1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 Regents of the University of California 4 * Copyright (C) 2019 Western Digital Corporation or its affiliates. 5 * Copyright (C) 2020 FORTH-ICS/CARV 6 * Nick Kossifidis <mick@ics.forth.gr> 7 */ 8 9 #include <linux/init.h> 10 #include <linux/mm.h> 11 #include <linux/memblock.h> 12 #include <linux/initrd.h> 13 #include <linux/swap.h> 14 #include <linux/swiotlb.h> 15 #include <linux/sizes.h> 16 #include <linux/of_fdt.h> 17 #include <linux/of_reserved_mem.h> 18 #include <linux/libfdt.h> 19 #include <linux/set_memory.h> 20 #include <linux/dma-map-ops.h> 21 #include <linux/crash_dump.h> 22 #include <linux/hugetlb.h> 23 #ifdef CONFIG_RELOCATABLE 24 #include <linux/elf.h> 25 #endif 26 #include <linux/kfence.h> 27 28 #include <asm/fixmap.h> 29 #include <asm/tlbflush.h> 30 #include <asm/sections.h> 31 #include <asm/soc.h> 32 #include <asm/io.h> 33 #include <asm/ptdump.h> 34 #include <asm/numa.h> 35 36 #include "../kernel/head.h" 37 38 struct kernel_mapping kernel_map __ro_after_init; 39 EXPORT_SYMBOL(kernel_map); 40 #ifdef CONFIG_XIP_KERNEL 41 #define kernel_map (*(struct kernel_mapping *)XIP_FIXUP(&kernel_map)) 42 #endif 43 44 #ifdef CONFIG_64BIT 45 u64 satp_mode __ro_after_init = !IS_ENABLED(CONFIG_XIP_KERNEL) ? SATP_MODE_57 : SATP_MODE_39; 46 #else 47 u64 satp_mode __ro_after_init = SATP_MODE_32; 48 #endif 49 EXPORT_SYMBOL(satp_mode); 50 51 bool pgtable_l4_enabled = IS_ENABLED(CONFIG_64BIT) && !IS_ENABLED(CONFIG_XIP_KERNEL); 52 bool pgtable_l5_enabled = IS_ENABLED(CONFIG_64BIT) && !IS_ENABLED(CONFIG_XIP_KERNEL); 53 EXPORT_SYMBOL(pgtable_l4_enabled); 54 EXPORT_SYMBOL(pgtable_l5_enabled); 55 56 phys_addr_t phys_ram_base __ro_after_init; 57 EXPORT_SYMBOL(phys_ram_base); 58 59 unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)] 60 __page_aligned_bss; 61 EXPORT_SYMBOL(empty_zero_page); 62 63 extern char _start[]; 64 void *_dtb_early_va __initdata; 65 uintptr_t _dtb_early_pa __initdata; 66 67 static phys_addr_t dma32_phys_limit __initdata; 68 69 static void __init zone_sizes_init(void) 70 { 71 unsigned long max_zone_pfns[MAX_NR_ZONES] = { 0, }; 72 73 #ifdef CONFIG_ZONE_DMA32 74 max_zone_pfns[ZONE_DMA32] = PFN_DOWN(dma32_phys_limit); 75 #endif 76 max_zone_pfns[ZONE_NORMAL] = max_low_pfn; 77 78 free_area_init(max_zone_pfns); 79 } 80 81 #if defined(CONFIG_MMU) && defined(CONFIG_DEBUG_VM) 82 83 #define LOG2_SZ_1K ilog2(SZ_1K) 84 #define LOG2_SZ_1M ilog2(SZ_1M) 85 #define LOG2_SZ_1G ilog2(SZ_1G) 86 #define LOG2_SZ_1T ilog2(SZ_1T) 87 88 static inline void print_mlk(char *name, unsigned long b, unsigned long t) 89 { 90 pr_notice("%12s : 0x%08lx - 0x%08lx (%4ld kB)\n", name, b, t, 91 (((t) - (b)) >> LOG2_SZ_1K)); 92 } 93 94 static inline void print_mlm(char *name, unsigned long b, unsigned long t) 95 { 96 pr_notice("%12s : 0x%08lx - 0x%08lx (%4ld MB)\n", name, b, t, 97 (((t) - (b)) >> LOG2_SZ_1M)); 98 } 99 100 static inline void print_mlg(char *name, unsigned long b, unsigned long t) 101 { 102 pr_notice("%12s : 0x%08lx - 0x%08lx (%4ld GB)\n", name, b, t, 103 (((t) - (b)) >> LOG2_SZ_1G)); 104 } 105 106 #ifdef CONFIG_64BIT 107 static inline void print_mlt(char *name, unsigned long b, unsigned long t) 108 { 109 pr_notice("%12s : 0x%08lx - 0x%08lx (%4ld TB)\n", name, b, t, 110 (((t) - (b)) >> LOG2_SZ_1T)); 111 } 112 #else 113 #define print_mlt(n, b, t) do {} while (0) 114 #endif 115 116 static inline void print_ml(char *name, unsigned long b, unsigned long t) 117 { 118 unsigned long diff = t - b; 119 120 if (IS_ENABLED(CONFIG_64BIT) && (diff >> LOG2_SZ_1T) >= 10) 121 print_mlt(name, b, t); 122 else if ((diff >> LOG2_SZ_1G) >= 10) 123 print_mlg(name, b, t); 124 else if ((diff >> LOG2_SZ_1M) >= 10) 125 print_mlm(name, b, t); 126 else 127 print_mlk(name, b, t); 128 } 129 130 static void __init print_vm_layout(void) 131 { 132 pr_notice("Virtual kernel memory layout:\n"); 133 print_ml("fixmap", (unsigned long)FIXADDR_START, 134 (unsigned long)FIXADDR_TOP); 135 print_ml("pci io", (unsigned long)PCI_IO_START, 136 (unsigned long)PCI_IO_END); 137 print_ml("vmemmap", (unsigned long)VMEMMAP_START, 138 (unsigned long)VMEMMAP_END); 139 print_ml("vmalloc", (unsigned long)VMALLOC_START, 140 (unsigned long)VMALLOC_END); 141 #ifdef CONFIG_64BIT 142 print_ml("modules", (unsigned long)MODULES_VADDR, 143 (unsigned long)MODULES_END); 144 #endif 145 print_ml("lowmem", (unsigned long)PAGE_OFFSET, 146 (unsigned long)high_memory); 147 if (IS_ENABLED(CONFIG_64BIT)) { 148 #ifdef CONFIG_KASAN 149 print_ml("kasan", KASAN_SHADOW_START, KASAN_SHADOW_END); 150 #endif 151 152 print_ml("kernel", (unsigned long)kernel_map.virt_addr, 153 (unsigned long)ADDRESS_SPACE_END); 154 } 155 } 156 #else 157 static void print_vm_layout(void) { } 158 #endif /* CONFIG_DEBUG_VM */ 159 160 void __init mem_init(void) 161 { 162 #ifdef CONFIG_FLATMEM 163 BUG_ON(!mem_map); 164 #endif /* CONFIG_FLATMEM */ 165 166 swiotlb_init(max_pfn > PFN_DOWN(dma32_phys_limit), SWIOTLB_VERBOSE); 167 memblock_free_all(); 168 169 print_vm_layout(); 170 } 171 172 /* Limit the memory size via mem. */ 173 static phys_addr_t memory_limit; 174 175 static int __init early_mem(char *p) 176 { 177 u64 size; 178 179 if (!p) 180 return 1; 181 182 size = memparse(p, &p) & PAGE_MASK; 183 memory_limit = min_t(u64, size, memory_limit); 184 185 pr_notice("Memory limited to %lldMB\n", (u64)memory_limit >> 20); 186 187 return 0; 188 } 189 early_param("mem", early_mem); 190 191 static void __init setup_bootmem(void) 192 { 193 phys_addr_t vmlinux_end = __pa_symbol(&_end); 194 phys_addr_t max_mapped_addr; 195 phys_addr_t phys_ram_end, vmlinux_start; 196 197 if (IS_ENABLED(CONFIG_XIP_KERNEL)) 198 vmlinux_start = __pa_symbol(&_sdata); 199 else 200 vmlinux_start = __pa_symbol(&_start); 201 202 memblock_enforce_memory_limit(memory_limit); 203 204 /* 205 * Make sure we align the reservation on PMD_SIZE since we will 206 * map the kernel in the linear mapping as read-only: we do not want 207 * any allocation to happen between _end and the next pmd aligned page. 208 */ 209 if (IS_ENABLED(CONFIG_64BIT) && IS_ENABLED(CONFIG_STRICT_KERNEL_RWX)) 210 vmlinux_end = (vmlinux_end + PMD_SIZE - 1) & PMD_MASK; 211 /* 212 * Reserve from the start of the kernel to the end of the kernel 213 */ 214 memblock_reserve(vmlinux_start, vmlinux_end - vmlinux_start); 215 216 phys_ram_end = memblock_end_of_DRAM(); 217 if (!IS_ENABLED(CONFIG_XIP_KERNEL)) 218 phys_ram_base = memblock_start_of_DRAM(); 219 220 /* 221 * In 64-bit, any use of __va/__pa before this point is wrong as we 222 * did not know the start of DRAM before. 223 */ 224 if (IS_ENABLED(CONFIG_64BIT)) 225 kernel_map.va_pa_offset = PAGE_OFFSET - phys_ram_base; 226 227 /* 228 * memblock allocator is not aware of the fact that last 4K bytes of 229 * the addressable memory can not be mapped because of IS_ERR_VALUE 230 * macro. Make sure that last 4k bytes are not usable by memblock 231 * if end of dram is equal to maximum addressable memory. For 64-bit 232 * kernel, this problem can't happen here as the end of the virtual 233 * address space is occupied by the kernel mapping then this check must 234 * be done as soon as the kernel mapping base address is determined. 235 */ 236 if (!IS_ENABLED(CONFIG_64BIT)) { 237 max_mapped_addr = __pa(~(ulong)0); 238 if (max_mapped_addr == (phys_ram_end - 1)) 239 memblock_set_current_limit(max_mapped_addr - 4096); 240 } 241 242 min_low_pfn = PFN_UP(phys_ram_base); 243 max_low_pfn = max_pfn = PFN_DOWN(phys_ram_end); 244 high_memory = (void *)(__va(PFN_PHYS(max_low_pfn))); 245 246 dma32_phys_limit = min(4UL * SZ_1G, (unsigned long)PFN_PHYS(max_low_pfn)); 247 set_max_mapnr(max_low_pfn - ARCH_PFN_OFFSET); 248 249 reserve_initrd_mem(); 250 251 /* 252 * No allocation should be done before reserving the memory as defined 253 * in the device tree, otherwise the allocation could end up in a 254 * reserved region. 255 */ 256 early_init_fdt_scan_reserved_mem(); 257 258 /* 259 * If DTB is built in, no need to reserve its memblock. 260 * Otherwise, do reserve it but avoid using 261 * early_init_fdt_reserve_self() since __pa() does 262 * not work for DTB pointers that are fixmap addresses 263 */ 264 if (!IS_ENABLED(CONFIG_BUILTIN_DTB)) 265 memblock_reserve(dtb_early_pa, fdt_totalsize(dtb_early_va)); 266 267 dma_contiguous_reserve(dma32_phys_limit); 268 if (IS_ENABLED(CONFIG_64BIT)) 269 hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT); 270 } 271 272 #ifdef CONFIG_MMU 273 struct pt_alloc_ops pt_ops __initdata; 274 275 pgd_t swapper_pg_dir[PTRS_PER_PGD] __page_aligned_bss; 276 pgd_t trampoline_pg_dir[PTRS_PER_PGD] __page_aligned_bss; 277 static pte_t fixmap_pte[PTRS_PER_PTE] __page_aligned_bss; 278 279 pgd_t early_pg_dir[PTRS_PER_PGD] __initdata __aligned(PAGE_SIZE); 280 281 #ifdef CONFIG_XIP_KERNEL 282 #define pt_ops (*(struct pt_alloc_ops *)XIP_FIXUP(&pt_ops)) 283 #define trampoline_pg_dir ((pgd_t *)XIP_FIXUP(trampoline_pg_dir)) 284 #define fixmap_pte ((pte_t *)XIP_FIXUP(fixmap_pte)) 285 #define early_pg_dir ((pgd_t *)XIP_FIXUP(early_pg_dir)) 286 #endif /* CONFIG_XIP_KERNEL */ 287 288 static const pgprot_t protection_map[16] = { 289 [VM_NONE] = PAGE_NONE, 290 [VM_READ] = PAGE_READ, 291 [VM_WRITE] = PAGE_COPY, 292 [VM_WRITE | VM_READ] = PAGE_COPY, 293 [VM_EXEC] = PAGE_EXEC, 294 [VM_EXEC | VM_READ] = PAGE_READ_EXEC, 295 [VM_EXEC | VM_WRITE] = PAGE_COPY_EXEC, 296 [VM_EXEC | VM_WRITE | VM_READ] = PAGE_COPY_EXEC, 297 [VM_SHARED] = PAGE_NONE, 298 [VM_SHARED | VM_READ] = PAGE_READ, 299 [VM_SHARED | VM_WRITE] = PAGE_SHARED, 300 [VM_SHARED | VM_WRITE | VM_READ] = PAGE_SHARED, 301 [VM_SHARED | VM_EXEC] = PAGE_EXEC, 302 [VM_SHARED | VM_EXEC | VM_READ] = PAGE_READ_EXEC, 303 [VM_SHARED | VM_EXEC | VM_WRITE] = PAGE_SHARED_EXEC, 304 [VM_SHARED | VM_EXEC | VM_WRITE | VM_READ] = PAGE_SHARED_EXEC 305 }; 306 DECLARE_VM_GET_PAGE_PROT 307 308 void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot) 309 { 310 unsigned long addr = __fix_to_virt(idx); 311 pte_t *ptep; 312 313 BUG_ON(idx <= FIX_HOLE || idx >= __end_of_fixed_addresses); 314 315 ptep = &fixmap_pte[pte_index(addr)]; 316 317 if (pgprot_val(prot)) 318 set_pte(ptep, pfn_pte(phys >> PAGE_SHIFT, prot)); 319 else 320 pte_clear(&init_mm, addr, ptep); 321 local_flush_tlb_page(addr); 322 } 323 324 static inline pte_t *__init get_pte_virt_early(phys_addr_t pa) 325 { 326 return (pte_t *)((uintptr_t)pa); 327 } 328 329 static inline pte_t *__init get_pte_virt_fixmap(phys_addr_t pa) 330 { 331 clear_fixmap(FIX_PTE); 332 return (pte_t *)set_fixmap_offset(FIX_PTE, pa); 333 } 334 335 static inline pte_t *__init get_pte_virt_late(phys_addr_t pa) 336 { 337 return (pte_t *) __va(pa); 338 } 339 340 static inline phys_addr_t __init alloc_pte_early(uintptr_t va) 341 { 342 /* 343 * We only create PMD or PGD early mappings so we 344 * should never reach here with MMU disabled. 345 */ 346 BUG(); 347 } 348 349 static inline phys_addr_t __init alloc_pte_fixmap(uintptr_t va) 350 { 351 return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE); 352 } 353 354 static phys_addr_t __init alloc_pte_late(uintptr_t va) 355 { 356 unsigned long vaddr; 357 358 vaddr = __get_free_page(GFP_KERNEL); 359 BUG_ON(!vaddr || !pgtable_pte_page_ctor(virt_to_page((void *)vaddr))); 360 361 return __pa(vaddr); 362 } 363 364 static void __init create_pte_mapping(pte_t *ptep, 365 uintptr_t va, phys_addr_t pa, 366 phys_addr_t sz, pgprot_t prot) 367 { 368 uintptr_t pte_idx = pte_index(va); 369 370 BUG_ON(sz != PAGE_SIZE); 371 372 if (pte_none(ptep[pte_idx])) 373 ptep[pte_idx] = pfn_pte(PFN_DOWN(pa), prot); 374 } 375 376 #ifndef __PAGETABLE_PMD_FOLDED 377 378 static pmd_t trampoline_pmd[PTRS_PER_PMD] __page_aligned_bss; 379 static pmd_t fixmap_pmd[PTRS_PER_PMD] __page_aligned_bss; 380 static pmd_t early_pmd[PTRS_PER_PMD] __initdata __aligned(PAGE_SIZE); 381 382 #ifdef CONFIG_XIP_KERNEL 383 #define trampoline_pmd ((pmd_t *)XIP_FIXUP(trampoline_pmd)) 384 #define fixmap_pmd ((pmd_t *)XIP_FIXUP(fixmap_pmd)) 385 #define early_pmd ((pmd_t *)XIP_FIXUP(early_pmd)) 386 #endif /* CONFIG_XIP_KERNEL */ 387 388 static p4d_t trampoline_p4d[PTRS_PER_P4D] __page_aligned_bss; 389 static p4d_t fixmap_p4d[PTRS_PER_P4D] __page_aligned_bss; 390 static p4d_t early_p4d[PTRS_PER_P4D] __initdata __aligned(PAGE_SIZE); 391 392 #ifdef CONFIG_XIP_KERNEL 393 #define trampoline_p4d ((p4d_t *)XIP_FIXUP(trampoline_p4d)) 394 #define fixmap_p4d ((p4d_t *)XIP_FIXUP(fixmap_p4d)) 395 #define early_p4d ((p4d_t *)XIP_FIXUP(early_p4d)) 396 #endif /* CONFIG_XIP_KERNEL */ 397 398 static pud_t trampoline_pud[PTRS_PER_PUD] __page_aligned_bss; 399 static pud_t fixmap_pud[PTRS_PER_PUD] __page_aligned_bss; 400 static pud_t early_pud[PTRS_PER_PUD] __initdata __aligned(PAGE_SIZE); 401 402 #ifdef CONFIG_XIP_KERNEL 403 #define trampoline_pud ((pud_t *)XIP_FIXUP(trampoline_pud)) 404 #define fixmap_pud ((pud_t *)XIP_FIXUP(fixmap_pud)) 405 #define early_pud ((pud_t *)XIP_FIXUP(early_pud)) 406 #endif /* CONFIG_XIP_KERNEL */ 407 408 static pmd_t *__init get_pmd_virt_early(phys_addr_t pa) 409 { 410 /* Before MMU is enabled */ 411 return (pmd_t *)((uintptr_t)pa); 412 } 413 414 static pmd_t *__init get_pmd_virt_fixmap(phys_addr_t pa) 415 { 416 clear_fixmap(FIX_PMD); 417 return (pmd_t *)set_fixmap_offset(FIX_PMD, pa); 418 } 419 420 static pmd_t *__init get_pmd_virt_late(phys_addr_t pa) 421 { 422 return (pmd_t *) __va(pa); 423 } 424 425 static phys_addr_t __init alloc_pmd_early(uintptr_t va) 426 { 427 BUG_ON((va - kernel_map.virt_addr) >> PUD_SHIFT); 428 429 return (uintptr_t)early_pmd; 430 } 431 432 static phys_addr_t __init alloc_pmd_fixmap(uintptr_t va) 433 { 434 return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE); 435 } 436 437 static phys_addr_t __init alloc_pmd_late(uintptr_t va) 438 { 439 unsigned long vaddr; 440 441 vaddr = __get_free_page(GFP_KERNEL); 442 BUG_ON(!vaddr || !pgtable_pmd_page_ctor(virt_to_page((void *)vaddr))); 443 444 return __pa(vaddr); 445 } 446 447 static void __init create_pmd_mapping(pmd_t *pmdp, 448 uintptr_t va, phys_addr_t pa, 449 phys_addr_t sz, pgprot_t prot) 450 { 451 pte_t *ptep; 452 phys_addr_t pte_phys; 453 uintptr_t pmd_idx = pmd_index(va); 454 455 if (sz == PMD_SIZE) { 456 if (pmd_none(pmdp[pmd_idx])) 457 pmdp[pmd_idx] = pfn_pmd(PFN_DOWN(pa), prot); 458 return; 459 } 460 461 if (pmd_none(pmdp[pmd_idx])) { 462 pte_phys = pt_ops.alloc_pte(va); 463 pmdp[pmd_idx] = pfn_pmd(PFN_DOWN(pte_phys), PAGE_TABLE); 464 ptep = pt_ops.get_pte_virt(pte_phys); 465 memset(ptep, 0, PAGE_SIZE); 466 } else { 467 pte_phys = PFN_PHYS(_pmd_pfn(pmdp[pmd_idx])); 468 ptep = pt_ops.get_pte_virt(pte_phys); 469 } 470 471 create_pte_mapping(ptep, va, pa, sz, prot); 472 } 473 474 static pud_t *__init get_pud_virt_early(phys_addr_t pa) 475 { 476 return (pud_t *)((uintptr_t)pa); 477 } 478 479 static pud_t *__init get_pud_virt_fixmap(phys_addr_t pa) 480 { 481 clear_fixmap(FIX_PUD); 482 return (pud_t *)set_fixmap_offset(FIX_PUD, pa); 483 } 484 485 static pud_t *__init get_pud_virt_late(phys_addr_t pa) 486 { 487 return (pud_t *)__va(pa); 488 } 489 490 static phys_addr_t __init alloc_pud_early(uintptr_t va) 491 { 492 /* Only one PUD is available for early mapping */ 493 BUG_ON((va - kernel_map.virt_addr) >> PGDIR_SHIFT); 494 495 return (uintptr_t)early_pud; 496 } 497 498 static phys_addr_t __init alloc_pud_fixmap(uintptr_t va) 499 { 500 return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE); 501 } 502 503 static phys_addr_t alloc_pud_late(uintptr_t va) 504 { 505 unsigned long vaddr; 506 507 vaddr = __get_free_page(GFP_KERNEL); 508 BUG_ON(!vaddr); 509 return __pa(vaddr); 510 } 511 512 static p4d_t *__init get_p4d_virt_early(phys_addr_t pa) 513 { 514 return (p4d_t *)((uintptr_t)pa); 515 } 516 517 static p4d_t *__init get_p4d_virt_fixmap(phys_addr_t pa) 518 { 519 clear_fixmap(FIX_P4D); 520 return (p4d_t *)set_fixmap_offset(FIX_P4D, pa); 521 } 522 523 static p4d_t *__init get_p4d_virt_late(phys_addr_t pa) 524 { 525 return (p4d_t *)__va(pa); 526 } 527 528 static phys_addr_t __init alloc_p4d_early(uintptr_t va) 529 { 530 /* Only one P4D is available for early mapping */ 531 BUG_ON((va - kernel_map.virt_addr) >> PGDIR_SHIFT); 532 533 return (uintptr_t)early_p4d; 534 } 535 536 static phys_addr_t __init alloc_p4d_fixmap(uintptr_t va) 537 { 538 return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE); 539 } 540 541 static phys_addr_t alloc_p4d_late(uintptr_t va) 542 { 543 unsigned long vaddr; 544 545 vaddr = __get_free_page(GFP_KERNEL); 546 BUG_ON(!vaddr); 547 return __pa(vaddr); 548 } 549 550 static void __init create_pud_mapping(pud_t *pudp, 551 uintptr_t va, phys_addr_t pa, 552 phys_addr_t sz, pgprot_t prot) 553 { 554 pmd_t *nextp; 555 phys_addr_t next_phys; 556 uintptr_t pud_index = pud_index(va); 557 558 if (sz == PUD_SIZE) { 559 if (pud_val(pudp[pud_index]) == 0) 560 pudp[pud_index] = pfn_pud(PFN_DOWN(pa), prot); 561 return; 562 } 563 564 if (pud_val(pudp[pud_index]) == 0) { 565 next_phys = pt_ops.alloc_pmd(va); 566 pudp[pud_index] = pfn_pud(PFN_DOWN(next_phys), PAGE_TABLE); 567 nextp = pt_ops.get_pmd_virt(next_phys); 568 memset(nextp, 0, PAGE_SIZE); 569 } else { 570 next_phys = PFN_PHYS(_pud_pfn(pudp[pud_index])); 571 nextp = pt_ops.get_pmd_virt(next_phys); 572 } 573 574 create_pmd_mapping(nextp, va, pa, sz, prot); 575 } 576 577 static void __init create_p4d_mapping(p4d_t *p4dp, 578 uintptr_t va, phys_addr_t pa, 579 phys_addr_t sz, pgprot_t prot) 580 { 581 pud_t *nextp; 582 phys_addr_t next_phys; 583 uintptr_t p4d_index = p4d_index(va); 584 585 if (sz == P4D_SIZE) { 586 if (p4d_val(p4dp[p4d_index]) == 0) 587 p4dp[p4d_index] = pfn_p4d(PFN_DOWN(pa), prot); 588 return; 589 } 590 591 if (p4d_val(p4dp[p4d_index]) == 0) { 592 next_phys = pt_ops.alloc_pud(va); 593 p4dp[p4d_index] = pfn_p4d(PFN_DOWN(next_phys), PAGE_TABLE); 594 nextp = pt_ops.get_pud_virt(next_phys); 595 memset(nextp, 0, PAGE_SIZE); 596 } else { 597 next_phys = PFN_PHYS(_p4d_pfn(p4dp[p4d_index])); 598 nextp = pt_ops.get_pud_virt(next_phys); 599 } 600 601 create_pud_mapping(nextp, va, pa, sz, prot); 602 } 603 604 #define pgd_next_t p4d_t 605 #define alloc_pgd_next(__va) (pgtable_l5_enabled ? \ 606 pt_ops.alloc_p4d(__va) : (pgtable_l4_enabled ? \ 607 pt_ops.alloc_pud(__va) : pt_ops.alloc_pmd(__va))) 608 #define get_pgd_next_virt(__pa) (pgtable_l5_enabled ? \ 609 pt_ops.get_p4d_virt(__pa) : (pgd_next_t *)(pgtable_l4_enabled ? \ 610 pt_ops.get_pud_virt(__pa) : (pud_t *)pt_ops.get_pmd_virt(__pa))) 611 #define create_pgd_next_mapping(__nextp, __va, __pa, __sz, __prot) \ 612 (pgtable_l5_enabled ? \ 613 create_p4d_mapping(__nextp, __va, __pa, __sz, __prot) : \ 614 (pgtable_l4_enabled ? \ 615 create_pud_mapping((pud_t *)__nextp, __va, __pa, __sz, __prot) : \ 616 create_pmd_mapping((pmd_t *)__nextp, __va, __pa, __sz, __prot))) 617 #define fixmap_pgd_next (pgtable_l5_enabled ? \ 618 (uintptr_t)fixmap_p4d : (pgtable_l4_enabled ? \ 619 (uintptr_t)fixmap_pud : (uintptr_t)fixmap_pmd)) 620 #define trampoline_pgd_next (pgtable_l5_enabled ? \ 621 (uintptr_t)trampoline_p4d : (pgtable_l4_enabled ? \ 622 (uintptr_t)trampoline_pud : (uintptr_t)trampoline_pmd)) 623 #else 624 #define pgd_next_t pte_t 625 #define alloc_pgd_next(__va) pt_ops.alloc_pte(__va) 626 #define get_pgd_next_virt(__pa) pt_ops.get_pte_virt(__pa) 627 #define create_pgd_next_mapping(__nextp, __va, __pa, __sz, __prot) \ 628 create_pte_mapping(__nextp, __va, __pa, __sz, __prot) 629 #define fixmap_pgd_next ((uintptr_t)fixmap_pte) 630 #define create_p4d_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0) 631 #define create_pud_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0) 632 #define create_pmd_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0) 633 #endif /* __PAGETABLE_PMD_FOLDED */ 634 635 void __init create_pgd_mapping(pgd_t *pgdp, 636 uintptr_t va, phys_addr_t pa, 637 phys_addr_t sz, pgprot_t prot) 638 { 639 pgd_next_t *nextp; 640 phys_addr_t next_phys; 641 uintptr_t pgd_idx = pgd_index(va); 642 643 if (sz == PGDIR_SIZE) { 644 if (pgd_val(pgdp[pgd_idx]) == 0) 645 pgdp[pgd_idx] = pfn_pgd(PFN_DOWN(pa), prot); 646 return; 647 } 648 649 if (pgd_val(pgdp[pgd_idx]) == 0) { 650 next_phys = alloc_pgd_next(va); 651 pgdp[pgd_idx] = pfn_pgd(PFN_DOWN(next_phys), PAGE_TABLE); 652 nextp = get_pgd_next_virt(next_phys); 653 memset(nextp, 0, PAGE_SIZE); 654 } else { 655 next_phys = PFN_PHYS(_pgd_pfn(pgdp[pgd_idx])); 656 nextp = get_pgd_next_virt(next_phys); 657 } 658 659 create_pgd_next_mapping(nextp, va, pa, sz, prot); 660 } 661 662 static uintptr_t __init best_map_size(phys_addr_t pa, uintptr_t va, 663 phys_addr_t size) 664 { 665 if (!(pa & (PGDIR_SIZE - 1)) && !(va & (PGDIR_SIZE - 1)) && size >= PGDIR_SIZE) 666 return PGDIR_SIZE; 667 668 if (!(pa & (P4D_SIZE - 1)) && !(va & (P4D_SIZE - 1)) && size >= P4D_SIZE) 669 return P4D_SIZE; 670 671 if (!(pa & (PUD_SIZE - 1)) && !(va & (PUD_SIZE - 1)) && size >= PUD_SIZE) 672 return PUD_SIZE; 673 674 if (!(pa & (PMD_SIZE - 1)) && !(va & (PMD_SIZE - 1)) && size >= PMD_SIZE) 675 return PMD_SIZE; 676 677 return PAGE_SIZE; 678 } 679 680 #ifdef CONFIG_XIP_KERNEL 681 #define phys_ram_base (*(phys_addr_t *)XIP_FIXUP(&phys_ram_base)) 682 extern char _xiprom[], _exiprom[], __data_loc; 683 684 /* called from head.S with MMU off */ 685 asmlinkage void __init __copy_data(void) 686 { 687 void *from = (void *)(&__data_loc); 688 void *to = (void *)CONFIG_PHYS_RAM_BASE; 689 size_t sz = (size_t)((uintptr_t)(&_end) - (uintptr_t)(&_sdata)); 690 691 memcpy(to, from, sz); 692 } 693 #endif 694 695 #ifdef CONFIG_STRICT_KERNEL_RWX 696 static __init pgprot_t pgprot_from_va(uintptr_t va) 697 { 698 if (is_va_kernel_text(va)) 699 return PAGE_KERNEL_READ_EXEC; 700 701 /* 702 * In 64-bit kernel, the kernel mapping is outside the linear mapping so 703 * we must protect its linear mapping alias from being executed and 704 * written. 705 * And rodata section is marked readonly in mark_rodata_ro. 706 */ 707 if (IS_ENABLED(CONFIG_64BIT) && is_va_kernel_lm_alias_text(va)) 708 return PAGE_KERNEL_READ; 709 710 return PAGE_KERNEL; 711 } 712 713 void mark_rodata_ro(void) 714 { 715 set_kernel_memory(__start_rodata, _data, set_memory_ro); 716 if (IS_ENABLED(CONFIG_64BIT)) 717 set_kernel_memory(lm_alias(__start_rodata), lm_alias(_data), 718 set_memory_ro); 719 720 debug_checkwx(); 721 } 722 #else 723 static __init pgprot_t pgprot_from_va(uintptr_t va) 724 { 725 if (IS_ENABLED(CONFIG_64BIT) && !is_kernel_mapping(va)) 726 return PAGE_KERNEL; 727 728 return PAGE_KERNEL_EXEC; 729 } 730 #endif /* CONFIG_STRICT_KERNEL_RWX */ 731 732 #if defined(CONFIG_64BIT) && !defined(CONFIG_XIP_KERNEL) 733 u64 __pi_set_satp_mode_from_cmdline(uintptr_t dtb_pa); 734 735 static void __init disable_pgtable_l5(void) 736 { 737 pgtable_l5_enabled = false; 738 kernel_map.page_offset = PAGE_OFFSET_L4; 739 satp_mode = SATP_MODE_48; 740 } 741 742 static void __init disable_pgtable_l4(void) 743 { 744 pgtable_l4_enabled = false; 745 kernel_map.page_offset = PAGE_OFFSET_L3; 746 satp_mode = SATP_MODE_39; 747 } 748 749 static int __init print_no4lvl(char *p) 750 { 751 pr_info("Disabled 4-level and 5-level paging"); 752 return 0; 753 } 754 early_param("no4lvl", print_no4lvl); 755 756 static int __init print_no5lvl(char *p) 757 { 758 pr_info("Disabled 5-level paging"); 759 return 0; 760 } 761 early_param("no5lvl", print_no5lvl); 762 763 /* 764 * There is a simple way to determine if 4-level is supported by the 765 * underlying hardware: establish 1:1 mapping in 4-level page table mode 766 * then read SATP to see if the configuration was taken into account 767 * meaning sv48 is supported. 768 */ 769 static __init void set_satp_mode(uintptr_t dtb_pa) 770 { 771 u64 identity_satp, hw_satp; 772 uintptr_t set_satp_mode_pmd = ((unsigned long)set_satp_mode) & PMD_MASK; 773 u64 satp_mode_cmdline = __pi_set_satp_mode_from_cmdline(dtb_pa); 774 775 if (satp_mode_cmdline == SATP_MODE_57) { 776 disable_pgtable_l5(); 777 } else if (satp_mode_cmdline == SATP_MODE_48) { 778 disable_pgtable_l5(); 779 disable_pgtable_l4(); 780 return; 781 } 782 783 create_p4d_mapping(early_p4d, 784 set_satp_mode_pmd, (uintptr_t)early_pud, 785 P4D_SIZE, PAGE_TABLE); 786 create_pud_mapping(early_pud, 787 set_satp_mode_pmd, (uintptr_t)early_pmd, 788 PUD_SIZE, PAGE_TABLE); 789 /* Handle the case where set_satp_mode straddles 2 PMDs */ 790 create_pmd_mapping(early_pmd, 791 set_satp_mode_pmd, set_satp_mode_pmd, 792 PMD_SIZE, PAGE_KERNEL_EXEC); 793 create_pmd_mapping(early_pmd, 794 set_satp_mode_pmd + PMD_SIZE, 795 set_satp_mode_pmd + PMD_SIZE, 796 PMD_SIZE, PAGE_KERNEL_EXEC); 797 retry: 798 create_pgd_mapping(early_pg_dir, 799 set_satp_mode_pmd, 800 pgtable_l5_enabled ? 801 (uintptr_t)early_p4d : (uintptr_t)early_pud, 802 PGDIR_SIZE, PAGE_TABLE); 803 804 identity_satp = PFN_DOWN((uintptr_t)&early_pg_dir) | satp_mode; 805 806 local_flush_tlb_all(); 807 csr_write(CSR_SATP, identity_satp); 808 hw_satp = csr_swap(CSR_SATP, 0ULL); 809 local_flush_tlb_all(); 810 811 if (hw_satp != identity_satp) { 812 if (pgtable_l5_enabled) { 813 disable_pgtable_l5(); 814 memset(early_pg_dir, 0, PAGE_SIZE); 815 goto retry; 816 } 817 disable_pgtable_l4(); 818 } 819 820 memset(early_pg_dir, 0, PAGE_SIZE); 821 memset(early_p4d, 0, PAGE_SIZE); 822 memset(early_pud, 0, PAGE_SIZE); 823 memset(early_pmd, 0, PAGE_SIZE); 824 } 825 #endif 826 827 /* 828 * setup_vm() is called from head.S with MMU-off. 829 * 830 * Following requirements should be honoured for setup_vm() to work 831 * correctly: 832 * 1) It should use PC-relative addressing for accessing kernel symbols. 833 * To achieve this we always use GCC cmodel=medany. 834 * 2) The compiler instrumentation for FTRACE will not work for setup_vm() 835 * so disable compiler instrumentation when FTRACE is enabled. 836 * 837 * Currently, the above requirements are honoured by using custom CFLAGS 838 * for init.o in mm/Makefile. 839 */ 840 841 #ifndef __riscv_cmodel_medany 842 #error "setup_vm() is called from head.S before relocate so it should not use absolute addressing." 843 #endif 844 845 #ifdef CONFIG_RELOCATABLE 846 extern unsigned long __rela_dyn_start, __rela_dyn_end; 847 848 static void __init relocate_kernel(void) 849 { 850 Elf64_Rela *rela = (Elf64_Rela *)&__rela_dyn_start; 851 /* 852 * This holds the offset between the linked virtual address and the 853 * relocated virtual address. 854 */ 855 uintptr_t reloc_offset = kernel_map.virt_addr - KERNEL_LINK_ADDR; 856 /* 857 * This holds the offset between kernel linked virtual address and 858 * physical address. 859 */ 860 uintptr_t va_kernel_link_pa_offset = KERNEL_LINK_ADDR - kernel_map.phys_addr; 861 862 for ( ; rela < (Elf64_Rela *)&__rela_dyn_end; rela++) { 863 Elf64_Addr addr = (rela->r_offset - va_kernel_link_pa_offset); 864 Elf64_Addr relocated_addr = rela->r_addend; 865 866 if (rela->r_info != R_RISCV_RELATIVE) 867 continue; 868 869 /* 870 * Make sure to not relocate vdso symbols like rt_sigreturn 871 * which are linked from the address 0 in vmlinux since 872 * vdso symbol addresses are actually used as an offset from 873 * mm->context.vdso in VDSO_OFFSET macro. 874 */ 875 if (relocated_addr >= KERNEL_LINK_ADDR) 876 relocated_addr += reloc_offset; 877 878 *(Elf64_Addr *)addr = relocated_addr; 879 } 880 } 881 #endif /* CONFIG_RELOCATABLE */ 882 883 #ifdef CONFIG_XIP_KERNEL 884 static void __init create_kernel_page_table(pgd_t *pgdir, 885 __always_unused bool early) 886 { 887 uintptr_t va, end_va; 888 889 /* Map the flash resident part */ 890 end_va = kernel_map.virt_addr + kernel_map.xiprom_sz; 891 for (va = kernel_map.virt_addr; va < end_va; va += PMD_SIZE) 892 create_pgd_mapping(pgdir, va, 893 kernel_map.xiprom + (va - kernel_map.virt_addr), 894 PMD_SIZE, PAGE_KERNEL_EXEC); 895 896 /* Map the data in RAM */ 897 end_va = kernel_map.virt_addr + XIP_OFFSET + kernel_map.size; 898 for (va = kernel_map.virt_addr + XIP_OFFSET; va < end_va; va += PMD_SIZE) 899 create_pgd_mapping(pgdir, va, 900 kernel_map.phys_addr + (va - (kernel_map.virt_addr + XIP_OFFSET)), 901 PMD_SIZE, PAGE_KERNEL); 902 } 903 #else 904 static void __init create_kernel_page_table(pgd_t *pgdir, bool early) 905 { 906 uintptr_t va, end_va; 907 908 end_va = kernel_map.virt_addr + kernel_map.size; 909 for (va = kernel_map.virt_addr; va < end_va; va += PMD_SIZE) 910 create_pgd_mapping(pgdir, va, 911 kernel_map.phys_addr + (va - kernel_map.virt_addr), 912 PMD_SIZE, 913 early ? 914 PAGE_KERNEL_EXEC : pgprot_from_va(va)); 915 } 916 #endif 917 918 /* 919 * Setup a 4MB mapping that encompasses the device tree: for 64-bit kernel, 920 * this means 2 PMD entries whereas for 32-bit kernel, this is only 1 PGDIR 921 * entry. 922 */ 923 static void __init create_fdt_early_page_table(uintptr_t fix_fdt_va, 924 uintptr_t dtb_pa) 925 { 926 #ifndef CONFIG_BUILTIN_DTB 927 uintptr_t pa = dtb_pa & ~(PMD_SIZE - 1); 928 929 /* Make sure the fdt fixmap address is always aligned on PMD size */ 930 BUILD_BUG_ON(FIX_FDT % (PMD_SIZE / PAGE_SIZE)); 931 932 /* In 32-bit only, the fdt lies in its own PGD */ 933 if (!IS_ENABLED(CONFIG_64BIT)) { 934 create_pgd_mapping(early_pg_dir, fix_fdt_va, 935 pa, MAX_FDT_SIZE, PAGE_KERNEL); 936 } else { 937 create_pmd_mapping(fixmap_pmd, fix_fdt_va, 938 pa, PMD_SIZE, PAGE_KERNEL); 939 create_pmd_mapping(fixmap_pmd, fix_fdt_va + PMD_SIZE, 940 pa + PMD_SIZE, PMD_SIZE, PAGE_KERNEL); 941 } 942 943 dtb_early_va = (void *)fix_fdt_va + (dtb_pa & (PMD_SIZE - 1)); 944 #else 945 /* 946 * For 64-bit kernel, __va can't be used since it would return a linear 947 * mapping address whereas dtb_early_va will be used before 948 * setup_vm_final installs the linear mapping. For 32-bit kernel, as the 949 * kernel is mapped in the linear mapping, that makes no difference. 950 */ 951 dtb_early_va = kernel_mapping_pa_to_va(XIP_FIXUP(dtb_pa)); 952 #endif 953 954 dtb_early_pa = dtb_pa; 955 } 956 957 /* 958 * MMU is not enabled, the page tables are allocated directly using 959 * early_pmd/pud/p4d and the address returned is the physical one. 960 */ 961 static void __init pt_ops_set_early(void) 962 { 963 pt_ops.alloc_pte = alloc_pte_early; 964 pt_ops.get_pte_virt = get_pte_virt_early; 965 #ifndef __PAGETABLE_PMD_FOLDED 966 pt_ops.alloc_pmd = alloc_pmd_early; 967 pt_ops.get_pmd_virt = get_pmd_virt_early; 968 pt_ops.alloc_pud = alloc_pud_early; 969 pt_ops.get_pud_virt = get_pud_virt_early; 970 pt_ops.alloc_p4d = alloc_p4d_early; 971 pt_ops.get_p4d_virt = get_p4d_virt_early; 972 #endif 973 } 974 975 /* 976 * MMU is enabled but page table setup is not complete yet. 977 * fixmap page table alloc functions must be used as a means to temporarily 978 * map the allocated physical pages since the linear mapping does not exist yet. 979 * 980 * Note that this is called with MMU disabled, hence kernel_mapping_pa_to_va, 981 * but it will be used as described above. 982 */ 983 static void __init pt_ops_set_fixmap(void) 984 { 985 pt_ops.alloc_pte = kernel_mapping_pa_to_va(alloc_pte_fixmap); 986 pt_ops.get_pte_virt = kernel_mapping_pa_to_va(get_pte_virt_fixmap); 987 #ifndef __PAGETABLE_PMD_FOLDED 988 pt_ops.alloc_pmd = kernel_mapping_pa_to_va(alloc_pmd_fixmap); 989 pt_ops.get_pmd_virt = kernel_mapping_pa_to_va(get_pmd_virt_fixmap); 990 pt_ops.alloc_pud = kernel_mapping_pa_to_va(alloc_pud_fixmap); 991 pt_ops.get_pud_virt = kernel_mapping_pa_to_va(get_pud_virt_fixmap); 992 pt_ops.alloc_p4d = kernel_mapping_pa_to_va(alloc_p4d_fixmap); 993 pt_ops.get_p4d_virt = kernel_mapping_pa_to_va(get_p4d_virt_fixmap); 994 #endif 995 } 996 997 /* 998 * MMU is enabled and page table setup is complete, so from now, we can use 999 * generic page allocation functions to setup page table. 1000 */ 1001 static void __init pt_ops_set_late(void) 1002 { 1003 pt_ops.alloc_pte = alloc_pte_late; 1004 pt_ops.get_pte_virt = get_pte_virt_late; 1005 #ifndef __PAGETABLE_PMD_FOLDED 1006 pt_ops.alloc_pmd = alloc_pmd_late; 1007 pt_ops.get_pmd_virt = get_pmd_virt_late; 1008 pt_ops.alloc_pud = alloc_pud_late; 1009 pt_ops.get_pud_virt = get_pud_virt_late; 1010 pt_ops.alloc_p4d = alloc_p4d_late; 1011 pt_ops.get_p4d_virt = get_p4d_virt_late; 1012 #endif 1013 } 1014 1015 asmlinkage void __init setup_vm(uintptr_t dtb_pa) 1016 { 1017 pmd_t __maybe_unused fix_bmap_spmd, fix_bmap_epmd; 1018 1019 kernel_map.virt_addr = KERNEL_LINK_ADDR; 1020 kernel_map.page_offset = _AC(CONFIG_PAGE_OFFSET, UL); 1021 1022 #ifdef CONFIG_XIP_KERNEL 1023 kernel_map.xiprom = (uintptr_t)CONFIG_XIP_PHYS_ADDR; 1024 kernel_map.xiprom_sz = (uintptr_t)(&_exiprom) - (uintptr_t)(&_xiprom); 1025 1026 phys_ram_base = CONFIG_PHYS_RAM_BASE; 1027 kernel_map.phys_addr = (uintptr_t)CONFIG_PHYS_RAM_BASE; 1028 kernel_map.size = (uintptr_t)(&_end) - (uintptr_t)(&_sdata); 1029 1030 kernel_map.va_kernel_xip_pa_offset = kernel_map.virt_addr - kernel_map.xiprom; 1031 #else 1032 kernel_map.phys_addr = (uintptr_t)(&_start); 1033 kernel_map.size = (uintptr_t)(&_end) - kernel_map.phys_addr; 1034 #endif 1035 1036 #if defined(CONFIG_64BIT) && !defined(CONFIG_XIP_KERNEL) 1037 set_satp_mode(dtb_pa); 1038 #endif 1039 1040 /* 1041 * In 64-bit, we defer the setup of va_pa_offset to setup_bootmem, 1042 * where we have the system memory layout: this allows us to align 1043 * the physical and virtual mappings and then make use of PUD/P4D/PGD 1044 * for the linear mapping. This is only possible because the kernel 1045 * mapping lies outside the linear mapping. 1046 * In 32-bit however, as the kernel resides in the linear mapping, 1047 * setup_vm_final can not change the mapping established here, 1048 * otherwise the same kernel addresses would get mapped to different 1049 * physical addresses (if the start of dram is different from the 1050 * kernel physical address start). 1051 */ 1052 kernel_map.va_pa_offset = IS_ENABLED(CONFIG_64BIT) ? 1053 0UL : PAGE_OFFSET - kernel_map.phys_addr; 1054 kernel_map.va_kernel_pa_offset = kernel_map.virt_addr - kernel_map.phys_addr; 1055 1056 /* 1057 * The default maximal physical memory size is KERN_VIRT_SIZE for 32-bit 1058 * kernel, whereas for 64-bit kernel, the end of the virtual address 1059 * space is occupied by the modules/BPF/kernel mappings which reduces 1060 * the available size of the linear mapping. 1061 */ 1062 memory_limit = KERN_VIRT_SIZE - (IS_ENABLED(CONFIG_64BIT) ? SZ_4G : 0); 1063 1064 /* Sanity check alignment and size */ 1065 BUG_ON((PAGE_OFFSET % PGDIR_SIZE) != 0); 1066 BUG_ON((kernel_map.phys_addr % PMD_SIZE) != 0); 1067 1068 #ifdef CONFIG_64BIT 1069 /* 1070 * The last 4K bytes of the addressable memory can not be mapped because 1071 * of IS_ERR_VALUE macro. 1072 */ 1073 BUG_ON((kernel_map.virt_addr + kernel_map.size) > ADDRESS_SPACE_END - SZ_4K); 1074 #endif 1075 1076 #ifdef CONFIG_RELOCATABLE 1077 /* 1078 * Early page table uses only one PUD, which makes it possible 1079 * to map PUD_SIZE aligned on PUD_SIZE: if the relocation offset 1080 * makes the kernel cross over a PUD_SIZE boundary, raise a bug 1081 * since a part of the kernel would not get mapped. 1082 */ 1083 BUG_ON(PUD_SIZE - (kernel_map.virt_addr & (PUD_SIZE - 1)) < kernel_map.size); 1084 relocate_kernel(); 1085 #endif 1086 1087 apply_early_boot_alternatives(); 1088 pt_ops_set_early(); 1089 1090 /* Setup early PGD for fixmap */ 1091 create_pgd_mapping(early_pg_dir, FIXADDR_START, 1092 fixmap_pgd_next, PGDIR_SIZE, PAGE_TABLE); 1093 1094 #ifndef __PAGETABLE_PMD_FOLDED 1095 /* Setup fixmap P4D and PUD */ 1096 if (pgtable_l5_enabled) 1097 create_p4d_mapping(fixmap_p4d, FIXADDR_START, 1098 (uintptr_t)fixmap_pud, P4D_SIZE, PAGE_TABLE); 1099 /* Setup fixmap PUD and PMD */ 1100 if (pgtable_l4_enabled) 1101 create_pud_mapping(fixmap_pud, FIXADDR_START, 1102 (uintptr_t)fixmap_pmd, PUD_SIZE, PAGE_TABLE); 1103 create_pmd_mapping(fixmap_pmd, FIXADDR_START, 1104 (uintptr_t)fixmap_pte, PMD_SIZE, PAGE_TABLE); 1105 /* Setup trampoline PGD and PMD */ 1106 create_pgd_mapping(trampoline_pg_dir, kernel_map.virt_addr, 1107 trampoline_pgd_next, PGDIR_SIZE, PAGE_TABLE); 1108 if (pgtable_l5_enabled) 1109 create_p4d_mapping(trampoline_p4d, kernel_map.virt_addr, 1110 (uintptr_t)trampoline_pud, P4D_SIZE, PAGE_TABLE); 1111 if (pgtable_l4_enabled) 1112 create_pud_mapping(trampoline_pud, kernel_map.virt_addr, 1113 (uintptr_t)trampoline_pmd, PUD_SIZE, PAGE_TABLE); 1114 #ifdef CONFIG_XIP_KERNEL 1115 create_pmd_mapping(trampoline_pmd, kernel_map.virt_addr, 1116 kernel_map.xiprom, PMD_SIZE, PAGE_KERNEL_EXEC); 1117 #else 1118 create_pmd_mapping(trampoline_pmd, kernel_map.virt_addr, 1119 kernel_map.phys_addr, PMD_SIZE, PAGE_KERNEL_EXEC); 1120 #endif 1121 #else 1122 /* Setup trampoline PGD */ 1123 create_pgd_mapping(trampoline_pg_dir, kernel_map.virt_addr, 1124 kernel_map.phys_addr, PGDIR_SIZE, PAGE_KERNEL_EXEC); 1125 #endif 1126 1127 /* 1128 * Setup early PGD covering entire kernel which will allow 1129 * us to reach paging_init(). We map all memory banks later 1130 * in setup_vm_final() below. 1131 */ 1132 create_kernel_page_table(early_pg_dir, true); 1133 1134 /* Setup early mapping for FDT early scan */ 1135 create_fdt_early_page_table(__fix_to_virt(FIX_FDT), dtb_pa); 1136 1137 /* 1138 * Bootime fixmap only can handle PMD_SIZE mapping. Thus, boot-ioremap 1139 * range can not span multiple pmds. 1140 */ 1141 BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT) 1142 != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT)); 1143 1144 #ifndef __PAGETABLE_PMD_FOLDED 1145 /* 1146 * Early ioremap fixmap is already created as it lies within first 2MB 1147 * of fixmap region. We always map PMD_SIZE. Thus, both FIX_BTMAP_END 1148 * FIX_BTMAP_BEGIN should lie in the same pmd. Verify that and warn 1149 * the user if not. 1150 */ 1151 fix_bmap_spmd = fixmap_pmd[pmd_index(__fix_to_virt(FIX_BTMAP_BEGIN))]; 1152 fix_bmap_epmd = fixmap_pmd[pmd_index(__fix_to_virt(FIX_BTMAP_END))]; 1153 if (pmd_val(fix_bmap_spmd) != pmd_val(fix_bmap_epmd)) { 1154 WARN_ON(1); 1155 pr_warn("fixmap btmap start [%08lx] != end [%08lx]\n", 1156 pmd_val(fix_bmap_spmd), pmd_val(fix_bmap_epmd)); 1157 pr_warn("fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n", 1158 fix_to_virt(FIX_BTMAP_BEGIN)); 1159 pr_warn("fix_to_virt(FIX_BTMAP_END): %08lx\n", 1160 fix_to_virt(FIX_BTMAP_END)); 1161 1162 pr_warn("FIX_BTMAP_END: %d\n", FIX_BTMAP_END); 1163 pr_warn("FIX_BTMAP_BEGIN: %d\n", FIX_BTMAP_BEGIN); 1164 } 1165 #endif 1166 1167 pt_ops_set_fixmap(); 1168 } 1169 1170 static void __init create_linear_mapping_range(phys_addr_t start, 1171 phys_addr_t end, 1172 uintptr_t fixed_map_size) 1173 { 1174 phys_addr_t pa; 1175 uintptr_t va, map_size; 1176 1177 for (pa = start; pa < end; pa += map_size) { 1178 va = (uintptr_t)__va(pa); 1179 map_size = fixed_map_size ? fixed_map_size : 1180 best_map_size(pa, va, end - pa); 1181 1182 create_pgd_mapping(swapper_pg_dir, va, pa, map_size, 1183 pgprot_from_va(va)); 1184 } 1185 } 1186 1187 static void __init create_linear_mapping_page_table(void) 1188 { 1189 phys_addr_t start, end; 1190 phys_addr_t kfence_pool __maybe_unused; 1191 u64 i; 1192 1193 #ifdef CONFIG_STRICT_KERNEL_RWX 1194 phys_addr_t ktext_start = __pa_symbol(_start); 1195 phys_addr_t ktext_size = __init_data_begin - _start; 1196 phys_addr_t krodata_start = __pa_symbol(__start_rodata); 1197 phys_addr_t krodata_size = _data - __start_rodata; 1198 1199 /* Isolate kernel text and rodata so they don't get mapped with a PUD */ 1200 memblock_mark_nomap(ktext_start, ktext_size); 1201 memblock_mark_nomap(krodata_start, krodata_size); 1202 #endif 1203 1204 #ifdef CONFIG_KFENCE 1205 /* 1206 * kfence pool must be backed by PAGE_SIZE mappings, so allocate it 1207 * before we setup the linear mapping so that we avoid using hugepages 1208 * for this region. 1209 */ 1210 kfence_pool = memblock_phys_alloc(KFENCE_POOL_SIZE, PAGE_SIZE); 1211 BUG_ON(!kfence_pool); 1212 1213 memblock_mark_nomap(kfence_pool, KFENCE_POOL_SIZE); 1214 __kfence_pool = __va(kfence_pool); 1215 #endif 1216 1217 /* Map all memory banks in the linear mapping */ 1218 for_each_mem_range(i, &start, &end) { 1219 if (start >= end) 1220 break; 1221 if (start <= __pa(PAGE_OFFSET) && 1222 __pa(PAGE_OFFSET) < end) 1223 start = __pa(PAGE_OFFSET); 1224 if (end >= __pa(PAGE_OFFSET) + memory_limit) 1225 end = __pa(PAGE_OFFSET) + memory_limit; 1226 1227 create_linear_mapping_range(start, end, 0); 1228 } 1229 1230 #ifdef CONFIG_STRICT_KERNEL_RWX 1231 create_linear_mapping_range(ktext_start, ktext_start + ktext_size, 0); 1232 create_linear_mapping_range(krodata_start, 1233 krodata_start + krodata_size, 0); 1234 1235 memblock_clear_nomap(ktext_start, ktext_size); 1236 memblock_clear_nomap(krodata_start, krodata_size); 1237 #endif 1238 1239 #ifdef CONFIG_KFENCE 1240 create_linear_mapping_range(kfence_pool, 1241 kfence_pool + KFENCE_POOL_SIZE, 1242 PAGE_SIZE); 1243 1244 memblock_clear_nomap(kfence_pool, KFENCE_POOL_SIZE); 1245 #endif 1246 } 1247 1248 static void __init setup_vm_final(void) 1249 { 1250 /* Setup swapper PGD for fixmap */ 1251 #if !defined(CONFIG_64BIT) 1252 /* 1253 * In 32-bit, the device tree lies in a pgd entry, so it must be copied 1254 * directly in swapper_pg_dir in addition to the pgd entry that points 1255 * to fixmap_pte. 1256 */ 1257 unsigned long idx = pgd_index(__fix_to_virt(FIX_FDT)); 1258 1259 set_pgd(&swapper_pg_dir[idx], early_pg_dir[idx]); 1260 #endif 1261 create_pgd_mapping(swapper_pg_dir, FIXADDR_START, 1262 __pa_symbol(fixmap_pgd_next), 1263 PGDIR_SIZE, PAGE_TABLE); 1264 1265 /* Map the linear mapping */ 1266 create_linear_mapping_page_table(); 1267 1268 /* Map the kernel */ 1269 if (IS_ENABLED(CONFIG_64BIT)) 1270 create_kernel_page_table(swapper_pg_dir, false); 1271 1272 #ifdef CONFIG_KASAN 1273 kasan_swapper_init(); 1274 #endif 1275 1276 /* Clear fixmap PTE and PMD mappings */ 1277 clear_fixmap(FIX_PTE); 1278 clear_fixmap(FIX_PMD); 1279 clear_fixmap(FIX_PUD); 1280 clear_fixmap(FIX_P4D); 1281 1282 /* Move to swapper page table */ 1283 csr_write(CSR_SATP, PFN_DOWN(__pa_symbol(swapper_pg_dir)) | satp_mode); 1284 local_flush_tlb_all(); 1285 1286 pt_ops_set_late(); 1287 } 1288 #else 1289 asmlinkage void __init setup_vm(uintptr_t dtb_pa) 1290 { 1291 dtb_early_va = (void *)dtb_pa; 1292 dtb_early_pa = dtb_pa; 1293 } 1294 1295 static inline void setup_vm_final(void) 1296 { 1297 } 1298 #endif /* CONFIG_MMU */ 1299 1300 /* 1301 * reserve_crashkernel() - reserves memory for crash kernel 1302 * 1303 * This function reserves memory area given in "crashkernel=" kernel command 1304 * line parameter. The memory reserved is used by dump capture kernel when 1305 * primary kernel is crashing. 1306 */ 1307 static void __init reserve_crashkernel(void) 1308 { 1309 unsigned long long crash_base = 0; 1310 unsigned long long crash_size = 0; 1311 unsigned long search_start = memblock_start_of_DRAM(); 1312 unsigned long search_end = memblock_end_of_DRAM(); 1313 1314 int ret = 0; 1315 1316 if (!IS_ENABLED(CONFIG_KEXEC_CORE)) 1317 return; 1318 /* 1319 * Don't reserve a region for a crash kernel on a crash kernel 1320 * since it doesn't make much sense and we have limited memory 1321 * resources. 1322 */ 1323 if (is_kdump_kernel()) { 1324 pr_info("crashkernel: ignoring reservation request\n"); 1325 return; 1326 } 1327 1328 ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(), 1329 &crash_size, &crash_base); 1330 if (ret || !crash_size) 1331 return; 1332 1333 crash_size = PAGE_ALIGN(crash_size); 1334 1335 if (crash_base) { 1336 search_start = crash_base; 1337 search_end = crash_base + crash_size; 1338 } 1339 1340 /* 1341 * Current riscv boot protocol requires 2MB alignment for 1342 * RV64 and 4MB alignment for RV32 (hugepage size) 1343 * 1344 * Try to alloc from 32bit addressible physical memory so that 1345 * swiotlb can work on the crash kernel. 1346 */ 1347 crash_base = memblock_phys_alloc_range(crash_size, PMD_SIZE, 1348 search_start, 1349 min(search_end, (unsigned long) SZ_4G)); 1350 if (crash_base == 0) { 1351 /* Try again without restricting region to 32bit addressible memory */ 1352 crash_base = memblock_phys_alloc_range(crash_size, PMD_SIZE, 1353 search_start, search_end); 1354 if (crash_base == 0) { 1355 pr_warn("crashkernel: couldn't allocate %lldKB\n", 1356 crash_size >> 10); 1357 return; 1358 } 1359 } 1360 1361 pr_info("crashkernel: reserved 0x%016llx - 0x%016llx (%lld MB)\n", 1362 crash_base, crash_base + crash_size, crash_size >> 20); 1363 1364 crashk_res.start = crash_base; 1365 crashk_res.end = crash_base + crash_size - 1; 1366 } 1367 1368 void __init paging_init(void) 1369 { 1370 setup_bootmem(); 1371 setup_vm_final(); 1372 1373 /* Depend on that Linear Mapping is ready */ 1374 memblock_allow_resize(); 1375 } 1376 1377 void __init misc_mem_init(void) 1378 { 1379 early_memtest(min_low_pfn << PAGE_SHIFT, max_low_pfn << PAGE_SHIFT); 1380 arch_numa_init(); 1381 sparse_init(); 1382 zone_sizes_init(); 1383 reserve_crashkernel(); 1384 memblock_dump_all(); 1385 } 1386 1387 #ifdef CONFIG_SPARSEMEM_VMEMMAP 1388 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node, 1389 struct vmem_altmap *altmap) 1390 { 1391 return vmemmap_populate_basepages(start, end, node, NULL); 1392 } 1393 #endif 1394 1395 #if defined(CONFIG_MMU) && defined(CONFIG_64BIT) 1396 /* 1397 * Pre-allocates page-table pages for a specific area in the kernel 1398 * page-table. Only the level which needs to be synchronized between 1399 * all page-tables is allocated because the synchronization can be 1400 * expensive. 1401 */ 1402 static void __init preallocate_pgd_pages_range(unsigned long start, unsigned long end, 1403 const char *area) 1404 { 1405 unsigned long addr; 1406 const char *lvl; 1407 1408 for (addr = start; addr < end && addr >= start; addr = ALIGN(addr + 1, PGDIR_SIZE)) { 1409 pgd_t *pgd = pgd_offset_k(addr); 1410 p4d_t *p4d; 1411 pud_t *pud; 1412 pmd_t *pmd; 1413 1414 lvl = "p4d"; 1415 p4d = p4d_alloc(&init_mm, pgd, addr); 1416 if (!p4d) 1417 goto failed; 1418 1419 if (pgtable_l5_enabled) 1420 continue; 1421 1422 lvl = "pud"; 1423 pud = pud_alloc(&init_mm, p4d, addr); 1424 if (!pud) 1425 goto failed; 1426 1427 if (pgtable_l4_enabled) 1428 continue; 1429 1430 lvl = "pmd"; 1431 pmd = pmd_alloc(&init_mm, pud, addr); 1432 if (!pmd) 1433 goto failed; 1434 } 1435 return; 1436 1437 failed: 1438 /* 1439 * The pages have to be there now or they will be missing in 1440 * process page-tables later. 1441 */ 1442 panic("Failed to pre-allocate %s pages for %s area\n", lvl, area); 1443 } 1444 1445 void __init pgtable_cache_init(void) 1446 { 1447 preallocate_pgd_pages_range(VMALLOC_START, VMALLOC_END, "vmalloc"); 1448 if (IS_ENABLED(CONFIG_MODULES)) 1449 preallocate_pgd_pages_range(MODULES_VADDR, MODULES_END, "bpf/modules"); 1450 } 1451 #endif 1452