xref: /openbmc/linux/arch/riscv/mm/init.c (revision 2984f26a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 Regents of the University of California
4  * Copyright (C) 2019 Western Digital Corporation or its affiliates.
5  * Copyright (C) 2020 FORTH-ICS/CARV
6  *  Nick Kossifidis <mick@ics.forth.gr>
7  */
8 
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/memblock.h>
12 #include <linux/initrd.h>
13 #include <linux/swap.h>
14 #include <linux/swiotlb.h>
15 #include <linux/sizes.h>
16 #include <linux/of_fdt.h>
17 #include <linux/of_reserved_mem.h>
18 #include <linux/libfdt.h>
19 #include <linux/set_memory.h>
20 #include <linux/dma-map-ops.h>
21 #include <linux/crash_dump.h>
22 #include <linux/hugetlb.h>
23 #ifdef CONFIG_RELOCATABLE
24 #include <linux/elf.h>
25 #endif
26 #include <linux/kfence.h>
27 
28 #include <asm/fixmap.h>
29 #include <asm/io.h>
30 #include <asm/numa.h>
31 #include <asm/pgtable.h>
32 #include <asm/ptdump.h>
33 #include <asm/sections.h>
34 #include <asm/soc.h>
35 #include <asm/tlbflush.h>
36 
37 #include "../kernel/head.h"
38 
39 struct kernel_mapping kernel_map __ro_after_init;
40 EXPORT_SYMBOL(kernel_map);
41 #ifdef CONFIG_XIP_KERNEL
42 #define kernel_map	(*(struct kernel_mapping *)XIP_FIXUP(&kernel_map))
43 #endif
44 
45 #ifdef CONFIG_64BIT
46 u64 satp_mode __ro_after_init = !IS_ENABLED(CONFIG_XIP_KERNEL) ? SATP_MODE_57 : SATP_MODE_39;
47 #else
48 u64 satp_mode __ro_after_init = SATP_MODE_32;
49 #endif
50 EXPORT_SYMBOL(satp_mode);
51 
52 bool pgtable_l4_enabled = IS_ENABLED(CONFIG_64BIT) && !IS_ENABLED(CONFIG_XIP_KERNEL);
53 bool pgtable_l5_enabled = IS_ENABLED(CONFIG_64BIT) && !IS_ENABLED(CONFIG_XIP_KERNEL);
54 EXPORT_SYMBOL(pgtable_l4_enabled);
55 EXPORT_SYMBOL(pgtable_l5_enabled);
56 
57 phys_addr_t phys_ram_base __ro_after_init;
58 EXPORT_SYMBOL(phys_ram_base);
59 
60 unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]
61 							__page_aligned_bss;
62 EXPORT_SYMBOL(empty_zero_page);
63 
64 extern char _start[];
65 void *_dtb_early_va __initdata;
66 uintptr_t _dtb_early_pa __initdata;
67 
68 static phys_addr_t dma32_phys_limit __initdata;
69 
70 static void __init zone_sizes_init(void)
71 {
72 	unsigned long max_zone_pfns[MAX_NR_ZONES] = { 0, };
73 
74 #ifdef CONFIG_ZONE_DMA32
75 	max_zone_pfns[ZONE_DMA32] = PFN_DOWN(dma32_phys_limit);
76 #endif
77 	max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
78 
79 	free_area_init(max_zone_pfns);
80 }
81 
82 #if defined(CONFIG_MMU) && defined(CONFIG_DEBUG_VM)
83 
84 #define LOG2_SZ_1K  ilog2(SZ_1K)
85 #define LOG2_SZ_1M  ilog2(SZ_1M)
86 #define LOG2_SZ_1G  ilog2(SZ_1G)
87 #define LOG2_SZ_1T  ilog2(SZ_1T)
88 
89 static inline void print_mlk(char *name, unsigned long b, unsigned long t)
90 {
91 	pr_notice("%12s : 0x%08lx - 0x%08lx   (%4ld kB)\n", name, b, t,
92 		  (((t) - (b)) >> LOG2_SZ_1K));
93 }
94 
95 static inline void print_mlm(char *name, unsigned long b, unsigned long t)
96 {
97 	pr_notice("%12s : 0x%08lx - 0x%08lx   (%4ld MB)\n", name, b, t,
98 		  (((t) - (b)) >> LOG2_SZ_1M));
99 }
100 
101 static inline void print_mlg(char *name, unsigned long b, unsigned long t)
102 {
103 	pr_notice("%12s : 0x%08lx - 0x%08lx   (%4ld GB)\n", name, b, t,
104 		   (((t) - (b)) >> LOG2_SZ_1G));
105 }
106 
107 #ifdef CONFIG_64BIT
108 static inline void print_mlt(char *name, unsigned long b, unsigned long t)
109 {
110 	pr_notice("%12s : 0x%08lx - 0x%08lx   (%4ld TB)\n", name, b, t,
111 		   (((t) - (b)) >> LOG2_SZ_1T));
112 }
113 #else
114 #define print_mlt(n, b, t) do {} while (0)
115 #endif
116 
117 static inline void print_ml(char *name, unsigned long b, unsigned long t)
118 {
119 	unsigned long diff = t - b;
120 
121 	if (IS_ENABLED(CONFIG_64BIT) && (diff >> LOG2_SZ_1T) >= 10)
122 		print_mlt(name, b, t);
123 	else if ((diff >> LOG2_SZ_1G) >= 10)
124 		print_mlg(name, b, t);
125 	else if ((diff >> LOG2_SZ_1M) >= 10)
126 		print_mlm(name, b, t);
127 	else
128 		print_mlk(name, b, t);
129 }
130 
131 static void __init print_vm_layout(void)
132 {
133 	pr_notice("Virtual kernel memory layout:\n");
134 	print_ml("fixmap", (unsigned long)FIXADDR_START,
135 		(unsigned long)FIXADDR_TOP);
136 	print_ml("pci io", (unsigned long)PCI_IO_START,
137 		(unsigned long)PCI_IO_END);
138 	print_ml("vmemmap", (unsigned long)VMEMMAP_START,
139 		(unsigned long)VMEMMAP_END);
140 	print_ml("vmalloc", (unsigned long)VMALLOC_START,
141 		(unsigned long)VMALLOC_END);
142 #ifdef CONFIG_64BIT
143 	print_ml("modules", (unsigned long)MODULES_VADDR,
144 		(unsigned long)MODULES_END);
145 #endif
146 	print_ml("lowmem", (unsigned long)PAGE_OFFSET,
147 		(unsigned long)high_memory);
148 	if (IS_ENABLED(CONFIG_64BIT)) {
149 #ifdef CONFIG_KASAN
150 		print_ml("kasan", KASAN_SHADOW_START, KASAN_SHADOW_END);
151 #endif
152 
153 		print_ml("kernel", (unsigned long)kernel_map.virt_addr,
154 			 (unsigned long)ADDRESS_SPACE_END);
155 	}
156 }
157 #else
158 static void print_vm_layout(void) { }
159 #endif /* CONFIG_DEBUG_VM */
160 
161 void __init mem_init(void)
162 {
163 #ifdef CONFIG_FLATMEM
164 	BUG_ON(!mem_map);
165 #endif /* CONFIG_FLATMEM */
166 
167 	swiotlb_init(max_pfn > PFN_DOWN(dma32_phys_limit), SWIOTLB_VERBOSE);
168 	memblock_free_all();
169 
170 	print_vm_layout();
171 }
172 
173 /* Limit the memory size via mem. */
174 static phys_addr_t memory_limit;
175 #ifdef CONFIG_XIP_KERNEL
176 #define memory_limit	(*(phys_addr_t *)XIP_FIXUP(&memory_limit))
177 #endif /* CONFIG_XIP_KERNEL */
178 
179 static int __init early_mem(char *p)
180 {
181 	u64 size;
182 
183 	if (!p)
184 		return 1;
185 
186 	size = memparse(p, &p) & PAGE_MASK;
187 	memory_limit = min_t(u64, size, memory_limit);
188 
189 	pr_notice("Memory limited to %lldMB\n", (u64)memory_limit >> 20);
190 
191 	return 0;
192 }
193 early_param("mem", early_mem);
194 
195 static void __init setup_bootmem(void)
196 {
197 	phys_addr_t vmlinux_end = __pa_symbol(&_end);
198 	phys_addr_t max_mapped_addr;
199 	phys_addr_t phys_ram_end, vmlinux_start;
200 
201 	if (IS_ENABLED(CONFIG_XIP_KERNEL))
202 		vmlinux_start = __pa_symbol(&_sdata);
203 	else
204 		vmlinux_start = __pa_symbol(&_start);
205 
206 	memblock_enforce_memory_limit(memory_limit);
207 
208 	/*
209 	 * Make sure we align the reservation on PMD_SIZE since we will
210 	 * map the kernel in the linear mapping as read-only: we do not want
211 	 * any allocation to happen between _end and the next pmd aligned page.
212 	 */
213 	if (IS_ENABLED(CONFIG_64BIT) && IS_ENABLED(CONFIG_STRICT_KERNEL_RWX))
214 		vmlinux_end = (vmlinux_end + PMD_SIZE - 1) & PMD_MASK;
215 	/*
216 	 * Reserve from the start of the kernel to the end of the kernel
217 	 */
218 	memblock_reserve(vmlinux_start, vmlinux_end - vmlinux_start);
219 
220 	phys_ram_end = memblock_end_of_DRAM();
221 
222 	/*
223 	 * Make sure we align the start of the memory on a PMD boundary so that
224 	 * at worst, we map the linear mapping with PMD mappings.
225 	 */
226 	if (!IS_ENABLED(CONFIG_XIP_KERNEL))
227 		phys_ram_base = memblock_start_of_DRAM() & PMD_MASK;
228 
229 	/*
230 	 * In 64-bit, any use of __va/__pa before this point is wrong as we
231 	 * did not know the start of DRAM before.
232 	 */
233 	if (IS_ENABLED(CONFIG_64BIT))
234 		kernel_map.va_pa_offset = PAGE_OFFSET - phys_ram_base;
235 
236 	/*
237 	 * memblock allocator is not aware of the fact that last 4K bytes of
238 	 * the addressable memory can not be mapped because of IS_ERR_VALUE
239 	 * macro. Make sure that last 4k bytes are not usable by memblock
240 	 * if end of dram is equal to maximum addressable memory.  For 64-bit
241 	 * kernel, this problem can't happen here as the end of the virtual
242 	 * address space is occupied by the kernel mapping then this check must
243 	 * be done as soon as the kernel mapping base address is determined.
244 	 */
245 	if (!IS_ENABLED(CONFIG_64BIT)) {
246 		max_mapped_addr = __pa(~(ulong)0);
247 		if (max_mapped_addr == (phys_ram_end - 1))
248 			memblock_set_current_limit(max_mapped_addr - 4096);
249 	}
250 
251 	min_low_pfn = PFN_UP(phys_ram_base);
252 	max_low_pfn = max_pfn = PFN_DOWN(phys_ram_end);
253 	high_memory = (void *)(__va(PFN_PHYS(max_low_pfn)));
254 
255 	dma32_phys_limit = min(4UL * SZ_1G, (unsigned long)PFN_PHYS(max_low_pfn));
256 	set_max_mapnr(max_low_pfn - ARCH_PFN_OFFSET);
257 
258 	reserve_initrd_mem();
259 
260 	/*
261 	 * No allocation should be done before reserving the memory as defined
262 	 * in the device tree, otherwise the allocation could end up in a
263 	 * reserved region.
264 	 */
265 	early_init_fdt_scan_reserved_mem();
266 
267 	/*
268 	 * If DTB is built in, no need to reserve its memblock.
269 	 * Otherwise, do reserve it but avoid using
270 	 * early_init_fdt_reserve_self() since __pa() does
271 	 * not work for DTB pointers that are fixmap addresses
272 	 */
273 	if (!IS_ENABLED(CONFIG_BUILTIN_DTB))
274 		memblock_reserve(dtb_early_pa, fdt_totalsize(dtb_early_va));
275 
276 	dma_contiguous_reserve(dma32_phys_limit);
277 	if (IS_ENABLED(CONFIG_64BIT))
278 		hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT);
279 }
280 
281 #ifdef CONFIG_MMU
282 struct pt_alloc_ops pt_ops __initdata;
283 
284 pgd_t swapper_pg_dir[PTRS_PER_PGD] __page_aligned_bss;
285 pgd_t trampoline_pg_dir[PTRS_PER_PGD] __page_aligned_bss;
286 static pte_t fixmap_pte[PTRS_PER_PTE] __page_aligned_bss;
287 
288 pgd_t early_pg_dir[PTRS_PER_PGD] __initdata __aligned(PAGE_SIZE);
289 
290 #ifdef CONFIG_XIP_KERNEL
291 #define pt_ops			(*(struct pt_alloc_ops *)XIP_FIXUP(&pt_ops))
292 #define trampoline_pg_dir      ((pgd_t *)XIP_FIXUP(trampoline_pg_dir))
293 #define fixmap_pte             ((pte_t *)XIP_FIXUP(fixmap_pte))
294 #define early_pg_dir           ((pgd_t *)XIP_FIXUP(early_pg_dir))
295 #endif /* CONFIG_XIP_KERNEL */
296 
297 static const pgprot_t protection_map[16] = {
298 	[VM_NONE]					= PAGE_NONE,
299 	[VM_READ]					= PAGE_READ,
300 	[VM_WRITE]					= PAGE_COPY,
301 	[VM_WRITE | VM_READ]				= PAGE_COPY,
302 	[VM_EXEC]					= PAGE_EXEC,
303 	[VM_EXEC | VM_READ]				= PAGE_READ_EXEC,
304 	[VM_EXEC | VM_WRITE]				= PAGE_COPY_EXEC,
305 	[VM_EXEC | VM_WRITE | VM_READ]			= PAGE_COPY_EXEC,
306 	[VM_SHARED]					= PAGE_NONE,
307 	[VM_SHARED | VM_READ]				= PAGE_READ,
308 	[VM_SHARED | VM_WRITE]				= PAGE_SHARED,
309 	[VM_SHARED | VM_WRITE | VM_READ]		= PAGE_SHARED,
310 	[VM_SHARED | VM_EXEC]				= PAGE_EXEC,
311 	[VM_SHARED | VM_EXEC | VM_READ]			= PAGE_READ_EXEC,
312 	[VM_SHARED | VM_EXEC | VM_WRITE]		= PAGE_SHARED_EXEC,
313 	[VM_SHARED | VM_EXEC | VM_WRITE | VM_READ]	= PAGE_SHARED_EXEC
314 };
315 DECLARE_VM_GET_PAGE_PROT
316 
317 void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
318 {
319 	unsigned long addr = __fix_to_virt(idx);
320 	pte_t *ptep;
321 
322 	BUG_ON(idx <= FIX_HOLE || idx >= __end_of_fixed_addresses);
323 
324 	ptep = &fixmap_pte[pte_index(addr)];
325 
326 	if (pgprot_val(prot))
327 		set_pte(ptep, pfn_pte(phys >> PAGE_SHIFT, prot));
328 	else
329 		pte_clear(&init_mm, addr, ptep);
330 	local_flush_tlb_page(addr);
331 }
332 
333 static inline pte_t *__init get_pte_virt_early(phys_addr_t pa)
334 {
335 	return (pte_t *)((uintptr_t)pa);
336 }
337 
338 static inline pte_t *__init get_pte_virt_fixmap(phys_addr_t pa)
339 {
340 	clear_fixmap(FIX_PTE);
341 	return (pte_t *)set_fixmap_offset(FIX_PTE, pa);
342 }
343 
344 static inline pte_t *__init get_pte_virt_late(phys_addr_t pa)
345 {
346 	return (pte_t *) __va(pa);
347 }
348 
349 static inline phys_addr_t __init alloc_pte_early(uintptr_t va)
350 {
351 	/*
352 	 * We only create PMD or PGD early mappings so we
353 	 * should never reach here with MMU disabled.
354 	 */
355 	BUG();
356 }
357 
358 static inline phys_addr_t __init alloc_pte_fixmap(uintptr_t va)
359 {
360 	return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE);
361 }
362 
363 static phys_addr_t __init alloc_pte_late(uintptr_t va)
364 {
365 	struct ptdesc *ptdesc = pagetable_alloc(GFP_KERNEL & ~__GFP_HIGHMEM, 0);
366 
367 	BUG_ON(!ptdesc || !pagetable_pte_ctor(ptdesc));
368 	return __pa((pte_t *)ptdesc_address(ptdesc));
369 }
370 
371 static void __init create_pte_mapping(pte_t *ptep,
372 				      uintptr_t va, phys_addr_t pa,
373 				      phys_addr_t sz, pgprot_t prot)
374 {
375 	uintptr_t pte_idx = pte_index(va);
376 
377 	BUG_ON(sz != PAGE_SIZE);
378 
379 	if (pte_none(ptep[pte_idx]))
380 		ptep[pte_idx] = pfn_pte(PFN_DOWN(pa), prot);
381 }
382 
383 #ifndef __PAGETABLE_PMD_FOLDED
384 
385 static pmd_t trampoline_pmd[PTRS_PER_PMD] __page_aligned_bss;
386 static pmd_t fixmap_pmd[PTRS_PER_PMD] __page_aligned_bss;
387 static pmd_t early_pmd[PTRS_PER_PMD] __initdata __aligned(PAGE_SIZE);
388 
389 #ifdef CONFIG_XIP_KERNEL
390 #define trampoline_pmd ((pmd_t *)XIP_FIXUP(trampoline_pmd))
391 #define fixmap_pmd     ((pmd_t *)XIP_FIXUP(fixmap_pmd))
392 #define early_pmd      ((pmd_t *)XIP_FIXUP(early_pmd))
393 #endif /* CONFIG_XIP_KERNEL */
394 
395 static p4d_t trampoline_p4d[PTRS_PER_P4D] __page_aligned_bss;
396 static p4d_t fixmap_p4d[PTRS_PER_P4D] __page_aligned_bss;
397 static p4d_t early_p4d[PTRS_PER_P4D] __initdata __aligned(PAGE_SIZE);
398 
399 #ifdef CONFIG_XIP_KERNEL
400 #define trampoline_p4d ((p4d_t *)XIP_FIXUP(trampoline_p4d))
401 #define fixmap_p4d     ((p4d_t *)XIP_FIXUP(fixmap_p4d))
402 #define early_p4d      ((p4d_t *)XIP_FIXUP(early_p4d))
403 #endif /* CONFIG_XIP_KERNEL */
404 
405 static pud_t trampoline_pud[PTRS_PER_PUD] __page_aligned_bss;
406 static pud_t fixmap_pud[PTRS_PER_PUD] __page_aligned_bss;
407 static pud_t early_pud[PTRS_PER_PUD] __initdata __aligned(PAGE_SIZE);
408 
409 #ifdef CONFIG_XIP_KERNEL
410 #define trampoline_pud ((pud_t *)XIP_FIXUP(trampoline_pud))
411 #define fixmap_pud     ((pud_t *)XIP_FIXUP(fixmap_pud))
412 #define early_pud      ((pud_t *)XIP_FIXUP(early_pud))
413 #endif /* CONFIG_XIP_KERNEL */
414 
415 static pmd_t *__init get_pmd_virt_early(phys_addr_t pa)
416 {
417 	/* Before MMU is enabled */
418 	return (pmd_t *)((uintptr_t)pa);
419 }
420 
421 static pmd_t *__init get_pmd_virt_fixmap(phys_addr_t pa)
422 {
423 	clear_fixmap(FIX_PMD);
424 	return (pmd_t *)set_fixmap_offset(FIX_PMD, pa);
425 }
426 
427 static pmd_t *__init get_pmd_virt_late(phys_addr_t pa)
428 {
429 	return (pmd_t *) __va(pa);
430 }
431 
432 static phys_addr_t __init alloc_pmd_early(uintptr_t va)
433 {
434 	BUG_ON((va - kernel_map.virt_addr) >> PUD_SHIFT);
435 
436 	return (uintptr_t)early_pmd;
437 }
438 
439 static phys_addr_t __init alloc_pmd_fixmap(uintptr_t va)
440 {
441 	return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE);
442 }
443 
444 static phys_addr_t __init alloc_pmd_late(uintptr_t va)
445 {
446 	struct ptdesc *ptdesc = pagetable_alloc(GFP_KERNEL & ~__GFP_HIGHMEM, 0);
447 
448 	BUG_ON(!ptdesc || !pagetable_pmd_ctor(ptdesc));
449 	return __pa((pmd_t *)ptdesc_address(ptdesc));
450 }
451 
452 static void __init create_pmd_mapping(pmd_t *pmdp,
453 				      uintptr_t va, phys_addr_t pa,
454 				      phys_addr_t sz, pgprot_t prot)
455 {
456 	pte_t *ptep;
457 	phys_addr_t pte_phys;
458 	uintptr_t pmd_idx = pmd_index(va);
459 
460 	if (sz == PMD_SIZE) {
461 		if (pmd_none(pmdp[pmd_idx]))
462 			pmdp[pmd_idx] = pfn_pmd(PFN_DOWN(pa), prot);
463 		return;
464 	}
465 
466 	if (pmd_none(pmdp[pmd_idx])) {
467 		pte_phys = pt_ops.alloc_pte(va);
468 		pmdp[pmd_idx] = pfn_pmd(PFN_DOWN(pte_phys), PAGE_TABLE);
469 		ptep = pt_ops.get_pte_virt(pte_phys);
470 		memset(ptep, 0, PAGE_SIZE);
471 	} else {
472 		pte_phys = PFN_PHYS(_pmd_pfn(pmdp[pmd_idx]));
473 		ptep = pt_ops.get_pte_virt(pte_phys);
474 	}
475 
476 	create_pte_mapping(ptep, va, pa, sz, prot);
477 }
478 
479 static pud_t *__init get_pud_virt_early(phys_addr_t pa)
480 {
481 	return (pud_t *)((uintptr_t)pa);
482 }
483 
484 static pud_t *__init get_pud_virt_fixmap(phys_addr_t pa)
485 {
486 	clear_fixmap(FIX_PUD);
487 	return (pud_t *)set_fixmap_offset(FIX_PUD, pa);
488 }
489 
490 static pud_t *__init get_pud_virt_late(phys_addr_t pa)
491 {
492 	return (pud_t *)__va(pa);
493 }
494 
495 static phys_addr_t __init alloc_pud_early(uintptr_t va)
496 {
497 	/* Only one PUD is available for early mapping */
498 	BUG_ON((va - kernel_map.virt_addr) >> PGDIR_SHIFT);
499 
500 	return (uintptr_t)early_pud;
501 }
502 
503 static phys_addr_t __init alloc_pud_fixmap(uintptr_t va)
504 {
505 	return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE);
506 }
507 
508 static phys_addr_t alloc_pud_late(uintptr_t va)
509 {
510 	unsigned long vaddr;
511 
512 	vaddr = __get_free_page(GFP_KERNEL);
513 	BUG_ON(!vaddr);
514 	return __pa(vaddr);
515 }
516 
517 static p4d_t *__init get_p4d_virt_early(phys_addr_t pa)
518 {
519 	return (p4d_t *)((uintptr_t)pa);
520 }
521 
522 static p4d_t *__init get_p4d_virt_fixmap(phys_addr_t pa)
523 {
524 	clear_fixmap(FIX_P4D);
525 	return (p4d_t *)set_fixmap_offset(FIX_P4D, pa);
526 }
527 
528 static p4d_t *__init get_p4d_virt_late(phys_addr_t pa)
529 {
530 	return (p4d_t *)__va(pa);
531 }
532 
533 static phys_addr_t __init alloc_p4d_early(uintptr_t va)
534 {
535 	/* Only one P4D is available for early mapping */
536 	BUG_ON((va - kernel_map.virt_addr) >> PGDIR_SHIFT);
537 
538 	return (uintptr_t)early_p4d;
539 }
540 
541 static phys_addr_t __init alloc_p4d_fixmap(uintptr_t va)
542 {
543 	return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE);
544 }
545 
546 static phys_addr_t alloc_p4d_late(uintptr_t va)
547 {
548 	unsigned long vaddr;
549 
550 	vaddr = __get_free_page(GFP_KERNEL);
551 	BUG_ON(!vaddr);
552 	return __pa(vaddr);
553 }
554 
555 static void __init create_pud_mapping(pud_t *pudp,
556 				      uintptr_t va, phys_addr_t pa,
557 				      phys_addr_t sz, pgprot_t prot)
558 {
559 	pmd_t *nextp;
560 	phys_addr_t next_phys;
561 	uintptr_t pud_index = pud_index(va);
562 
563 	if (sz == PUD_SIZE) {
564 		if (pud_val(pudp[pud_index]) == 0)
565 			pudp[pud_index] = pfn_pud(PFN_DOWN(pa), prot);
566 		return;
567 	}
568 
569 	if (pud_val(pudp[pud_index]) == 0) {
570 		next_phys = pt_ops.alloc_pmd(va);
571 		pudp[pud_index] = pfn_pud(PFN_DOWN(next_phys), PAGE_TABLE);
572 		nextp = pt_ops.get_pmd_virt(next_phys);
573 		memset(nextp, 0, PAGE_SIZE);
574 	} else {
575 		next_phys = PFN_PHYS(_pud_pfn(pudp[pud_index]));
576 		nextp = pt_ops.get_pmd_virt(next_phys);
577 	}
578 
579 	create_pmd_mapping(nextp, va, pa, sz, prot);
580 }
581 
582 static void __init create_p4d_mapping(p4d_t *p4dp,
583 				      uintptr_t va, phys_addr_t pa,
584 				      phys_addr_t sz, pgprot_t prot)
585 {
586 	pud_t *nextp;
587 	phys_addr_t next_phys;
588 	uintptr_t p4d_index = p4d_index(va);
589 
590 	if (sz == P4D_SIZE) {
591 		if (p4d_val(p4dp[p4d_index]) == 0)
592 			p4dp[p4d_index] = pfn_p4d(PFN_DOWN(pa), prot);
593 		return;
594 	}
595 
596 	if (p4d_val(p4dp[p4d_index]) == 0) {
597 		next_phys = pt_ops.alloc_pud(va);
598 		p4dp[p4d_index] = pfn_p4d(PFN_DOWN(next_phys), PAGE_TABLE);
599 		nextp = pt_ops.get_pud_virt(next_phys);
600 		memset(nextp, 0, PAGE_SIZE);
601 	} else {
602 		next_phys = PFN_PHYS(_p4d_pfn(p4dp[p4d_index]));
603 		nextp = pt_ops.get_pud_virt(next_phys);
604 	}
605 
606 	create_pud_mapping(nextp, va, pa, sz, prot);
607 }
608 
609 #define pgd_next_t		p4d_t
610 #define alloc_pgd_next(__va)	(pgtable_l5_enabled ?			\
611 		pt_ops.alloc_p4d(__va) : (pgtable_l4_enabled ?		\
612 		pt_ops.alloc_pud(__va) : pt_ops.alloc_pmd(__va)))
613 #define get_pgd_next_virt(__pa)	(pgtable_l5_enabled ?			\
614 		pt_ops.get_p4d_virt(__pa) : (pgd_next_t *)(pgtable_l4_enabled ?	\
615 		pt_ops.get_pud_virt(__pa) : (pud_t *)pt_ops.get_pmd_virt(__pa)))
616 #define create_pgd_next_mapping(__nextp, __va, __pa, __sz, __prot)	\
617 				(pgtable_l5_enabled ?			\
618 		create_p4d_mapping(__nextp, __va, __pa, __sz, __prot) : \
619 				(pgtable_l4_enabled ?			\
620 		create_pud_mapping((pud_t *)__nextp, __va, __pa, __sz, __prot) :	\
621 		create_pmd_mapping((pmd_t *)__nextp, __va, __pa, __sz, __prot)))
622 #define fixmap_pgd_next		(pgtable_l5_enabled ?			\
623 		(uintptr_t)fixmap_p4d : (pgtable_l4_enabled ?		\
624 		(uintptr_t)fixmap_pud : (uintptr_t)fixmap_pmd))
625 #define trampoline_pgd_next	(pgtable_l5_enabled ?			\
626 		(uintptr_t)trampoline_p4d : (pgtable_l4_enabled ?	\
627 		(uintptr_t)trampoline_pud : (uintptr_t)trampoline_pmd))
628 #else
629 #define pgd_next_t		pte_t
630 #define alloc_pgd_next(__va)	pt_ops.alloc_pte(__va)
631 #define get_pgd_next_virt(__pa)	pt_ops.get_pte_virt(__pa)
632 #define create_pgd_next_mapping(__nextp, __va, __pa, __sz, __prot)	\
633 	create_pte_mapping(__nextp, __va, __pa, __sz, __prot)
634 #define fixmap_pgd_next		((uintptr_t)fixmap_pte)
635 #define create_p4d_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0)
636 #define create_pud_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0)
637 #define create_pmd_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0)
638 #endif /* __PAGETABLE_PMD_FOLDED */
639 
640 void __init create_pgd_mapping(pgd_t *pgdp,
641 				      uintptr_t va, phys_addr_t pa,
642 				      phys_addr_t sz, pgprot_t prot)
643 {
644 	pgd_next_t *nextp;
645 	phys_addr_t next_phys;
646 	uintptr_t pgd_idx = pgd_index(va);
647 
648 	if (sz == PGDIR_SIZE) {
649 		if (pgd_val(pgdp[pgd_idx]) == 0)
650 			pgdp[pgd_idx] = pfn_pgd(PFN_DOWN(pa), prot);
651 		return;
652 	}
653 
654 	if (pgd_val(pgdp[pgd_idx]) == 0) {
655 		next_phys = alloc_pgd_next(va);
656 		pgdp[pgd_idx] = pfn_pgd(PFN_DOWN(next_phys), PAGE_TABLE);
657 		nextp = get_pgd_next_virt(next_phys);
658 		memset(nextp, 0, PAGE_SIZE);
659 	} else {
660 		next_phys = PFN_PHYS(_pgd_pfn(pgdp[pgd_idx]));
661 		nextp = get_pgd_next_virt(next_phys);
662 	}
663 
664 	create_pgd_next_mapping(nextp, va, pa, sz, prot);
665 }
666 
667 static uintptr_t __init best_map_size(phys_addr_t pa, uintptr_t va,
668 				      phys_addr_t size)
669 {
670 	if (!(pa & (PGDIR_SIZE - 1)) && !(va & (PGDIR_SIZE - 1)) && size >= PGDIR_SIZE)
671 		return PGDIR_SIZE;
672 
673 	if (!(pa & (P4D_SIZE - 1)) && !(va & (P4D_SIZE - 1)) && size >= P4D_SIZE)
674 		return P4D_SIZE;
675 
676 	if (!(pa & (PUD_SIZE - 1)) && !(va & (PUD_SIZE - 1)) && size >= PUD_SIZE)
677 		return PUD_SIZE;
678 
679 	if (!(pa & (PMD_SIZE - 1)) && !(va & (PMD_SIZE - 1)) && size >= PMD_SIZE)
680 		return PMD_SIZE;
681 
682 	return PAGE_SIZE;
683 }
684 
685 #ifdef CONFIG_XIP_KERNEL
686 #define phys_ram_base  (*(phys_addr_t *)XIP_FIXUP(&phys_ram_base))
687 extern char _xiprom[], _exiprom[], __data_loc;
688 
689 /* called from head.S with MMU off */
690 asmlinkage void __init __copy_data(void)
691 {
692 	void *from = (void *)(&__data_loc);
693 	void *to = (void *)CONFIG_PHYS_RAM_BASE;
694 	size_t sz = (size_t)((uintptr_t)(&_end) - (uintptr_t)(&_sdata));
695 
696 	memcpy(to, from, sz);
697 }
698 #endif
699 
700 #ifdef CONFIG_STRICT_KERNEL_RWX
701 static __init pgprot_t pgprot_from_va(uintptr_t va)
702 {
703 	if (is_va_kernel_text(va))
704 		return PAGE_KERNEL_READ_EXEC;
705 
706 	/*
707 	 * In 64-bit kernel, the kernel mapping is outside the linear mapping so
708 	 * we must protect its linear mapping alias from being executed and
709 	 * written.
710 	 * And rodata section is marked readonly in mark_rodata_ro.
711 	 */
712 	if (IS_ENABLED(CONFIG_64BIT) && is_va_kernel_lm_alias_text(va))
713 		return PAGE_KERNEL_READ;
714 
715 	return PAGE_KERNEL;
716 }
717 
718 void mark_rodata_ro(void)
719 {
720 	set_kernel_memory(__start_rodata, _data, set_memory_ro);
721 	if (IS_ENABLED(CONFIG_64BIT))
722 		set_kernel_memory(lm_alias(__start_rodata), lm_alias(_data),
723 				  set_memory_ro);
724 
725 	debug_checkwx();
726 }
727 #else
728 static __init pgprot_t pgprot_from_va(uintptr_t va)
729 {
730 	if (IS_ENABLED(CONFIG_64BIT) && !is_kernel_mapping(va))
731 		return PAGE_KERNEL;
732 
733 	return PAGE_KERNEL_EXEC;
734 }
735 #endif /* CONFIG_STRICT_KERNEL_RWX */
736 
737 #if defined(CONFIG_64BIT) && !defined(CONFIG_XIP_KERNEL)
738 u64 __pi_set_satp_mode_from_cmdline(uintptr_t dtb_pa);
739 
740 static void __init disable_pgtable_l5(void)
741 {
742 	pgtable_l5_enabled = false;
743 	kernel_map.page_offset = PAGE_OFFSET_L4;
744 	satp_mode = SATP_MODE_48;
745 }
746 
747 static void __init disable_pgtable_l4(void)
748 {
749 	pgtable_l4_enabled = false;
750 	kernel_map.page_offset = PAGE_OFFSET_L3;
751 	satp_mode = SATP_MODE_39;
752 }
753 
754 static int __init print_no4lvl(char *p)
755 {
756 	pr_info("Disabled 4-level and 5-level paging");
757 	return 0;
758 }
759 early_param("no4lvl", print_no4lvl);
760 
761 static int __init print_no5lvl(char *p)
762 {
763 	pr_info("Disabled 5-level paging");
764 	return 0;
765 }
766 early_param("no5lvl", print_no5lvl);
767 
768 /*
769  * There is a simple way to determine if 4-level is supported by the
770  * underlying hardware: establish 1:1 mapping in 4-level page table mode
771  * then read SATP to see if the configuration was taken into account
772  * meaning sv48 is supported.
773  */
774 static __init void set_satp_mode(uintptr_t dtb_pa)
775 {
776 	u64 identity_satp, hw_satp;
777 	uintptr_t set_satp_mode_pmd = ((unsigned long)set_satp_mode) & PMD_MASK;
778 	u64 satp_mode_cmdline = __pi_set_satp_mode_from_cmdline(dtb_pa);
779 
780 	if (satp_mode_cmdline == SATP_MODE_57) {
781 		disable_pgtable_l5();
782 	} else if (satp_mode_cmdline == SATP_MODE_48) {
783 		disable_pgtable_l5();
784 		disable_pgtable_l4();
785 		return;
786 	}
787 
788 	create_p4d_mapping(early_p4d,
789 			set_satp_mode_pmd, (uintptr_t)early_pud,
790 			P4D_SIZE, PAGE_TABLE);
791 	create_pud_mapping(early_pud,
792 			   set_satp_mode_pmd, (uintptr_t)early_pmd,
793 			   PUD_SIZE, PAGE_TABLE);
794 	/* Handle the case where set_satp_mode straddles 2 PMDs */
795 	create_pmd_mapping(early_pmd,
796 			   set_satp_mode_pmd, set_satp_mode_pmd,
797 			   PMD_SIZE, PAGE_KERNEL_EXEC);
798 	create_pmd_mapping(early_pmd,
799 			   set_satp_mode_pmd + PMD_SIZE,
800 			   set_satp_mode_pmd + PMD_SIZE,
801 			   PMD_SIZE, PAGE_KERNEL_EXEC);
802 retry:
803 	create_pgd_mapping(early_pg_dir,
804 			   set_satp_mode_pmd,
805 			   pgtable_l5_enabled ?
806 				(uintptr_t)early_p4d : (uintptr_t)early_pud,
807 			   PGDIR_SIZE, PAGE_TABLE);
808 
809 	identity_satp = PFN_DOWN((uintptr_t)&early_pg_dir) | satp_mode;
810 
811 	local_flush_tlb_all();
812 	csr_write(CSR_SATP, identity_satp);
813 	hw_satp = csr_swap(CSR_SATP, 0ULL);
814 	local_flush_tlb_all();
815 
816 	if (hw_satp != identity_satp) {
817 		if (pgtable_l5_enabled) {
818 			disable_pgtable_l5();
819 			memset(early_pg_dir, 0, PAGE_SIZE);
820 			goto retry;
821 		}
822 		disable_pgtable_l4();
823 	}
824 
825 	memset(early_pg_dir, 0, PAGE_SIZE);
826 	memset(early_p4d, 0, PAGE_SIZE);
827 	memset(early_pud, 0, PAGE_SIZE);
828 	memset(early_pmd, 0, PAGE_SIZE);
829 }
830 #endif
831 
832 /*
833  * setup_vm() is called from head.S with MMU-off.
834  *
835  * Following requirements should be honoured for setup_vm() to work
836  * correctly:
837  * 1) It should use PC-relative addressing for accessing kernel symbols.
838  *    To achieve this we always use GCC cmodel=medany.
839  * 2) The compiler instrumentation for FTRACE will not work for setup_vm()
840  *    so disable compiler instrumentation when FTRACE is enabled.
841  *
842  * Currently, the above requirements are honoured by using custom CFLAGS
843  * for init.o in mm/Makefile.
844  */
845 
846 #ifndef __riscv_cmodel_medany
847 #error "setup_vm() is called from head.S before relocate so it should not use absolute addressing."
848 #endif
849 
850 #ifdef CONFIG_RELOCATABLE
851 extern unsigned long __rela_dyn_start, __rela_dyn_end;
852 
853 static void __init relocate_kernel(void)
854 {
855 	Elf64_Rela *rela = (Elf64_Rela *)&__rela_dyn_start;
856 	/*
857 	 * This holds the offset between the linked virtual address and the
858 	 * relocated virtual address.
859 	 */
860 	uintptr_t reloc_offset = kernel_map.virt_addr - KERNEL_LINK_ADDR;
861 	/*
862 	 * This holds the offset between kernel linked virtual address and
863 	 * physical address.
864 	 */
865 	uintptr_t va_kernel_link_pa_offset = KERNEL_LINK_ADDR - kernel_map.phys_addr;
866 
867 	for ( ; rela < (Elf64_Rela *)&__rela_dyn_end; rela++) {
868 		Elf64_Addr addr = (rela->r_offset - va_kernel_link_pa_offset);
869 		Elf64_Addr relocated_addr = rela->r_addend;
870 
871 		if (rela->r_info != R_RISCV_RELATIVE)
872 			continue;
873 
874 		/*
875 		 * Make sure to not relocate vdso symbols like rt_sigreturn
876 		 * which are linked from the address 0 in vmlinux since
877 		 * vdso symbol addresses are actually used as an offset from
878 		 * mm->context.vdso in VDSO_OFFSET macro.
879 		 */
880 		if (relocated_addr >= KERNEL_LINK_ADDR)
881 			relocated_addr += reloc_offset;
882 
883 		*(Elf64_Addr *)addr = relocated_addr;
884 	}
885 }
886 #endif /* CONFIG_RELOCATABLE */
887 
888 #ifdef CONFIG_XIP_KERNEL
889 static void __init create_kernel_page_table(pgd_t *pgdir,
890 					    __always_unused bool early)
891 {
892 	uintptr_t va, end_va;
893 
894 	/* Map the flash resident part */
895 	end_va = kernel_map.virt_addr + kernel_map.xiprom_sz;
896 	for (va = kernel_map.virt_addr; va < end_va; va += PMD_SIZE)
897 		create_pgd_mapping(pgdir, va,
898 				   kernel_map.xiprom + (va - kernel_map.virt_addr),
899 				   PMD_SIZE, PAGE_KERNEL_EXEC);
900 
901 	/* Map the data in RAM */
902 	end_va = kernel_map.virt_addr + XIP_OFFSET + kernel_map.size;
903 	for (va = kernel_map.virt_addr + XIP_OFFSET; va < end_va; va += PMD_SIZE)
904 		create_pgd_mapping(pgdir, va,
905 				   kernel_map.phys_addr + (va - (kernel_map.virt_addr + XIP_OFFSET)),
906 				   PMD_SIZE, PAGE_KERNEL);
907 }
908 #else
909 static void __init create_kernel_page_table(pgd_t *pgdir, bool early)
910 {
911 	uintptr_t va, end_va;
912 
913 	end_va = kernel_map.virt_addr + kernel_map.size;
914 	for (va = kernel_map.virt_addr; va < end_va; va += PMD_SIZE)
915 		create_pgd_mapping(pgdir, va,
916 				   kernel_map.phys_addr + (va - kernel_map.virt_addr),
917 				   PMD_SIZE,
918 				   early ?
919 					PAGE_KERNEL_EXEC : pgprot_from_va(va));
920 }
921 #endif
922 
923 /*
924  * Setup a 4MB mapping that encompasses the device tree: for 64-bit kernel,
925  * this means 2 PMD entries whereas for 32-bit kernel, this is only 1 PGDIR
926  * entry.
927  */
928 static void __init create_fdt_early_page_table(uintptr_t fix_fdt_va,
929 					       uintptr_t dtb_pa)
930 {
931 #ifndef CONFIG_BUILTIN_DTB
932 	uintptr_t pa = dtb_pa & ~(PMD_SIZE - 1);
933 
934 	/* Make sure the fdt fixmap address is always aligned on PMD size */
935 	BUILD_BUG_ON(FIX_FDT % (PMD_SIZE / PAGE_SIZE));
936 
937 	/* In 32-bit only, the fdt lies in its own PGD */
938 	if (!IS_ENABLED(CONFIG_64BIT)) {
939 		create_pgd_mapping(early_pg_dir, fix_fdt_va,
940 				   pa, MAX_FDT_SIZE, PAGE_KERNEL);
941 	} else {
942 		create_pmd_mapping(fixmap_pmd, fix_fdt_va,
943 				   pa, PMD_SIZE, PAGE_KERNEL);
944 		create_pmd_mapping(fixmap_pmd, fix_fdt_va + PMD_SIZE,
945 				   pa + PMD_SIZE, PMD_SIZE, PAGE_KERNEL);
946 	}
947 
948 	dtb_early_va = (void *)fix_fdt_va + (dtb_pa & (PMD_SIZE - 1));
949 #else
950 	/*
951 	 * For 64-bit kernel, __va can't be used since it would return a linear
952 	 * mapping address whereas dtb_early_va will be used before
953 	 * setup_vm_final installs the linear mapping. For 32-bit kernel, as the
954 	 * kernel is mapped in the linear mapping, that makes no difference.
955 	 */
956 	dtb_early_va = kernel_mapping_pa_to_va(dtb_pa);
957 #endif
958 
959 	dtb_early_pa = dtb_pa;
960 }
961 
962 /*
963  * MMU is not enabled, the page tables are allocated directly using
964  * early_pmd/pud/p4d and the address returned is the physical one.
965  */
966 static void __init pt_ops_set_early(void)
967 {
968 	pt_ops.alloc_pte = alloc_pte_early;
969 	pt_ops.get_pte_virt = get_pte_virt_early;
970 #ifndef __PAGETABLE_PMD_FOLDED
971 	pt_ops.alloc_pmd = alloc_pmd_early;
972 	pt_ops.get_pmd_virt = get_pmd_virt_early;
973 	pt_ops.alloc_pud = alloc_pud_early;
974 	pt_ops.get_pud_virt = get_pud_virt_early;
975 	pt_ops.alloc_p4d = alloc_p4d_early;
976 	pt_ops.get_p4d_virt = get_p4d_virt_early;
977 #endif
978 }
979 
980 /*
981  * MMU is enabled but page table setup is not complete yet.
982  * fixmap page table alloc functions must be used as a means to temporarily
983  * map the allocated physical pages since the linear mapping does not exist yet.
984  *
985  * Note that this is called with MMU disabled, hence kernel_mapping_pa_to_va,
986  * but it will be used as described above.
987  */
988 static void __init pt_ops_set_fixmap(void)
989 {
990 	pt_ops.alloc_pte = kernel_mapping_pa_to_va(alloc_pte_fixmap);
991 	pt_ops.get_pte_virt = kernel_mapping_pa_to_va(get_pte_virt_fixmap);
992 #ifndef __PAGETABLE_PMD_FOLDED
993 	pt_ops.alloc_pmd = kernel_mapping_pa_to_va(alloc_pmd_fixmap);
994 	pt_ops.get_pmd_virt = kernel_mapping_pa_to_va(get_pmd_virt_fixmap);
995 	pt_ops.alloc_pud = kernel_mapping_pa_to_va(alloc_pud_fixmap);
996 	pt_ops.get_pud_virt = kernel_mapping_pa_to_va(get_pud_virt_fixmap);
997 	pt_ops.alloc_p4d = kernel_mapping_pa_to_va(alloc_p4d_fixmap);
998 	pt_ops.get_p4d_virt = kernel_mapping_pa_to_va(get_p4d_virt_fixmap);
999 #endif
1000 }
1001 
1002 /*
1003  * MMU is enabled and page table setup is complete, so from now, we can use
1004  * generic page allocation functions to setup page table.
1005  */
1006 static void __init pt_ops_set_late(void)
1007 {
1008 	pt_ops.alloc_pte = alloc_pte_late;
1009 	pt_ops.get_pte_virt = get_pte_virt_late;
1010 #ifndef __PAGETABLE_PMD_FOLDED
1011 	pt_ops.alloc_pmd = alloc_pmd_late;
1012 	pt_ops.get_pmd_virt = get_pmd_virt_late;
1013 	pt_ops.alloc_pud = alloc_pud_late;
1014 	pt_ops.get_pud_virt = get_pud_virt_late;
1015 	pt_ops.alloc_p4d = alloc_p4d_late;
1016 	pt_ops.get_p4d_virt = get_p4d_virt_late;
1017 #endif
1018 }
1019 
1020 #ifdef CONFIG_RANDOMIZE_BASE
1021 extern bool __init __pi_set_nokaslr_from_cmdline(uintptr_t dtb_pa);
1022 extern u64 __init __pi_get_kaslr_seed(uintptr_t dtb_pa);
1023 
1024 static int __init print_nokaslr(char *p)
1025 {
1026 	pr_info("Disabled KASLR");
1027 	return 0;
1028 }
1029 early_param("nokaslr", print_nokaslr);
1030 
1031 unsigned long kaslr_offset(void)
1032 {
1033 	return kernel_map.virt_offset;
1034 }
1035 #endif
1036 
1037 asmlinkage void __init setup_vm(uintptr_t dtb_pa)
1038 {
1039 	pmd_t __maybe_unused fix_bmap_spmd, fix_bmap_epmd;
1040 
1041 #ifdef CONFIG_RANDOMIZE_BASE
1042 	if (!__pi_set_nokaslr_from_cmdline(dtb_pa)) {
1043 		u64 kaslr_seed = __pi_get_kaslr_seed(dtb_pa);
1044 		u32 kernel_size = (uintptr_t)(&_end) - (uintptr_t)(&_start);
1045 		u32 nr_pos;
1046 
1047 		/*
1048 		 * Compute the number of positions available: we are limited
1049 		 * by the early page table that only has one PUD and we must
1050 		 * be aligned on PMD_SIZE.
1051 		 */
1052 		nr_pos = (PUD_SIZE - kernel_size) / PMD_SIZE;
1053 
1054 		kernel_map.virt_offset = (kaslr_seed % nr_pos) * PMD_SIZE;
1055 	}
1056 #endif
1057 
1058 	kernel_map.virt_addr = KERNEL_LINK_ADDR + kernel_map.virt_offset;
1059 
1060 #ifdef CONFIG_XIP_KERNEL
1061 #ifdef CONFIG_64BIT
1062 	kernel_map.page_offset = PAGE_OFFSET_L3;
1063 #else
1064 	kernel_map.page_offset = _AC(CONFIG_PAGE_OFFSET, UL);
1065 #endif
1066 	kernel_map.xiprom = (uintptr_t)CONFIG_XIP_PHYS_ADDR;
1067 	kernel_map.xiprom_sz = (uintptr_t)(&_exiprom) - (uintptr_t)(&_xiprom);
1068 
1069 	phys_ram_base = CONFIG_PHYS_RAM_BASE;
1070 	kernel_map.phys_addr = (uintptr_t)CONFIG_PHYS_RAM_BASE;
1071 	kernel_map.size = (uintptr_t)(&_end) - (uintptr_t)(&_sdata);
1072 
1073 	kernel_map.va_kernel_xip_pa_offset = kernel_map.virt_addr - kernel_map.xiprom;
1074 #else
1075 	kernel_map.page_offset = _AC(CONFIG_PAGE_OFFSET, UL);
1076 	kernel_map.phys_addr = (uintptr_t)(&_start);
1077 	kernel_map.size = (uintptr_t)(&_end) - kernel_map.phys_addr;
1078 #endif
1079 
1080 #if defined(CONFIG_64BIT) && !defined(CONFIG_XIP_KERNEL)
1081 	set_satp_mode(dtb_pa);
1082 #endif
1083 
1084 	/*
1085 	 * In 64-bit, we defer the setup of va_pa_offset to setup_bootmem,
1086 	 * where we have the system memory layout: this allows us to align
1087 	 * the physical and virtual mappings and then make use of PUD/P4D/PGD
1088 	 * for the linear mapping. This is only possible because the kernel
1089 	 * mapping lies outside the linear mapping.
1090 	 * In 32-bit however, as the kernel resides in the linear mapping,
1091 	 * setup_vm_final can not change the mapping established here,
1092 	 * otherwise the same kernel addresses would get mapped to different
1093 	 * physical addresses (if the start of dram is different from the
1094 	 * kernel physical address start).
1095 	 */
1096 	kernel_map.va_pa_offset = IS_ENABLED(CONFIG_64BIT) ?
1097 				0UL : PAGE_OFFSET - kernel_map.phys_addr;
1098 	kernel_map.va_kernel_pa_offset = kernel_map.virt_addr - kernel_map.phys_addr;
1099 
1100 	/*
1101 	 * The default maximal physical memory size is KERN_VIRT_SIZE for 32-bit
1102 	 * kernel, whereas for 64-bit kernel, the end of the virtual address
1103 	 * space is occupied by the modules/BPF/kernel mappings which reduces
1104 	 * the available size of the linear mapping.
1105 	 */
1106 	memory_limit = KERN_VIRT_SIZE - (IS_ENABLED(CONFIG_64BIT) ? SZ_4G : 0);
1107 
1108 	/* Sanity check alignment and size */
1109 	BUG_ON((PAGE_OFFSET % PGDIR_SIZE) != 0);
1110 	BUG_ON((kernel_map.phys_addr % PMD_SIZE) != 0);
1111 
1112 #ifdef CONFIG_64BIT
1113 	/*
1114 	 * The last 4K bytes of the addressable memory can not be mapped because
1115 	 * of IS_ERR_VALUE macro.
1116 	 */
1117 	BUG_ON((kernel_map.virt_addr + kernel_map.size) > ADDRESS_SPACE_END - SZ_4K);
1118 #endif
1119 
1120 #ifdef CONFIG_RELOCATABLE
1121 	/*
1122 	 * Early page table uses only one PUD, which makes it possible
1123 	 * to map PUD_SIZE aligned on PUD_SIZE: if the relocation offset
1124 	 * makes the kernel cross over a PUD_SIZE boundary, raise a bug
1125 	 * since a part of the kernel would not get mapped.
1126 	 */
1127 	BUG_ON(PUD_SIZE - (kernel_map.virt_addr & (PUD_SIZE - 1)) < kernel_map.size);
1128 	relocate_kernel();
1129 #endif
1130 
1131 	apply_early_boot_alternatives();
1132 	pt_ops_set_early();
1133 
1134 	/* Setup early PGD for fixmap */
1135 	create_pgd_mapping(early_pg_dir, FIXADDR_START,
1136 			   fixmap_pgd_next, PGDIR_SIZE, PAGE_TABLE);
1137 
1138 #ifndef __PAGETABLE_PMD_FOLDED
1139 	/* Setup fixmap P4D and PUD */
1140 	if (pgtable_l5_enabled)
1141 		create_p4d_mapping(fixmap_p4d, FIXADDR_START,
1142 				   (uintptr_t)fixmap_pud, P4D_SIZE, PAGE_TABLE);
1143 	/* Setup fixmap PUD and PMD */
1144 	if (pgtable_l4_enabled)
1145 		create_pud_mapping(fixmap_pud, FIXADDR_START,
1146 				   (uintptr_t)fixmap_pmd, PUD_SIZE, PAGE_TABLE);
1147 	create_pmd_mapping(fixmap_pmd, FIXADDR_START,
1148 			   (uintptr_t)fixmap_pte, PMD_SIZE, PAGE_TABLE);
1149 	/* Setup trampoline PGD and PMD */
1150 	create_pgd_mapping(trampoline_pg_dir, kernel_map.virt_addr,
1151 			   trampoline_pgd_next, PGDIR_SIZE, PAGE_TABLE);
1152 	if (pgtable_l5_enabled)
1153 		create_p4d_mapping(trampoline_p4d, kernel_map.virt_addr,
1154 				   (uintptr_t)trampoline_pud, P4D_SIZE, PAGE_TABLE);
1155 	if (pgtable_l4_enabled)
1156 		create_pud_mapping(trampoline_pud, kernel_map.virt_addr,
1157 				   (uintptr_t)trampoline_pmd, PUD_SIZE, PAGE_TABLE);
1158 #ifdef CONFIG_XIP_KERNEL
1159 	create_pmd_mapping(trampoline_pmd, kernel_map.virt_addr,
1160 			   kernel_map.xiprom, PMD_SIZE, PAGE_KERNEL_EXEC);
1161 #else
1162 	create_pmd_mapping(trampoline_pmd, kernel_map.virt_addr,
1163 			   kernel_map.phys_addr, PMD_SIZE, PAGE_KERNEL_EXEC);
1164 #endif
1165 #else
1166 	/* Setup trampoline PGD */
1167 	create_pgd_mapping(trampoline_pg_dir, kernel_map.virt_addr,
1168 			   kernel_map.phys_addr, PGDIR_SIZE, PAGE_KERNEL_EXEC);
1169 #endif
1170 
1171 	/*
1172 	 * Setup early PGD covering entire kernel which will allow
1173 	 * us to reach paging_init(). We map all memory banks later
1174 	 * in setup_vm_final() below.
1175 	 */
1176 	create_kernel_page_table(early_pg_dir, true);
1177 
1178 	/* Setup early mapping for FDT early scan */
1179 	create_fdt_early_page_table(__fix_to_virt(FIX_FDT), dtb_pa);
1180 
1181 	/*
1182 	 * Bootime fixmap only can handle PMD_SIZE mapping. Thus, boot-ioremap
1183 	 * range can not span multiple pmds.
1184 	 */
1185 	BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
1186 		     != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
1187 
1188 #ifndef __PAGETABLE_PMD_FOLDED
1189 	/*
1190 	 * Early ioremap fixmap is already created as it lies within first 2MB
1191 	 * of fixmap region. We always map PMD_SIZE. Thus, both FIX_BTMAP_END
1192 	 * FIX_BTMAP_BEGIN should lie in the same pmd. Verify that and warn
1193 	 * the user if not.
1194 	 */
1195 	fix_bmap_spmd = fixmap_pmd[pmd_index(__fix_to_virt(FIX_BTMAP_BEGIN))];
1196 	fix_bmap_epmd = fixmap_pmd[pmd_index(__fix_to_virt(FIX_BTMAP_END))];
1197 	if (pmd_val(fix_bmap_spmd) != pmd_val(fix_bmap_epmd)) {
1198 		WARN_ON(1);
1199 		pr_warn("fixmap btmap start [%08lx] != end [%08lx]\n",
1200 			pmd_val(fix_bmap_spmd), pmd_val(fix_bmap_epmd));
1201 		pr_warn("fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
1202 			fix_to_virt(FIX_BTMAP_BEGIN));
1203 		pr_warn("fix_to_virt(FIX_BTMAP_END):   %08lx\n",
1204 			fix_to_virt(FIX_BTMAP_END));
1205 
1206 		pr_warn("FIX_BTMAP_END:       %d\n", FIX_BTMAP_END);
1207 		pr_warn("FIX_BTMAP_BEGIN:     %d\n", FIX_BTMAP_BEGIN);
1208 	}
1209 #endif
1210 
1211 	pt_ops_set_fixmap();
1212 }
1213 
1214 static void __init create_linear_mapping_range(phys_addr_t start,
1215 					       phys_addr_t end,
1216 					       uintptr_t fixed_map_size)
1217 {
1218 	phys_addr_t pa;
1219 	uintptr_t va, map_size;
1220 
1221 	for (pa = start; pa < end; pa += map_size) {
1222 		va = (uintptr_t)__va(pa);
1223 		map_size = fixed_map_size ? fixed_map_size :
1224 					    best_map_size(pa, va, end - pa);
1225 
1226 		create_pgd_mapping(swapper_pg_dir, va, pa, map_size,
1227 				   pgprot_from_va(va));
1228 	}
1229 }
1230 
1231 static void __init create_linear_mapping_page_table(void)
1232 {
1233 	phys_addr_t start, end;
1234 	phys_addr_t kfence_pool __maybe_unused;
1235 	u64 i;
1236 
1237 #ifdef CONFIG_STRICT_KERNEL_RWX
1238 	phys_addr_t ktext_start = __pa_symbol(_start);
1239 	phys_addr_t ktext_size = __init_data_begin - _start;
1240 	phys_addr_t krodata_start = __pa_symbol(__start_rodata);
1241 	phys_addr_t krodata_size = _data - __start_rodata;
1242 
1243 	/* Isolate kernel text and rodata so they don't get mapped with a PUD */
1244 	memblock_mark_nomap(ktext_start,  ktext_size);
1245 	memblock_mark_nomap(krodata_start, krodata_size);
1246 #endif
1247 
1248 #ifdef CONFIG_KFENCE
1249 	/*
1250 	 *  kfence pool must be backed by PAGE_SIZE mappings, so allocate it
1251 	 *  before we setup the linear mapping so that we avoid using hugepages
1252 	 *  for this region.
1253 	 */
1254 	kfence_pool = memblock_phys_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
1255 	BUG_ON(!kfence_pool);
1256 
1257 	memblock_mark_nomap(kfence_pool, KFENCE_POOL_SIZE);
1258 	__kfence_pool = __va(kfence_pool);
1259 #endif
1260 
1261 	/* Map all memory banks in the linear mapping */
1262 	for_each_mem_range(i, &start, &end) {
1263 		if (start >= end)
1264 			break;
1265 		if (start <= __pa(PAGE_OFFSET) &&
1266 		    __pa(PAGE_OFFSET) < end)
1267 			start = __pa(PAGE_OFFSET);
1268 		if (end >= __pa(PAGE_OFFSET) + memory_limit)
1269 			end = __pa(PAGE_OFFSET) + memory_limit;
1270 
1271 		create_linear_mapping_range(start, end, 0);
1272 	}
1273 
1274 #ifdef CONFIG_STRICT_KERNEL_RWX
1275 	create_linear_mapping_range(ktext_start, ktext_start + ktext_size, 0);
1276 	create_linear_mapping_range(krodata_start,
1277 				    krodata_start + krodata_size, 0);
1278 
1279 	memblock_clear_nomap(ktext_start,  ktext_size);
1280 	memblock_clear_nomap(krodata_start, krodata_size);
1281 #endif
1282 
1283 #ifdef CONFIG_KFENCE
1284 	create_linear_mapping_range(kfence_pool,
1285 				    kfence_pool + KFENCE_POOL_SIZE,
1286 				    PAGE_SIZE);
1287 
1288 	memblock_clear_nomap(kfence_pool, KFENCE_POOL_SIZE);
1289 #endif
1290 }
1291 
1292 static void __init setup_vm_final(void)
1293 {
1294 	/* Setup swapper PGD for fixmap */
1295 #if !defined(CONFIG_64BIT)
1296 	/*
1297 	 * In 32-bit, the device tree lies in a pgd entry, so it must be copied
1298 	 * directly in swapper_pg_dir in addition to the pgd entry that points
1299 	 * to fixmap_pte.
1300 	 */
1301 	unsigned long idx = pgd_index(__fix_to_virt(FIX_FDT));
1302 
1303 	set_pgd(&swapper_pg_dir[idx], early_pg_dir[idx]);
1304 #endif
1305 	create_pgd_mapping(swapper_pg_dir, FIXADDR_START,
1306 			   __pa_symbol(fixmap_pgd_next),
1307 			   PGDIR_SIZE, PAGE_TABLE);
1308 
1309 	/* Map the linear mapping */
1310 	create_linear_mapping_page_table();
1311 
1312 	/* Map the kernel */
1313 	if (IS_ENABLED(CONFIG_64BIT))
1314 		create_kernel_page_table(swapper_pg_dir, false);
1315 
1316 #ifdef CONFIG_KASAN
1317 	kasan_swapper_init();
1318 #endif
1319 
1320 	/* Clear fixmap PTE and PMD mappings */
1321 	clear_fixmap(FIX_PTE);
1322 	clear_fixmap(FIX_PMD);
1323 	clear_fixmap(FIX_PUD);
1324 	clear_fixmap(FIX_P4D);
1325 
1326 	/* Move to swapper page table */
1327 	csr_write(CSR_SATP, PFN_DOWN(__pa_symbol(swapper_pg_dir)) | satp_mode);
1328 	local_flush_tlb_all();
1329 
1330 	pt_ops_set_late();
1331 }
1332 #else
1333 asmlinkage void __init setup_vm(uintptr_t dtb_pa)
1334 {
1335 	dtb_early_va = (void *)dtb_pa;
1336 	dtb_early_pa = dtb_pa;
1337 }
1338 
1339 static inline void setup_vm_final(void)
1340 {
1341 }
1342 #endif /* CONFIG_MMU */
1343 
1344 /* Reserve 128M low memory by default for swiotlb buffer */
1345 #define DEFAULT_CRASH_KERNEL_LOW_SIZE	(128UL << 20)
1346 
1347 static int __init reserve_crashkernel_low(unsigned long long low_size)
1348 {
1349 	unsigned long long low_base;
1350 
1351 	low_base = memblock_phys_alloc_range(low_size, PMD_SIZE, 0, dma32_phys_limit);
1352 	if (!low_base) {
1353 		pr_err("cannot allocate crashkernel low memory (size:0x%llx).\n", low_size);
1354 		return -ENOMEM;
1355 	}
1356 
1357 	pr_info("crashkernel low memory reserved: 0x%016llx - 0x%016llx (%lld MB)\n",
1358 		low_base, low_base + low_size, low_size >> 20);
1359 
1360 	crashk_low_res.start = low_base;
1361 	crashk_low_res.end = low_base + low_size - 1;
1362 
1363 	return 0;
1364 }
1365 
1366 /*
1367  * reserve_crashkernel() - reserves memory for crash kernel
1368  *
1369  * This function reserves memory area given in "crashkernel=" kernel command
1370  * line parameter. The memory reserved is used by dump capture kernel when
1371  * primary kernel is crashing.
1372  */
1373 static void __init reserve_crashkernel(void)
1374 {
1375 	unsigned long long crash_base = 0;
1376 	unsigned long long crash_size = 0;
1377 	unsigned long long crash_low_size = 0;
1378 	unsigned long search_start = memblock_start_of_DRAM();
1379 	unsigned long search_end = (unsigned long)dma32_phys_limit;
1380 	char *cmdline = boot_command_line;
1381 	bool fixed_base = false;
1382 	bool high = false;
1383 
1384 	int ret = 0;
1385 
1386 	if (!IS_ENABLED(CONFIG_KEXEC_CORE))
1387 		return;
1388 	/*
1389 	 * Don't reserve a region for a crash kernel on a crash kernel
1390 	 * since it doesn't make much sense and we have limited memory
1391 	 * resources.
1392 	 */
1393 	if (is_kdump_kernel()) {
1394 		pr_info("crashkernel: ignoring reservation request\n");
1395 		return;
1396 	}
1397 
1398 	ret = parse_crashkernel(cmdline, memblock_phys_mem_size(),
1399 				&crash_size, &crash_base);
1400 	if (ret == -ENOENT) {
1401 		/* Fallback to crashkernel=X,[high,low] */
1402 		ret = parse_crashkernel_high(cmdline, 0, &crash_size, &crash_base);
1403 		if (ret || !crash_size)
1404 			return;
1405 
1406 		/*
1407 		 * crashkernel=Y,low is valid only when crashkernel=X,high
1408 		 * is passed.
1409 		 */
1410 		ret = parse_crashkernel_low(cmdline, 0, &crash_low_size, &crash_base);
1411 		if (ret == -ENOENT)
1412 			crash_low_size = DEFAULT_CRASH_KERNEL_LOW_SIZE;
1413 		else if (ret)
1414 			return;
1415 
1416 		search_start = (unsigned long)dma32_phys_limit;
1417 		search_end = memblock_end_of_DRAM();
1418 		high = true;
1419 	} else if (ret || !crash_size) {
1420 		/* Invalid argument value specified */
1421 		return;
1422 	}
1423 
1424 	crash_size = PAGE_ALIGN(crash_size);
1425 
1426 	if (crash_base) {
1427 		fixed_base = true;
1428 		search_start = crash_base;
1429 		search_end = crash_base + crash_size;
1430 	}
1431 
1432 	/*
1433 	 * Current riscv boot protocol requires 2MB alignment for
1434 	 * RV64 and 4MB alignment for RV32 (hugepage size)
1435 	 *
1436 	 * Try to alloc from 32bit addressible physical memory so that
1437 	 * swiotlb can work on the crash kernel.
1438 	 */
1439 	crash_base = memblock_phys_alloc_range(crash_size, PMD_SIZE,
1440 					       search_start, search_end);
1441 	if (crash_base == 0) {
1442 		/*
1443 		 * For crashkernel=size[KMG]@offset[KMG], print out failure
1444 		 * message if can't reserve the specified region.
1445 		 */
1446 		if (fixed_base) {
1447 			pr_warn("crashkernel: allocating failed with given size@offset\n");
1448 			return;
1449 		}
1450 
1451 		if (high) {
1452 			/*
1453 			 * For crashkernel=size[KMG],high, if the first attempt was
1454 			 * for high memory, fall back to low memory.
1455 			 */
1456 			search_start = memblock_start_of_DRAM();
1457 			search_end = (unsigned long)dma32_phys_limit;
1458 		} else {
1459 			/*
1460 			 * For crashkernel=size[KMG], if the first attempt was for
1461 			 * low memory, fall back to high memory, the minimum required
1462 			 * low memory will be reserved later.
1463 			 */
1464 			search_start = (unsigned long)dma32_phys_limit;
1465 			search_end = memblock_end_of_DRAM();
1466 			crash_low_size = DEFAULT_CRASH_KERNEL_LOW_SIZE;
1467 		}
1468 
1469 		crash_base = memblock_phys_alloc_range(crash_size, PMD_SIZE,
1470 						       search_start, search_end);
1471 		if (crash_base == 0) {
1472 			pr_warn("crashkernel: couldn't allocate %lldKB\n",
1473 				crash_size >> 10);
1474 			return;
1475 		}
1476 	}
1477 
1478 	if ((crash_base >= dma32_phys_limit) && crash_low_size &&
1479 	     reserve_crashkernel_low(crash_low_size)) {
1480 		memblock_phys_free(crash_base, crash_size);
1481 		return;
1482 	}
1483 
1484 	pr_info("crashkernel: reserved 0x%016llx - 0x%016llx (%lld MB)\n",
1485 		crash_base, crash_base + crash_size, crash_size >> 20);
1486 
1487 	crashk_res.start = crash_base;
1488 	crashk_res.end = crash_base + crash_size - 1;
1489 }
1490 
1491 void __init paging_init(void)
1492 {
1493 	setup_bootmem();
1494 	setup_vm_final();
1495 
1496 	/* Depend on that Linear Mapping is ready */
1497 	memblock_allow_resize();
1498 }
1499 
1500 void __init misc_mem_init(void)
1501 {
1502 	early_memtest(min_low_pfn << PAGE_SHIFT, max_low_pfn << PAGE_SHIFT);
1503 	arch_numa_init();
1504 	sparse_init();
1505 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1506 	/* The entire VMEMMAP region has been populated. Flush TLB for this region */
1507 	local_flush_tlb_kernel_range(VMEMMAP_START, VMEMMAP_END);
1508 #endif
1509 	zone_sizes_init();
1510 	reserve_crashkernel();
1511 	memblock_dump_all();
1512 }
1513 
1514 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1515 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1516 			       struct vmem_altmap *altmap)
1517 {
1518 	return vmemmap_populate_basepages(start, end, node, NULL);
1519 }
1520 #endif
1521 
1522 #if defined(CONFIG_MMU) && defined(CONFIG_64BIT)
1523 /*
1524  * Pre-allocates page-table pages for a specific area in the kernel
1525  * page-table. Only the level which needs to be synchronized between
1526  * all page-tables is allocated because the synchronization can be
1527  * expensive.
1528  */
1529 static void __init preallocate_pgd_pages_range(unsigned long start, unsigned long end,
1530 					       const char *area)
1531 {
1532 	unsigned long addr;
1533 	const char *lvl;
1534 
1535 	for (addr = start; addr < end && addr >= start; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
1536 		pgd_t *pgd = pgd_offset_k(addr);
1537 		p4d_t *p4d;
1538 		pud_t *pud;
1539 		pmd_t *pmd;
1540 
1541 		lvl = "p4d";
1542 		p4d = p4d_alloc(&init_mm, pgd, addr);
1543 		if (!p4d)
1544 			goto failed;
1545 
1546 		if (pgtable_l5_enabled)
1547 			continue;
1548 
1549 		lvl = "pud";
1550 		pud = pud_alloc(&init_mm, p4d, addr);
1551 		if (!pud)
1552 			goto failed;
1553 
1554 		if (pgtable_l4_enabled)
1555 			continue;
1556 
1557 		lvl = "pmd";
1558 		pmd = pmd_alloc(&init_mm, pud, addr);
1559 		if (!pmd)
1560 			goto failed;
1561 	}
1562 	return;
1563 
1564 failed:
1565 	/*
1566 	 * The pages have to be there now or they will be missing in
1567 	 * process page-tables later.
1568 	 */
1569 	panic("Failed to pre-allocate %s pages for %s area\n", lvl, area);
1570 }
1571 
1572 void __init pgtable_cache_init(void)
1573 {
1574 	preallocate_pgd_pages_range(VMALLOC_START, VMALLOC_END, "vmalloc");
1575 	if (IS_ENABLED(CONFIG_MODULES))
1576 		preallocate_pgd_pages_range(MODULES_VADDR, MODULES_END, "bpf/modules");
1577 }
1578 #endif
1579