xref: /openbmc/linux/arch/riscv/kvm/vcpu_insn.c (revision 66c98360)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2019 Western Digital Corporation or its affiliates.
4  * Copyright (c) 2022 Ventana Micro Systems Inc.
5  */
6 
7 #include <linux/bitops.h>
8 #include <linux/kvm_host.h>
9 
10 #define INSN_OPCODE_MASK	0x007c
11 #define INSN_OPCODE_SHIFT	2
12 #define INSN_OPCODE_SYSTEM	28
13 
14 #define INSN_MASK_WFI		0xffffffff
15 #define INSN_MATCH_WFI		0x10500073
16 
17 #define INSN_MATCH_CSRRW	0x1073
18 #define INSN_MASK_CSRRW		0x707f
19 #define INSN_MATCH_CSRRS	0x2073
20 #define INSN_MASK_CSRRS		0x707f
21 #define INSN_MATCH_CSRRC	0x3073
22 #define INSN_MASK_CSRRC		0x707f
23 #define INSN_MATCH_CSRRWI	0x5073
24 #define INSN_MASK_CSRRWI	0x707f
25 #define INSN_MATCH_CSRRSI	0x6073
26 #define INSN_MASK_CSRRSI	0x707f
27 #define INSN_MATCH_CSRRCI	0x7073
28 #define INSN_MASK_CSRRCI	0x707f
29 
30 #define INSN_MATCH_LB		0x3
31 #define INSN_MASK_LB		0x707f
32 #define INSN_MATCH_LH		0x1003
33 #define INSN_MASK_LH		0x707f
34 #define INSN_MATCH_LW		0x2003
35 #define INSN_MASK_LW		0x707f
36 #define INSN_MATCH_LD		0x3003
37 #define INSN_MASK_LD		0x707f
38 #define INSN_MATCH_LBU		0x4003
39 #define INSN_MASK_LBU		0x707f
40 #define INSN_MATCH_LHU		0x5003
41 #define INSN_MASK_LHU		0x707f
42 #define INSN_MATCH_LWU		0x6003
43 #define INSN_MASK_LWU		0x707f
44 #define INSN_MATCH_SB		0x23
45 #define INSN_MASK_SB		0x707f
46 #define INSN_MATCH_SH		0x1023
47 #define INSN_MASK_SH		0x707f
48 #define INSN_MATCH_SW		0x2023
49 #define INSN_MASK_SW		0x707f
50 #define INSN_MATCH_SD		0x3023
51 #define INSN_MASK_SD		0x707f
52 
53 #define INSN_MATCH_C_LD		0x6000
54 #define INSN_MASK_C_LD		0xe003
55 #define INSN_MATCH_C_SD		0xe000
56 #define INSN_MASK_C_SD		0xe003
57 #define INSN_MATCH_C_LW		0x4000
58 #define INSN_MASK_C_LW		0xe003
59 #define INSN_MATCH_C_SW		0xc000
60 #define INSN_MASK_C_SW		0xe003
61 #define INSN_MATCH_C_LDSP	0x6002
62 #define INSN_MASK_C_LDSP	0xe003
63 #define INSN_MATCH_C_SDSP	0xe002
64 #define INSN_MASK_C_SDSP	0xe003
65 #define INSN_MATCH_C_LWSP	0x4002
66 #define INSN_MASK_C_LWSP	0xe003
67 #define INSN_MATCH_C_SWSP	0xc002
68 #define INSN_MASK_C_SWSP	0xe003
69 
70 #define INSN_16BIT_MASK		0x3
71 
72 #define INSN_IS_16BIT(insn)	(((insn) & INSN_16BIT_MASK) != INSN_16BIT_MASK)
73 
74 #define INSN_LEN(insn)		(INSN_IS_16BIT(insn) ? 2 : 4)
75 
76 #ifdef CONFIG_64BIT
77 #define LOG_REGBYTES		3
78 #else
79 #define LOG_REGBYTES		2
80 #endif
81 #define REGBYTES		(1 << LOG_REGBYTES)
82 
83 #define SH_RD			7
84 #define SH_RS1			15
85 #define SH_RS2			20
86 #define SH_RS2C			2
87 #define MASK_RX			0x1f
88 
89 #define RV_X(x, s, n)		(((x) >> (s)) & ((1 << (n)) - 1))
90 #define RVC_LW_IMM(x)		((RV_X(x, 6, 1) << 2) | \
91 				 (RV_X(x, 10, 3) << 3) | \
92 				 (RV_X(x, 5, 1) << 6))
93 #define RVC_LD_IMM(x)		((RV_X(x, 10, 3) << 3) | \
94 				 (RV_X(x, 5, 2) << 6))
95 #define RVC_LWSP_IMM(x)		((RV_X(x, 4, 3) << 2) | \
96 				 (RV_X(x, 12, 1) << 5) | \
97 				 (RV_X(x, 2, 2) << 6))
98 #define RVC_LDSP_IMM(x)		((RV_X(x, 5, 2) << 3) | \
99 				 (RV_X(x, 12, 1) << 5) | \
100 				 (RV_X(x, 2, 3) << 6))
101 #define RVC_SWSP_IMM(x)		((RV_X(x, 9, 4) << 2) | \
102 				 (RV_X(x, 7, 2) << 6))
103 #define RVC_SDSP_IMM(x)		((RV_X(x, 10, 3) << 3) | \
104 				 (RV_X(x, 7, 3) << 6))
105 #define RVC_RS1S(insn)		(8 + RV_X(insn, SH_RD, 3))
106 #define RVC_RS2S(insn)		(8 + RV_X(insn, SH_RS2C, 3))
107 #define RVC_RS2(insn)		RV_X(insn, SH_RS2C, 5)
108 
109 #define SHIFT_RIGHT(x, y)		\
110 	((y) < 0 ? ((x) << -(y)) : ((x) >> (y)))
111 
112 #define REG_MASK			\
113 	((1 << (5 + LOG_REGBYTES)) - (1 << LOG_REGBYTES))
114 
115 #define REG_OFFSET(insn, pos)		\
116 	(SHIFT_RIGHT((insn), (pos) - LOG_REGBYTES) & REG_MASK)
117 
118 #define REG_PTR(insn, pos, regs)	\
119 	((ulong *)((ulong)(regs) + REG_OFFSET(insn, pos)))
120 
121 #define GET_FUNCT3(insn)	(((insn) >> 12) & 7)
122 
123 #define GET_RS1(insn, regs)	(*REG_PTR(insn, SH_RS1, regs))
124 #define GET_RS2(insn, regs)	(*REG_PTR(insn, SH_RS2, regs))
125 #define GET_RS1S(insn, regs)	(*REG_PTR(RVC_RS1S(insn), 0, regs))
126 #define GET_RS2S(insn, regs)	(*REG_PTR(RVC_RS2S(insn), 0, regs))
127 #define GET_RS2C(insn, regs)	(*REG_PTR(insn, SH_RS2C, regs))
128 #define GET_SP(regs)		(*REG_PTR(2, 0, regs))
129 #define SET_RD(insn, regs, val)	(*REG_PTR(insn, SH_RD, regs) = (val))
130 #define IMM_I(insn)		((s32)(insn) >> 20)
131 #define IMM_S(insn)		(((s32)(insn) >> 25 << 5) | \
132 				 (s32)(((insn) >> 7) & 0x1f))
133 
134 struct insn_func {
135 	unsigned long mask;
136 	unsigned long match;
137 	/*
138 	 * Possible return values are as follows:
139 	 * 1) Returns < 0 for error case
140 	 * 2) Returns 0 for exit to user-space
141 	 * 3) Returns 1 to continue with next sepc
142 	 * 4) Returns 2 to continue with same sepc
143 	 * 5) Returns 3 to inject illegal instruction trap and continue
144 	 * 6) Returns 4 to inject virtual instruction trap and continue
145 	 *
146 	 * Use enum kvm_insn_return for return values
147 	 */
148 	int (*func)(struct kvm_vcpu *vcpu, struct kvm_run *run, ulong insn);
149 };
150 
151 static int truly_illegal_insn(struct kvm_vcpu *vcpu, struct kvm_run *run,
152 			      ulong insn)
153 {
154 	struct kvm_cpu_trap utrap = { 0 };
155 
156 	/* Redirect trap to Guest VCPU */
157 	utrap.sepc = vcpu->arch.guest_context.sepc;
158 	utrap.scause = EXC_INST_ILLEGAL;
159 	utrap.stval = insn;
160 	utrap.htval = 0;
161 	utrap.htinst = 0;
162 	kvm_riscv_vcpu_trap_redirect(vcpu, &utrap);
163 
164 	return 1;
165 }
166 
167 static int truly_virtual_insn(struct kvm_vcpu *vcpu, struct kvm_run *run,
168 			      ulong insn)
169 {
170 	struct kvm_cpu_trap utrap = { 0 };
171 
172 	/* Redirect trap to Guest VCPU */
173 	utrap.sepc = vcpu->arch.guest_context.sepc;
174 	utrap.scause = EXC_VIRTUAL_INST_FAULT;
175 	utrap.stval = insn;
176 	utrap.htval = 0;
177 	utrap.htinst = 0;
178 	kvm_riscv_vcpu_trap_redirect(vcpu, &utrap);
179 
180 	return 1;
181 }
182 
183 /**
184  * kvm_riscv_vcpu_wfi -- Emulate wait for interrupt (WFI) behaviour
185  *
186  * @vcpu: The VCPU pointer
187  */
188 void kvm_riscv_vcpu_wfi(struct kvm_vcpu *vcpu)
189 {
190 	if (!kvm_arch_vcpu_runnable(vcpu)) {
191 		kvm_vcpu_srcu_read_unlock(vcpu);
192 		kvm_vcpu_halt(vcpu);
193 		kvm_vcpu_srcu_read_lock(vcpu);
194 	}
195 }
196 
197 static int wfi_insn(struct kvm_vcpu *vcpu, struct kvm_run *run, ulong insn)
198 {
199 	vcpu->stat.wfi_exit_stat++;
200 	kvm_riscv_vcpu_wfi(vcpu);
201 	return KVM_INSN_CONTINUE_NEXT_SEPC;
202 }
203 
204 struct csr_func {
205 	unsigned int base;
206 	unsigned int count;
207 	/*
208 	 * Possible return values are as same as "func" callback in
209 	 * "struct insn_func".
210 	 */
211 	int (*func)(struct kvm_vcpu *vcpu, unsigned int csr_num,
212 		    unsigned long *val, unsigned long new_val,
213 		    unsigned long wr_mask);
214 };
215 
216 static const struct csr_func csr_funcs[] = {
217 	KVM_RISCV_VCPU_AIA_CSR_FUNCS
218 	KVM_RISCV_VCPU_HPMCOUNTER_CSR_FUNCS
219 };
220 
221 /**
222  * kvm_riscv_vcpu_csr_return -- Handle CSR read/write after user space
223  *				emulation or in-kernel emulation
224  *
225  * @vcpu: The VCPU pointer
226  * @run:  The VCPU run struct containing the CSR data
227  *
228  * Returns > 0 upon failure and 0 upon success
229  */
230 int kvm_riscv_vcpu_csr_return(struct kvm_vcpu *vcpu, struct kvm_run *run)
231 {
232 	ulong insn;
233 
234 	if (vcpu->arch.csr_decode.return_handled)
235 		return 0;
236 	vcpu->arch.csr_decode.return_handled = 1;
237 
238 	/* Update destination register for CSR reads */
239 	insn = vcpu->arch.csr_decode.insn;
240 	if ((insn >> SH_RD) & MASK_RX)
241 		SET_RD(insn, &vcpu->arch.guest_context,
242 		       run->riscv_csr.ret_value);
243 
244 	/* Move to next instruction */
245 	vcpu->arch.guest_context.sepc += INSN_LEN(insn);
246 
247 	return 0;
248 }
249 
250 static int csr_insn(struct kvm_vcpu *vcpu, struct kvm_run *run, ulong insn)
251 {
252 	int i, rc = KVM_INSN_ILLEGAL_TRAP;
253 	unsigned int csr_num = insn >> SH_RS2;
254 	unsigned int rs1_num = (insn >> SH_RS1) & MASK_RX;
255 	ulong rs1_val = GET_RS1(insn, &vcpu->arch.guest_context);
256 	const struct csr_func *tcfn, *cfn = NULL;
257 	ulong val = 0, wr_mask = 0, new_val = 0;
258 
259 	/* Decode the CSR instruction */
260 	switch (GET_FUNCT3(insn)) {
261 	case GET_FUNCT3(INSN_MATCH_CSRRW):
262 		wr_mask = -1UL;
263 		new_val = rs1_val;
264 		break;
265 	case GET_FUNCT3(INSN_MATCH_CSRRS):
266 		wr_mask = rs1_val;
267 		new_val = -1UL;
268 		break;
269 	case GET_FUNCT3(INSN_MATCH_CSRRC):
270 		wr_mask = rs1_val;
271 		new_val = 0;
272 		break;
273 	case GET_FUNCT3(INSN_MATCH_CSRRWI):
274 		wr_mask = -1UL;
275 		new_val = rs1_num;
276 		break;
277 	case GET_FUNCT3(INSN_MATCH_CSRRSI):
278 		wr_mask = rs1_num;
279 		new_val = -1UL;
280 		break;
281 	case GET_FUNCT3(INSN_MATCH_CSRRCI):
282 		wr_mask = rs1_num;
283 		new_val = 0;
284 		break;
285 	default:
286 		return rc;
287 	}
288 
289 	/* Save instruction decode info */
290 	vcpu->arch.csr_decode.insn = insn;
291 	vcpu->arch.csr_decode.return_handled = 0;
292 
293 	/* Update CSR details in kvm_run struct */
294 	run->riscv_csr.csr_num = csr_num;
295 	run->riscv_csr.new_value = new_val;
296 	run->riscv_csr.write_mask = wr_mask;
297 	run->riscv_csr.ret_value = 0;
298 
299 	/* Find in-kernel CSR function */
300 	for (i = 0; i < ARRAY_SIZE(csr_funcs); i++) {
301 		tcfn = &csr_funcs[i];
302 		if ((tcfn->base <= csr_num) &&
303 		    (csr_num < (tcfn->base + tcfn->count))) {
304 			cfn = tcfn;
305 			break;
306 		}
307 	}
308 
309 	/* First try in-kernel CSR emulation */
310 	if (cfn && cfn->func) {
311 		rc = cfn->func(vcpu, csr_num, &val, new_val, wr_mask);
312 		if (rc > KVM_INSN_EXIT_TO_USER_SPACE) {
313 			if (rc == KVM_INSN_CONTINUE_NEXT_SEPC) {
314 				run->riscv_csr.ret_value = val;
315 				vcpu->stat.csr_exit_kernel++;
316 				kvm_riscv_vcpu_csr_return(vcpu, run);
317 				rc = KVM_INSN_CONTINUE_SAME_SEPC;
318 			}
319 			return rc;
320 		}
321 	}
322 
323 	/* Exit to user-space for CSR emulation */
324 	if (rc <= KVM_INSN_EXIT_TO_USER_SPACE) {
325 		vcpu->stat.csr_exit_user++;
326 		run->exit_reason = KVM_EXIT_RISCV_CSR;
327 	}
328 
329 	return rc;
330 }
331 
332 static const struct insn_func system_opcode_funcs[] = {
333 	{
334 		.mask  = INSN_MASK_CSRRW,
335 		.match = INSN_MATCH_CSRRW,
336 		.func  = csr_insn,
337 	},
338 	{
339 		.mask  = INSN_MASK_CSRRS,
340 		.match = INSN_MATCH_CSRRS,
341 		.func  = csr_insn,
342 	},
343 	{
344 		.mask  = INSN_MASK_CSRRC,
345 		.match = INSN_MATCH_CSRRC,
346 		.func  = csr_insn,
347 	},
348 	{
349 		.mask  = INSN_MASK_CSRRWI,
350 		.match = INSN_MATCH_CSRRWI,
351 		.func  = csr_insn,
352 	},
353 	{
354 		.mask  = INSN_MASK_CSRRSI,
355 		.match = INSN_MATCH_CSRRSI,
356 		.func  = csr_insn,
357 	},
358 	{
359 		.mask  = INSN_MASK_CSRRCI,
360 		.match = INSN_MATCH_CSRRCI,
361 		.func  = csr_insn,
362 	},
363 	{
364 		.mask  = INSN_MASK_WFI,
365 		.match = INSN_MATCH_WFI,
366 		.func  = wfi_insn,
367 	},
368 };
369 
370 static int system_opcode_insn(struct kvm_vcpu *vcpu, struct kvm_run *run,
371 			      ulong insn)
372 {
373 	int i, rc = KVM_INSN_ILLEGAL_TRAP;
374 	const struct insn_func *ifn;
375 
376 	for (i = 0; i < ARRAY_SIZE(system_opcode_funcs); i++) {
377 		ifn = &system_opcode_funcs[i];
378 		if ((insn & ifn->mask) == ifn->match) {
379 			rc = ifn->func(vcpu, run, insn);
380 			break;
381 		}
382 	}
383 
384 	switch (rc) {
385 	case KVM_INSN_ILLEGAL_TRAP:
386 		return truly_illegal_insn(vcpu, run, insn);
387 	case KVM_INSN_VIRTUAL_TRAP:
388 		return truly_virtual_insn(vcpu, run, insn);
389 	case KVM_INSN_CONTINUE_NEXT_SEPC:
390 		vcpu->arch.guest_context.sepc += INSN_LEN(insn);
391 		break;
392 	default:
393 		break;
394 	}
395 
396 	return (rc <= 0) ? rc : 1;
397 }
398 
399 /**
400  * kvm_riscv_vcpu_virtual_insn -- Handle virtual instruction trap
401  *
402  * @vcpu: The VCPU pointer
403  * @run:  The VCPU run struct containing the mmio data
404  * @trap: Trap details
405  *
406  * Returns > 0 to continue run-loop
407  * Returns   0 to exit run-loop and handle in user-space.
408  * Returns < 0 to report failure and exit run-loop
409  */
410 int kvm_riscv_vcpu_virtual_insn(struct kvm_vcpu *vcpu, struct kvm_run *run,
411 				struct kvm_cpu_trap *trap)
412 {
413 	unsigned long insn = trap->stval;
414 	struct kvm_cpu_trap utrap = { 0 };
415 	struct kvm_cpu_context *ct;
416 
417 	if (unlikely(INSN_IS_16BIT(insn))) {
418 		if (insn == 0) {
419 			ct = &vcpu->arch.guest_context;
420 			insn = kvm_riscv_vcpu_unpriv_read(vcpu, true,
421 							  ct->sepc,
422 							  &utrap);
423 			if (utrap.scause) {
424 				utrap.sepc = ct->sepc;
425 				kvm_riscv_vcpu_trap_redirect(vcpu, &utrap);
426 				return 1;
427 			}
428 		}
429 		if (INSN_IS_16BIT(insn))
430 			return truly_illegal_insn(vcpu, run, insn);
431 	}
432 
433 	switch ((insn & INSN_OPCODE_MASK) >> INSN_OPCODE_SHIFT) {
434 	case INSN_OPCODE_SYSTEM:
435 		return system_opcode_insn(vcpu, run, insn);
436 	default:
437 		return truly_illegal_insn(vcpu, run, insn);
438 	}
439 }
440 
441 /**
442  * kvm_riscv_vcpu_mmio_load -- Emulate MMIO load instruction
443  *
444  * @vcpu: The VCPU pointer
445  * @run:  The VCPU run struct containing the mmio data
446  * @fault_addr: Guest physical address to load
447  * @htinst: Transformed encoding of the load instruction
448  *
449  * Returns > 0 to continue run-loop
450  * Returns   0 to exit run-loop and handle in user-space.
451  * Returns < 0 to report failure and exit run-loop
452  */
453 int kvm_riscv_vcpu_mmio_load(struct kvm_vcpu *vcpu, struct kvm_run *run,
454 			     unsigned long fault_addr,
455 			     unsigned long htinst)
456 {
457 	u8 data_buf[8];
458 	unsigned long insn;
459 	int shift = 0, len = 0, insn_len = 0;
460 	struct kvm_cpu_trap utrap = { 0 };
461 	struct kvm_cpu_context *ct = &vcpu->arch.guest_context;
462 
463 	/* Determine trapped instruction */
464 	if (htinst & 0x1) {
465 		/*
466 		 * Bit[0] == 1 implies trapped instruction value is
467 		 * transformed instruction or custom instruction.
468 		 */
469 		insn = htinst | INSN_16BIT_MASK;
470 		insn_len = (htinst & BIT(1)) ? INSN_LEN(insn) : 2;
471 	} else {
472 		/*
473 		 * Bit[0] == 0 implies trapped instruction value is
474 		 * zero or special value.
475 		 */
476 		insn = kvm_riscv_vcpu_unpriv_read(vcpu, true, ct->sepc,
477 						  &utrap);
478 		if (utrap.scause) {
479 			/* Redirect trap if we failed to read instruction */
480 			utrap.sepc = ct->sepc;
481 			kvm_riscv_vcpu_trap_redirect(vcpu, &utrap);
482 			return 1;
483 		}
484 		insn_len = INSN_LEN(insn);
485 	}
486 
487 	/* Decode length of MMIO and shift */
488 	if ((insn & INSN_MASK_LW) == INSN_MATCH_LW) {
489 		len = 4;
490 		shift = 8 * (sizeof(ulong) - len);
491 	} else if ((insn & INSN_MASK_LB) == INSN_MATCH_LB) {
492 		len = 1;
493 		shift = 8 * (sizeof(ulong) - len);
494 	} else if ((insn & INSN_MASK_LBU) == INSN_MATCH_LBU) {
495 		len = 1;
496 		shift = 8 * (sizeof(ulong) - len);
497 #ifdef CONFIG_64BIT
498 	} else if ((insn & INSN_MASK_LD) == INSN_MATCH_LD) {
499 		len = 8;
500 		shift = 8 * (sizeof(ulong) - len);
501 	} else if ((insn & INSN_MASK_LWU) == INSN_MATCH_LWU) {
502 		len = 4;
503 #endif
504 	} else if ((insn & INSN_MASK_LH) == INSN_MATCH_LH) {
505 		len = 2;
506 		shift = 8 * (sizeof(ulong) - len);
507 	} else if ((insn & INSN_MASK_LHU) == INSN_MATCH_LHU) {
508 		len = 2;
509 #ifdef CONFIG_64BIT
510 	} else if ((insn & INSN_MASK_C_LD) == INSN_MATCH_C_LD) {
511 		len = 8;
512 		shift = 8 * (sizeof(ulong) - len);
513 		insn = RVC_RS2S(insn) << SH_RD;
514 	} else if ((insn & INSN_MASK_C_LDSP) == INSN_MATCH_C_LDSP &&
515 		   ((insn >> SH_RD) & 0x1f)) {
516 		len = 8;
517 		shift = 8 * (sizeof(ulong) - len);
518 #endif
519 	} else if ((insn & INSN_MASK_C_LW) == INSN_MATCH_C_LW) {
520 		len = 4;
521 		shift = 8 * (sizeof(ulong) - len);
522 		insn = RVC_RS2S(insn) << SH_RD;
523 	} else if ((insn & INSN_MASK_C_LWSP) == INSN_MATCH_C_LWSP &&
524 		   ((insn >> SH_RD) & 0x1f)) {
525 		len = 4;
526 		shift = 8 * (sizeof(ulong) - len);
527 	} else {
528 		return -EOPNOTSUPP;
529 	}
530 
531 	/* Fault address should be aligned to length of MMIO */
532 	if (fault_addr & (len - 1))
533 		return -EIO;
534 
535 	/* Save instruction decode info */
536 	vcpu->arch.mmio_decode.insn = insn;
537 	vcpu->arch.mmio_decode.insn_len = insn_len;
538 	vcpu->arch.mmio_decode.shift = shift;
539 	vcpu->arch.mmio_decode.len = len;
540 	vcpu->arch.mmio_decode.return_handled = 0;
541 
542 	/* Update MMIO details in kvm_run struct */
543 	run->mmio.is_write = false;
544 	run->mmio.phys_addr = fault_addr;
545 	run->mmio.len = len;
546 
547 	/* Try to handle MMIO access in the kernel */
548 	if (!kvm_io_bus_read(vcpu, KVM_MMIO_BUS, fault_addr, len, data_buf)) {
549 		/* Successfully handled MMIO access in the kernel so resume */
550 		memcpy(run->mmio.data, data_buf, len);
551 		vcpu->stat.mmio_exit_kernel++;
552 		kvm_riscv_vcpu_mmio_return(vcpu, run);
553 		return 1;
554 	}
555 
556 	/* Exit to userspace for MMIO emulation */
557 	vcpu->stat.mmio_exit_user++;
558 	run->exit_reason = KVM_EXIT_MMIO;
559 
560 	return 0;
561 }
562 
563 /**
564  * kvm_riscv_vcpu_mmio_store -- Emulate MMIO store instruction
565  *
566  * @vcpu: The VCPU pointer
567  * @run:  The VCPU run struct containing the mmio data
568  * @fault_addr: Guest physical address to store
569  * @htinst: Transformed encoding of the store instruction
570  *
571  * Returns > 0 to continue run-loop
572  * Returns   0 to exit run-loop and handle in user-space.
573  * Returns < 0 to report failure and exit run-loop
574  */
575 int kvm_riscv_vcpu_mmio_store(struct kvm_vcpu *vcpu, struct kvm_run *run,
576 			      unsigned long fault_addr,
577 			      unsigned long htinst)
578 {
579 	u8 data8;
580 	u16 data16;
581 	u32 data32;
582 	u64 data64;
583 	ulong data;
584 	unsigned long insn;
585 	int len = 0, insn_len = 0;
586 	struct kvm_cpu_trap utrap = { 0 };
587 	struct kvm_cpu_context *ct = &vcpu->arch.guest_context;
588 
589 	/* Determine trapped instruction */
590 	if (htinst & 0x1) {
591 		/*
592 		 * Bit[0] == 1 implies trapped instruction value is
593 		 * transformed instruction or custom instruction.
594 		 */
595 		insn = htinst | INSN_16BIT_MASK;
596 		insn_len = (htinst & BIT(1)) ? INSN_LEN(insn) : 2;
597 	} else {
598 		/*
599 		 * Bit[0] == 0 implies trapped instruction value is
600 		 * zero or special value.
601 		 */
602 		insn = kvm_riscv_vcpu_unpriv_read(vcpu, true, ct->sepc,
603 						  &utrap);
604 		if (utrap.scause) {
605 			/* Redirect trap if we failed to read instruction */
606 			utrap.sepc = ct->sepc;
607 			kvm_riscv_vcpu_trap_redirect(vcpu, &utrap);
608 			return 1;
609 		}
610 		insn_len = INSN_LEN(insn);
611 	}
612 
613 	data = GET_RS2(insn, &vcpu->arch.guest_context);
614 	data8 = data16 = data32 = data64 = data;
615 
616 	if ((insn & INSN_MASK_SW) == INSN_MATCH_SW) {
617 		len = 4;
618 	} else if ((insn & INSN_MASK_SB) == INSN_MATCH_SB) {
619 		len = 1;
620 #ifdef CONFIG_64BIT
621 	} else if ((insn & INSN_MASK_SD) == INSN_MATCH_SD) {
622 		len = 8;
623 #endif
624 	} else if ((insn & INSN_MASK_SH) == INSN_MATCH_SH) {
625 		len = 2;
626 #ifdef CONFIG_64BIT
627 	} else if ((insn & INSN_MASK_C_SD) == INSN_MATCH_C_SD) {
628 		len = 8;
629 		data64 = GET_RS2S(insn, &vcpu->arch.guest_context);
630 	} else if ((insn & INSN_MASK_C_SDSP) == INSN_MATCH_C_SDSP &&
631 		   ((insn >> SH_RD) & 0x1f)) {
632 		len = 8;
633 		data64 = GET_RS2C(insn, &vcpu->arch.guest_context);
634 #endif
635 	} else if ((insn & INSN_MASK_C_SW) == INSN_MATCH_C_SW) {
636 		len = 4;
637 		data32 = GET_RS2S(insn, &vcpu->arch.guest_context);
638 	} else if ((insn & INSN_MASK_C_SWSP) == INSN_MATCH_C_SWSP &&
639 		   ((insn >> SH_RD) & 0x1f)) {
640 		len = 4;
641 		data32 = GET_RS2C(insn, &vcpu->arch.guest_context);
642 	} else {
643 		return -EOPNOTSUPP;
644 	}
645 
646 	/* Fault address should be aligned to length of MMIO */
647 	if (fault_addr & (len - 1))
648 		return -EIO;
649 
650 	/* Save instruction decode info */
651 	vcpu->arch.mmio_decode.insn = insn;
652 	vcpu->arch.mmio_decode.insn_len = insn_len;
653 	vcpu->arch.mmio_decode.shift = 0;
654 	vcpu->arch.mmio_decode.len = len;
655 	vcpu->arch.mmio_decode.return_handled = 0;
656 
657 	/* Copy data to kvm_run instance */
658 	switch (len) {
659 	case 1:
660 		*((u8 *)run->mmio.data) = data8;
661 		break;
662 	case 2:
663 		*((u16 *)run->mmio.data) = data16;
664 		break;
665 	case 4:
666 		*((u32 *)run->mmio.data) = data32;
667 		break;
668 	case 8:
669 		*((u64 *)run->mmio.data) = data64;
670 		break;
671 	default:
672 		return -EOPNOTSUPP;
673 	}
674 
675 	/* Update MMIO details in kvm_run struct */
676 	run->mmio.is_write = true;
677 	run->mmio.phys_addr = fault_addr;
678 	run->mmio.len = len;
679 
680 	/* Try to handle MMIO access in the kernel */
681 	if (!kvm_io_bus_write(vcpu, KVM_MMIO_BUS,
682 			      fault_addr, len, run->mmio.data)) {
683 		/* Successfully handled MMIO access in the kernel so resume */
684 		vcpu->stat.mmio_exit_kernel++;
685 		kvm_riscv_vcpu_mmio_return(vcpu, run);
686 		return 1;
687 	}
688 
689 	/* Exit to userspace for MMIO emulation */
690 	vcpu->stat.mmio_exit_user++;
691 	run->exit_reason = KVM_EXIT_MMIO;
692 
693 	return 0;
694 }
695 
696 /**
697  * kvm_riscv_vcpu_mmio_return -- Handle MMIO loads after user space emulation
698  *			     or in-kernel IO emulation
699  *
700  * @vcpu: The VCPU pointer
701  * @run:  The VCPU run struct containing the mmio data
702  */
703 int kvm_riscv_vcpu_mmio_return(struct kvm_vcpu *vcpu, struct kvm_run *run)
704 {
705 	u8 data8;
706 	u16 data16;
707 	u32 data32;
708 	u64 data64;
709 	ulong insn;
710 	int len, shift;
711 
712 	if (vcpu->arch.mmio_decode.return_handled)
713 		return 0;
714 
715 	vcpu->arch.mmio_decode.return_handled = 1;
716 	insn = vcpu->arch.mmio_decode.insn;
717 
718 	if (run->mmio.is_write)
719 		goto done;
720 
721 	len = vcpu->arch.mmio_decode.len;
722 	shift = vcpu->arch.mmio_decode.shift;
723 
724 	switch (len) {
725 	case 1:
726 		data8 = *((u8 *)run->mmio.data);
727 		SET_RD(insn, &vcpu->arch.guest_context,
728 			(ulong)data8 << shift >> shift);
729 		break;
730 	case 2:
731 		data16 = *((u16 *)run->mmio.data);
732 		SET_RD(insn, &vcpu->arch.guest_context,
733 			(ulong)data16 << shift >> shift);
734 		break;
735 	case 4:
736 		data32 = *((u32 *)run->mmio.data);
737 		SET_RD(insn, &vcpu->arch.guest_context,
738 			(ulong)data32 << shift >> shift);
739 		break;
740 	case 8:
741 		data64 = *((u64 *)run->mmio.data);
742 		SET_RD(insn, &vcpu->arch.guest_context,
743 			(ulong)data64 << shift >> shift);
744 		break;
745 	default:
746 		return -EOPNOTSUPP;
747 	}
748 
749 done:
750 	/* Move to next instruction */
751 	vcpu->arch.guest_context.sepc += vcpu->arch.mmio_decode.insn_len;
752 
753 	return 0;
754 }
755