we avoid using hugepages 1209 * for this region. 1210 */ 1211 kfence_pool = memblock_phys_alloc(KFENCE_POOL_SIZE, PAGE_SIZE); 1212 BUG_ON(!kfence_pool); 1213 1214 memblock_mark_nomap(kfence_pool, KFENCE_POOL_SIZE); 1215 __kfence_pool = __va(kfence_pool); 1216 #endif 1217 1218 /* Map all memory banks in the linear mapping */ 1219 for_each_mem_range(i, &start, &end) { 1220 if (start >= end) 1221 break; 1222 if (start <= __pa(PAGE_OFFSET) && 1223 __pa(PAGE_OFFSET) < end) 1224 start = __pa(PAGE_OFFSET); 1225 if (end >= __pa(PAGE_OFFSET) + memory_limit) 1226 end = __pa(PAGE_OFFSET) + memory_limit; 1227 1228 create_linear_mapping_range(start, end, 0); 1229 } 1230 1231 #ifdef CONFIG_STRICT_KERNEL_RWX 1232 create_linear_mapping_range(ktext_start, ktext_start + ktext_size, 0); 1233 create_linear_mapping_range(krodata_start, 1234 krodata_start + krodata_size, 0); 1235 1236 memblock_clear_nomap(ktext_start, ktext_size); 1237 memblock_clear_nomap(krodata_start, krodata_size); 1238 #endif 1239 1240 #ifdef CONFIG_KFENCE 1241 create_linear_mapping_range(kfence_pool, 1242 kfence_pool + KFENCE_POOL_SIZE, 1243 PAGE_SIZE); 1244 1245 memblock_clear_nomap(kfence_pool, KFENCE_POOL_SIZE); 1246 #endif 1247 } 1248 1249 static void __init setup_vm_final(void) 1250 { 1251 /* Setup swapper PGD for fixmap */ 1252 #if !defined(CONFIG_64BIT) 1253 /* 1254 * In 32-bit, the device tree lies in a pgd entry, so it must be copied 1255 * directly in swapper_pg_dir in addition to the pgd entry that points 1256 * to fixmap_pte. 1257 */ 1258 unsigned long idx = pgd_index(__fix_to_virt(FIX_FDT)); 1259 1260 set_pgd(&swapper_pg_dir[idx], early_pg_dir[idx]); 1261 #endif 1262 create_pgd_mapping(swapper_pg_dir, FIXADDR_START, 1263 __pa_symbol(fixmap_pgd_next), 1264 PGDIR_SIZE, PAGE_TABLE); 1265 1266 /* Map the linear mapping */ 1267 create_linear_mapping_page_table(); 1268 1269 /* Map the kernel */ 1270 if (IS_ENABLED(CONFIG_64BIT)) 1271 create_kernel_page_table(swapper_pg_dir, false); 1272 1273 #ifdef CONFIG_KASAN 1274 kasan_swapper_init(); 1275 #endif 1276 1277 /* Clear fixmap PTE and PMD mappings */ 1278 clear_fixmap(FIX_PTE); 1279 clear_fixmap(FIX_PMD); 1280 clear_fixmap(FIX_PUD); 1281 clear_fixmap(FIX_P4D); 1282 1283 /* Move to swapper page table */ 1284 csr_write(CSR_SATP, PFN_DOWN(__pa_symbol(swapper_pg_dir)) | satp_mode); 1285 local_flush_tlb_all(); 1286 1287 pt_ops_set_late(); 1288 } 1289 #else 1290 asmlinkage void __init setup_vm(uintptr_t dtb_pa) 1291 { 1292 dtb_early_va = (void *)dtb_pa; 1293 dtb_early_pa = dtb_pa; 1294 } 1295 1296 static inline void setup_vm_final(void) 1297 { 1298 } 1299 #endif /* CONFIG_MMU */ 1300 1301 /* 1302 * reserve_crashkernel() - reserves memory for crash kernel 1303 * 1304 * This function reserves memory area given in "crashkernel=" kernel command 1305 * line parameter. The memory reserved is used by dump capture kernel when 1306 * primary kernel is crashing. 1307 */ 1308 static void __init reserve_crashkernel(void) 1309 { 1310 unsigned long long crash_base = 0; 1311 unsigned long long crash_size = 0; 1312 unsigned long search_start = memblock_start_of_DRAM(); 1313 unsigned long search_end = memblock_end_of_DRAM(); 1314 1315 int ret = 0; 1316 1317 if (!IS_ENABLED(CONFIG_KEXEC_CORE)) 1318 return; 1319 /* 1320 * Don't reserve a region for a crash kernel on a crash kernel 1321 * since it doesn't make much sense and we have limited memory 1322 * resources. 1323 */ 1324 if (is_kdump_kernel()) { 1325 pr_info("crashkernel: ignoring reservation request\n"); 1326 return; 1327 } 1328 1329 ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(), 1330 &crash_size, &crash_base); 1331 if (ret || !crash_size) 1332 return; 1333 1334 crash_size = PAGE_ALIGN(crash_size); 1335 1336 if (crash_base) { 1337 search_start = crash_base; 1338 search_end = crash_base + crash_size; 1339 } 1340 1341 /* 1342 * Current riscv boot protocol requires 2MB alignment for 1343 * RV64 and 4MB alignment for RV32 (hugepage size) 1344 * 1345 * Try to alloc from 32bit addressible physical memory so that 1346 * swiotlb can work on the crash kernel. 1347 */ 1348 crash_base = memblock_phys_alloc_range(crash_size, PMD_SIZE, 1349 search_start, 1350 min(search_end, (unsigned long) SZ_4G)); 1351 if (crash_base == 0) { 1352 /* Try again without restricting region to 32bit addressible memory */ 1353 crash_base = memblock_phys_alloc_range(crash_size, PMD_SIZE, 1354 search_start, search_end); 1355 if (crash_base == 0) { 1356 pr_warn("crashkernel: couldn't allocate %lldKB\n", 1357 crash_size >> 10); 1358 return; 1359 } 1360 } 1361 1362 pr_info("crashkernel: reserved 0x%016llx - 0x%016llx (%lld MB)\n", 1363 crash_base, crash_base + crash_size, crash_size >> 20); 1364 1365 crashk_res.start = crash_base; 1366 crashk_res.end = crash_base + crash_size - 1; 1367 } 1368 1369 void __init paging_init(void) 1370 { 1371 setup_bootmem(); 1372 setup_vm_final(); 1373 } 1374 1375 void __init misc_mem_init(void) 1376 { 1377 early_memtest(min_low_pfn << PAGE_SHIFT, max_low_pfn << PAGE_SHIFT); 1378 arch_numa_init(); 1379 sparse_init(); 1380 zone_sizes_init(); 1381 reserve_crashkernel(); 1382 memblock_dump_all(); 1383 } 1384 1385 #ifdef CONFIG_SPARSEMEM_VMEMMAP 1386 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node, 1387 struct vmem_altmap *altmap) 1388 { 1389 return vmemmap_populate_basepages(start, end, node, NULL); 1390 } 1391 #endif 1392