1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2019 Western Digital Corporation or its affiliates. 4 * 5 * Authors: 6 * Anup Patel <anup.patel@wdc.com> 7 */ 8 9 #include <linux/bitops.h> 10 #include <linux/errno.h> 11 #include <linux/err.h> 12 #include <linux/kvm_host.h> 13 #include <asm/csr.h> 14 15 #define INSN_OPCODE_MASK 0x007c 16 #define INSN_OPCODE_SHIFT 2 17 #define INSN_OPCODE_SYSTEM 28 18 19 #define INSN_MASK_WFI 0xffffffff 20 #define INSN_MATCH_WFI 0x10500073 21 22 #define INSN_MATCH_LB 0x3 23 #define INSN_MASK_LB 0x707f 24 #define INSN_MATCH_LH 0x1003 25 #define INSN_MASK_LH 0x707f 26 #define INSN_MATCH_LW 0x2003 27 #define INSN_MASK_LW 0x707f 28 #define INSN_MATCH_LD 0x3003 29 #define INSN_MASK_LD 0x707f 30 #define INSN_MATCH_LBU 0x4003 31 #define INSN_MASK_LBU 0x707f 32 #define INSN_MATCH_LHU 0x5003 33 #define INSN_MASK_LHU 0x707f 34 #define INSN_MATCH_LWU 0x6003 35 #define INSN_MASK_LWU 0x707f 36 #define INSN_MATCH_SB 0x23 37 #define INSN_MASK_SB 0x707f 38 #define INSN_MATCH_SH 0x1023 39 #define INSN_MASK_SH 0x707f 40 #define INSN_MATCH_SW 0x2023 41 #define INSN_MASK_SW 0x707f 42 #define INSN_MATCH_SD 0x3023 43 #define INSN_MASK_SD 0x707f 44 45 #define INSN_MATCH_C_LD 0x6000 46 #define INSN_MASK_C_LD 0xe003 47 #define INSN_MATCH_C_SD 0xe000 48 #define INSN_MASK_C_SD 0xe003 49 #define INSN_MATCH_C_LW 0x4000 50 #define INSN_MASK_C_LW 0xe003 51 #define INSN_MATCH_C_SW 0xc000 52 #define INSN_MASK_C_SW 0xe003 53 #define INSN_MATCH_C_LDSP 0x6002 54 #define INSN_MASK_C_LDSP 0xe003 55 #define INSN_MATCH_C_SDSP 0xe002 56 #define INSN_MASK_C_SDSP 0xe003 57 #define INSN_MATCH_C_LWSP 0x4002 58 #define INSN_MASK_C_LWSP 0xe003 59 #define INSN_MATCH_C_SWSP 0xc002 60 #define INSN_MASK_C_SWSP 0xe003 61 62 #define INSN_16BIT_MASK 0x3 63 64 #define INSN_IS_16BIT(insn) (((insn) & INSN_16BIT_MASK) != INSN_16BIT_MASK) 65 66 #define INSN_LEN(insn) (INSN_IS_16BIT(insn) ? 2 : 4) 67 68 #ifdef CONFIG_64BIT 69 #define LOG_REGBYTES 3 70 #else 71 #define LOG_REGBYTES 2 72 #endif 73 #define REGBYTES (1 << LOG_REGBYTES) 74 75 #define SH_RD 7 76 #define SH_RS1 15 77 #define SH_RS2 20 78 #define SH_RS2C 2 79 80 #define RV_X(x, s, n) (((x) >> (s)) & ((1 << (n)) - 1)) 81 #define RVC_LW_IMM(x) ((RV_X(x, 6, 1) << 2) | \ 82 (RV_X(x, 10, 3) << 3) | \ 83 (RV_X(x, 5, 1) << 6)) 84 #define RVC_LD_IMM(x) ((RV_X(x, 10, 3) << 3) | \ 85 (RV_X(x, 5, 2) << 6)) 86 #define RVC_LWSP_IMM(x) ((RV_X(x, 4, 3) << 2) | \ 87 (RV_X(x, 12, 1) << 5) | \ 88 (RV_X(x, 2, 2) << 6)) 89 #define RVC_LDSP_IMM(x) ((RV_X(x, 5, 2) << 3) | \ 90 (RV_X(x, 12, 1) << 5) | \ 91 (RV_X(x, 2, 3) << 6)) 92 #define RVC_SWSP_IMM(x) ((RV_X(x, 9, 4) << 2) | \ 93 (RV_X(x, 7, 2) << 6)) 94 #define RVC_SDSP_IMM(x) ((RV_X(x, 10, 3) << 3) | \ 95 (RV_X(x, 7, 3) << 6)) 96 #define RVC_RS1S(insn) (8 + RV_X(insn, SH_RD, 3)) 97 #define RVC_RS2S(insn) (8 + RV_X(insn, SH_RS2C, 3)) 98 #define RVC_RS2(insn) RV_X(insn, SH_RS2C, 5) 99 100 #define SHIFT_RIGHT(x, y) \ 101 ((y) < 0 ? ((x) << -(y)) : ((x) >> (y))) 102 103 #define REG_MASK \ 104 ((1 << (5 + LOG_REGBYTES)) - (1 << LOG_REGBYTES)) 105 106 #define REG_OFFSET(insn, pos) \ 107 (SHIFT_RIGHT((insn), (pos) - LOG_REGBYTES) & REG_MASK) 108 109 #define REG_PTR(insn, pos, regs) \ 110 ((ulong *)((ulong)(regs) + REG_OFFSET(insn, pos))) 111 112 #define GET_RM(insn) (((insn) >> 12) & 7) 113 114 #define GET_RS1(insn, regs) (*REG_PTR(insn, SH_RS1, regs)) 115 #define GET_RS2(insn, regs) (*REG_PTR(insn, SH_RS2, regs)) 116 #define GET_RS1S(insn, regs) (*REG_PTR(RVC_RS1S(insn), 0, regs)) 117 #define GET_RS2S(insn, regs) (*REG_PTR(RVC_RS2S(insn), 0, regs)) 118 #define GET_RS2C(insn, regs) (*REG_PTR(insn, SH_RS2C, regs)) 119 #define GET_SP(regs) (*REG_PTR(2, 0, regs)) 120 #define SET_RD(insn, regs, val) (*REG_PTR(insn, SH_RD, regs) = (val)) 121 #define IMM_I(insn) ((s32)(insn) >> 20) 122 #define IMM_S(insn) (((s32)(insn) >> 25 << 5) | \ 123 (s32)(((insn) >> 7) & 0x1f)) 124 #define MASK_FUNCT3 0x7000 125 126 static int truly_illegal_insn(struct kvm_vcpu *vcpu, 127 struct kvm_run *run, 128 ulong insn) 129 { 130 struct kvm_cpu_trap utrap = { 0 }; 131 132 /* Redirect trap to Guest VCPU */ 133 utrap.sepc = vcpu->arch.guest_context.sepc; 134 utrap.scause = EXC_INST_ILLEGAL; 135 utrap.stval = insn; 136 kvm_riscv_vcpu_trap_redirect(vcpu, &utrap); 137 138 return 1; 139 } 140 141 static int system_opcode_insn(struct kvm_vcpu *vcpu, 142 struct kvm_run *run, 143 ulong insn) 144 { 145 if ((insn & INSN_MASK_WFI) == INSN_MATCH_WFI) { 146 vcpu->stat.wfi_exit_stat++; 147 kvm_riscv_vcpu_wfi(vcpu); 148 vcpu->arch.guest_context.sepc += INSN_LEN(insn); 149 return 1; 150 } 151 152 return truly_illegal_insn(vcpu, run, insn); 153 } 154 155 static int virtual_inst_fault(struct kvm_vcpu *vcpu, struct kvm_run *run, 156 struct kvm_cpu_trap *trap) 157 { 158 unsigned long insn = trap->stval; 159 struct kvm_cpu_trap utrap = { 0 }; 160 struct kvm_cpu_context *ct; 161 162 if (unlikely(INSN_IS_16BIT(insn))) { 163 if (insn == 0) { 164 ct = &vcpu->arch.guest_context; 165 insn = kvm_riscv_vcpu_unpriv_read(vcpu, true, 166 ct->sepc, 167 &utrap); 168 if (utrap.scause) { 169 utrap.sepc = ct->sepc; 170 kvm_riscv_vcpu_trap_redirect(vcpu, &utrap); 171 return 1; 172 } 173 } 174 if (INSN_IS_16BIT(insn)) 175 return truly_illegal_insn(vcpu, run, insn); 176 } 177 178 switch ((insn & INSN_OPCODE_MASK) >> INSN_OPCODE_SHIFT) { 179 case INSN_OPCODE_SYSTEM: 180 return system_opcode_insn(vcpu, run, insn); 181 default: 182 return truly_illegal_insn(vcpu, run, insn); 183 } 184 } 185 186 static int emulate_load(struct kvm_vcpu *vcpu, struct kvm_run *run, 187 unsigned long fault_addr, unsigned long htinst) 188 { 189 u8 data_buf[8]; 190 unsigned long insn; 191 int shift = 0, len = 0, insn_len = 0; 192 struct kvm_cpu_trap utrap = { 0 }; 193 struct kvm_cpu_context *ct = &vcpu->arch.guest_context; 194 195 /* Determine trapped instruction */ 196 if (htinst & 0x1) { 197 /* 198 * Bit[0] == 1 implies trapped instruction value is 199 * transformed instruction or custom instruction. 200 */ 201 insn = htinst | INSN_16BIT_MASK; 202 insn_len = (htinst & BIT(1)) ? INSN_LEN(insn) : 2; 203 } else { 204 /* 205 * Bit[0] == 0 implies trapped instruction value is 206 * zero or special value. 207 */ 208 insn = kvm_riscv_vcpu_unpriv_read(vcpu, true, ct->sepc, 209 &utrap); 210 if (utrap.scause) { 211 /* Redirect trap if we failed to read instruction */ 212 utrap.sepc = ct->sepc; 213 kvm_riscv_vcpu_trap_redirect(vcpu, &utrap); 214 return 1; 215 } 216 insn_len = INSN_LEN(insn); 217 } 218 219 /* Decode length of MMIO and shift */ 220 if ((insn & INSN_MASK_LW) == INSN_MATCH_LW) { 221 len = 4; 222 shift = 8 * (sizeof(ulong) - len); 223 } else if ((insn & INSN_MASK_LB) == INSN_MATCH_LB) { 224 len = 1; 225 shift = 8 * (sizeof(ulong) - len); 226 } else if ((insn & INSN_MASK_LBU) == INSN_MATCH_LBU) { 227 len = 1; 228 shift = 8 * (sizeof(ulong) - len); 229 #ifdef CONFIG_64BIT 230 } else if ((insn & INSN_MASK_LD) == INSN_MATCH_LD) { 231 len = 8; 232 shift = 8 * (sizeof(ulong) - len); 233 } else if ((insn & INSN_MASK_LWU) == INSN_MATCH_LWU) { 234 len = 4; 235 #endif 236 } else if ((insn & INSN_MASK_LH) == INSN_MATCH_LH) { 237 len = 2; 238 shift = 8 * (sizeof(ulong) - len); 239 } else if ((insn & INSN_MASK_LHU) == INSN_MATCH_LHU) { 240 len = 2; 241 #ifdef CONFIG_64BIT 242 } else if ((insn & INSN_MASK_C_LD) == INSN_MATCH_C_LD) { 243 len = 8; 244 shift = 8 * (sizeof(ulong) - len); 245 insn = RVC_RS2S(insn) << SH_RD; 246 } else if ((insn & INSN_MASK_C_LDSP) == INSN_MATCH_C_LDSP && 247 ((insn >> SH_RD) & 0x1f)) { 248 len = 8; 249 shift = 8 * (sizeof(ulong) - len); 250 #endif 251 } else if ((insn & INSN_MASK_C_LW) == INSN_MATCH_C_LW) { 252 len = 4; 253 shift = 8 * (sizeof(ulong) - len); 254 insn = RVC_RS2S(insn) << SH_RD; 255 } else if ((insn & INSN_MASK_C_LWSP) == INSN_MATCH_C_LWSP && 256 ((insn >> SH_RD) & 0x1f)) { 257 len = 4; 258 shift = 8 * (sizeof(ulong) - len); 259 } else { 260 return -EOPNOTSUPP; 261 } 262 263 /* Fault address should be aligned to length of MMIO */ 264 if (fault_addr & (len - 1)) 265 return -EIO; 266 267 /* Save instruction decode info */ 268 vcpu->arch.mmio_decode.insn = insn; 269 vcpu->arch.mmio_decode.insn_len = insn_len; 270 vcpu->arch.mmio_decode.shift = shift; 271 vcpu->arch.mmio_decode.len = len; 272 vcpu->arch.mmio_decode.return_handled = 0; 273 274 /* Update MMIO details in kvm_run struct */ 275 run->mmio.is_write = false; 276 run->mmio.phys_addr = fault_addr; 277 run->mmio.len = len; 278 279 /* Try to handle MMIO access in the kernel */ 280 if (!kvm_io_bus_read(vcpu, KVM_MMIO_BUS, fault_addr, len, data_buf)) { 281 /* Successfully handled MMIO access in the kernel so resume */ 282 memcpy(run->mmio.data, data_buf, len); 283 vcpu->stat.mmio_exit_kernel++; 284 kvm_riscv_vcpu_mmio_return(vcpu, run); 285 return 1; 286 } 287 288 /* Exit to userspace for MMIO emulation */ 289 vcpu->stat.mmio_exit_user++; 290 run->exit_reason = KVM_EXIT_MMIO; 291 292 return 0; 293 } 294 295 static int emulate_store(struct kvm_vcpu *vcpu, struct kvm_run *run, 296 unsigned long fault_addr, unsigned long htinst) 297 { 298 u8 data8; 299 u16 data16; 300 u32 data32; 301 u64 data64; 302 ulong data; 303 unsigned long insn; 304 int len = 0, insn_len = 0; 305 struct kvm_cpu_trap utrap = { 0 }; 306 struct kvm_cpu_context *ct = &vcpu->arch.guest_context; 307 308 /* Determine trapped instruction */ 309 if (htinst & 0x1) { 310 /* 311 * Bit[0] == 1 implies trapped instruction value is 312 * transformed instruction or custom instruction. 313 */ 314 insn = htinst | INSN_16BIT_MASK; 315 insn_len = (htinst & BIT(1)) ? INSN_LEN(insn) : 2; 316 } else { 317 /* 318 * Bit[0] == 0 implies trapped instruction value is 319 * zero or special value. 320 */ 321 insn = kvm_riscv_vcpu_unpriv_read(vcpu, true, ct->sepc, 322 &utrap); 323 if (utrap.scause) { 324 /* Redirect trap if we failed to read instruction */ 325 utrap.sepc = ct->sepc; 326 kvm_riscv_vcpu_trap_redirect(vcpu, &utrap); 327 return 1; 328 } 329 insn_len = INSN_LEN(insn); 330 } 331 332 data = GET_RS2(insn, &vcpu->arch.guest_context); 333 data8 = data16 = data32 = data64 = data; 334 335 if ((insn & INSN_MASK_SW) == INSN_MATCH_SW) { 336 len = 4; 337 } else if ((insn & INSN_MASK_SB) == INSN_MATCH_SB) { 338 len = 1; 339 #ifdef CONFIG_64BIT 340 } else if ((insn & INSN_MASK_SD) == INSN_MATCH_SD) { 341 len = 8; 342 #endif 343 } else if ((insn & INSN_MASK_SH) == INSN_MATCH_SH) { 344 len = 2; 345 #ifdef CONFIG_64BIT 346 } else if ((insn & INSN_MASK_C_SD) == INSN_MATCH_C_SD) { 347 len = 8; 348 data64 = GET_RS2S(insn, &vcpu->arch.guest_context); 349 } else if ((insn & INSN_MASK_C_SDSP) == INSN_MATCH_C_SDSP && 350 ((insn >> SH_RD) & 0x1f)) { 351 len = 8; 352 data64 = GET_RS2C(insn, &vcpu->arch.guest_context); 353 #endif 354 } else if ((insn & INSN_MASK_C_SW) == INSN_MATCH_C_SW) { 355 len = 4; 356 data32 = GET_RS2S(insn, &vcpu->arch.guest_context); 357 } else if ((insn & INSN_MASK_C_SWSP) == INSN_MATCH_C_SWSP && 358 ((insn >> SH_RD) & 0x1f)) { 359 len = 4; 360 data32 = GET_RS2C(insn, &vcpu->arch.guest_context); 361 } else { 362 return -EOPNOTSUPP; 363 } 364 365 /* Fault address should be aligned to length of MMIO */ 366 if (fault_addr & (len - 1)) 367 return -EIO; 368 369 /* Save instruction decode info */ 370 vcpu->arch.mmio_decode.insn = insn; 371 vcpu->arch.mmio_decode.insn_len = insn_len; 372 vcpu->arch.mmio_decode.shift = 0; 373 vcpu->arch.mmio_decode.len = len; 374 vcpu->arch.mmio_decode.return_handled = 0; 375 376 /* Copy data to kvm_run instance */ 377 switch (len) { 378 case 1: 379 *((u8 *)run->mmio.data) = data8; 380 break; 381 case 2: 382 *((u16 *)run->mmio.data) = data16; 383 break; 384 case 4: 385 *((u32 *)run->mmio.data) = data32; 386 break; 387 case 8: 388 *((u64 *)run->mmio.data) = data64; 389 break; 390 default: 391 return -EOPNOTSUPP; 392 } 393 394 /* Update MMIO details in kvm_run struct */ 395 run->mmio.is_write = true; 396 run->mmio.phys_addr = fault_addr; 397 run->mmio.len = len; 398 399 /* Try to handle MMIO access in the kernel */ 400 if (!kvm_io_bus_write(vcpu, KVM_MMIO_BUS, 401 fault_addr, len, run->mmio.data)) { 402 /* Successfully handled MMIO access in the kernel so resume */ 403 vcpu->stat.mmio_exit_kernel++; 404 kvm_riscv_vcpu_mmio_return(vcpu, run); 405 return 1; 406 } 407 408 /* Exit to userspace for MMIO emulation */ 409 vcpu->stat.mmio_exit_user++; 410 run->exit_reason = KVM_EXIT_MMIO; 411 412 return 0; 413 } 414 415 static int gstage_page_fault(struct kvm_vcpu *vcpu, struct kvm_run *run, 416 struct kvm_cpu_trap *trap) 417 { 418 struct kvm_memory_slot *memslot; 419 unsigned long hva, fault_addr; 420 bool writeable; 421 gfn_t gfn; 422 int ret; 423 424 fault_addr = (trap->htval << 2) | (trap->stval & 0x3); 425 gfn = fault_addr >> PAGE_SHIFT; 426 memslot = gfn_to_memslot(vcpu->kvm, gfn); 427 hva = gfn_to_hva_memslot_prot(memslot, gfn, &writeable); 428 429 if (kvm_is_error_hva(hva) || 430 (trap->scause == EXC_STORE_GUEST_PAGE_FAULT && !writeable)) { 431 switch (trap->scause) { 432 case EXC_LOAD_GUEST_PAGE_FAULT: 433 return emulate_load(vcpu, run, fault_addr, 434 trap->htinst); 435 case EXC_STORE_GUEST_PAGE_FAULT: 436 return emulate_store(vcpu, run, fault_addr, 437 trap->htinst); 438 default: 439 return -EOPNOTSUPP; 440 }; 441 } 442 443 ret = kvm_riscv_gstage_map(vcpu, memslot, fault_addr, hva, 444 (trap->scause == EXC_STORE_GUEST_PAGE_FAULT) ? true : false); 445 if (ret < 0) 446 return ret; 447 448 return 1; 449 } 450 451 /** 452 * kvm_riscv_vcpu_wfi -- Emulate wait for interrupt (WFI) behaviour 453 * 454 * @vcpu: The VCPU pointer 455 */ 456 void kvm_riscv_vcpu_wfi(struct kvm_vcpu *vcpu) 457 { 458 if (!kvm_arch_vcpu_runnable(vcpu)) { 459 kvm_vcpu_srcu_read_unlock(vcpu); 460 kvm_vcpu_halt(vcpu); 461 kvm_vcpu_srcu_read_lock(vcpu); 462 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 463 } 464 } 465 466 /** 467 * kvm_riscv_vcpu_unpriv_read -- Read machine word from Guest memory 468 * 469 * @vcpu: The VCPU pointer 470 * @read_insn: Flag representing whether we are reading instruction 471 * @guest_addr: Guest address to read 472 * @trap: Output pointer to trap details 473 */ 474 unsigned long kvm_riscv_vcpu_unpriv_read(struct kvm_vcpu *vcpu, 475 bool read_insn, 476 unsigned long guest_addr, 477 struct kvm_cpu_trap *trap) 478 { 479 register unsigned long taddr asm("a0") = (unsigned long)trap; 480 register unsigned long ttmp asm("a1"); 481 register unsigned long val asm("t0"); 482 register unsigned long tmp asm("t1"); 483 register unsigned long addr asm("t2") = guest_addr; 484 unsigned long flags; 485 unsigned long old_stvec, old_hstatus; 486 487 local_irq_save(flags); 488 489 old_hstatus = csr_swap(CSR_HSTATUS, vcpu->arch.guest_context.hstatus); 490 old_stvec = csr_swap(CSR_STVEC, (ulong)&__kvm_riscv_unpriv_trap); 491 492 if (read_insn) { 493 /* 494 * HLVX.HU instruction 495 * 0110010 00011 rs1 100 rd 1110011 496 */ 497 asm volatile ("\n" 498 ".option push\n" 499 ".option norvc\n" 500 "add %[ttmp], %[taddr], 0\n" 501 /* 502 * HLVX.HU %[val], (%[addr]) 503 * HLVX.HU t0, (t2) 504 * 0110010 00011 00111 100 00101 1110011 505 */ 506 ".word 0x6433c2f3\n" 507 "andi %[tmp], %[val], 3\n" 508 "addi %[tmp], %[tmp], -3\n" 509 "bne %[tmp], zero, 2f\n" 510 "addi %[addr], %[addr], 2\n" 511 /* 512 * HLVX.HU %[tmp], (%[addr]) 513 * HLVX.HU t1, (t2) 514 * 0110010 00011 00111 100 00110 1110011 515 */ 516 ".word 0x6433c373\n" 517 "sll %[tmp], %[tmp], 16\n" 518 "add %[val], %[val], %[tmp]\n" 519 "2:\n" 520 ".option pop" 521 : [val] "=&r" (val), [tmp] "=&r" (tmp), 522 [taddr] "+&r" (taddr), [ttmp] "+&r" (ttmp), 523 [addr] "+&r" (addr) : : "memory"); 524 525 if (trap->scause == EXC_LOAD_PAGE_FAULT) 526 trap->scause = EXC_INST_PAGE_FAULT; 527 } else { 528 /* 529 * HLV.D instruction 530 * 0110110 00000 rs1 100 rd 1110011 531 * 532 * HLV.W instruction 533 * 0110100 00000 rs1 100 rd 1110011 534 */ 535 asm volatile ("\n" 536 ".option push\n" 537 ".option norvc\n" 538 "add %[ttmp], %[taddr], 0\n" 539 #ifdef CONFIG_64BIT 540 /* 541 * HLV.D %[val], (%[addr]) 542 * HLV.D t0, (t2) 543 * 0110110 00000 00111 100 00101 1110011 544 */ 545 ".word 0x6c03c2f3\n" 546 #else 547 /* 548 * HLV.W %[val], (%[addr]) 549 * HLV.W t0, (t2) 550 * 0110100 00000 00111 100 00101 1110011 551 */ 552 ".word 0x6803c2f3\n" 553 #endif 554 ".option pop" 555 : [val] "=&r" (val), 556 [taddr] "+&r" (taddr), [ttmp] "+&r" (ttmp) 557 : [addr] "r" (addr) : "memory"); 558 } 559 560 csr_write(CSR_STVEC, old_stvec); 561 csr_write(CSR_HSTATUS, old_hstatus); 562 563 local_irq_restore(flags); 564 565 return val; 566 } 567 568 /** 569 * kvm_riscv_vcpu_trap_redirect -- Redirect trap to Guest 570 * 571 * @vcpu: The VCPU pointer 572 * @trap: Trap details 573 */ 574 void kvm_riscv_vcpu_trap_redirect(struct kvm_vcpu *vcpu, 575 struct kvm_cpu_trap *trap) 576 { 577 unsigned long vsstatus = csr_read(CSR_VSSTATUS); 578 579 /* Change Guest SSTATUS.SPP bit */ 580 vsstatus &= ~SR_SPP; 581 if (vcpu->arch.guest_context.sstatus & SR_SPP) 582 vsstatus |= SR_SPP; 583 584 /* Change Guest SSTATUS.SPIE bit */ 585 vsstatus &= ~SR_SPIE; 586 if (vsstatus & SR_SIE) 587 vsstatus |= SR_SPIE; 588 589 /* Clear Guest SSTATUS.SIE bit */ 590 vsstatus &= ~SR_SIE; 591 592 /* Update Guest SSTATUS */ 593 csr_write(CSR_VSSTATUS, vsstatus); 594 595 /* Update Guest SCAUSE, STVAL, and SEPC */ 596 csr_write(CSR_VSCAUSE, trap->scause); 597 csr_write(CSR_VSTVAL, trap->stval); 598 csr_write(CSR_VSEPC, trap->sepc); 599 600 /* Set Guest PC to Guest exception vector */ 601 vcpu->arch.guest_context.sepc = csr_read(CSR_VSTVEC); 602 } 603 604 /** 605 * kvm_riscv_vcpu_mmio_return -- Handle MMIO loads after user space emulation 606 * or in-kernel IO emulation 607 * 608 * @vcpu: The VCPU pointer 609 * @run: The VCPU run struct containing the mmio data 610 */ 611 int kvm_riscv_vcpu_mmio_return(struct kvm_vcpu *vcpu, struct kvm_run *run) 612 { 613 u8 data8; 614 u16 data16; 615 u32 data32; 616 u64 data64; 617 ulong insn; 618 int len, shift; 619 620 if (vcpu->arch.mmio_decode.return_handled) 621 return 0; 622 623 vcpu->arch.mmio_decode.return_handled = 1; 624 insn = vcpu->arch.mmio_decode.insn; 625 626 if (run->mmio.is_write) 627 goto done; 628 629 len = vcpu->arch.mmio_decode.len; 630 shift = vcpu->arch.mmio_decode.shift; 631 632 switch (len) { 633 case 1: 634 data8 = *((u8 *)run->mmio.data); 635 SET_RD(insn, &vcpu->arch.guest_context, 636 (ulong)data8 << shift >> shift); 637 break; 638 case 2: 639 data16 = *((u16 *)run->mmio.data); 640 SET_RD(insn, &vcpu->arch.guest_context, 641 (ulong)data16 << shift >> shift); 642 break; 643 case 4: 644 data32 = *((u32 *)run->mmio.data); 645 SET_RD(insn, &vcpu->arch.guest_context, 646 (ulong)data32 << shift >> shift); 647 break; 648 case 8: 649 data64 = *((u64 *)run->mmio.data); 650 SET_RD(insn, &vcpu->arch.guest_context, 651 (ulong)data64 << shift >> shift); 652 break; 653 default: 654 return -EOPNOTSUPP; 655 } 656 657 done: 658 /* Move to next instruction */ 659 vcpu->arch.guest_context.sepc += vcpu->arch.mmio_decode.insn_len; 660 661 return 0; 662 } 663 664 /* 665 * Return > 0 to return to guest, < 0 on error, 0 (and set exit_reason) on 666 * proper exit to userspace. 667 */ 668 int kvm_riscv_vcpu_exit(struct kvm_vcpu *vcpu, struct kvm_run *run, 669 struct kvm_cpu_trap *trap) 670 { 671 int ret; 672 673 /* If we got host interrupt then do nothing */ 674 if (trap->scause & CAUSE_IRQ_FLAG) 675 return 1; 676 677 /* Handle guest traps */ 678 ret = -EFAULT; 679 run->exit_reason = KVM_EXIT_UNKNOWN; 680 switch (trap->scause) { 681 case EXC_VIRTUAL_INST_FAULT: 682 if (vcpu->arch.guest_context.hstatus & HSTATUS_SPV) 683 ret = virtual_inst_fault(vcpu, run, trap); 684 break; 685 case EXC_INST_GUEST_PAGE_FAULT: 686 case EXC_LOAD_GUEST_PAGE_FAULT: 687 case EXC_STORE_GUEST_PAGE_FAULT: 688 if (vcpu->arch.guest_context.hstatus & HSTATUS_SPV) 689 ret = gstage_page_fault(vcpu, run, trap); 690 break; 691 case EXC_SUPERVISOR_SYSCALL: 692 if (vcpu->arch.guest_context.hstatus & HSTATUS_SPV) 693 ret = kvm_riscv_vcpu_sbi_ecall(vcpu, run); 694 break; 695 default: 696 break; 697 } 698 699 /* Print details in-case of error */ 700 if (ret < 0) { 701 kvm_err("VCPU exit error %d\n", ret); 702 kvm_err("SEPC=0x%lx SSTATUS=0x%lx HSTATUS=0x%lx\n", 703 vcpu->arch.guest_context.sepc, 704 vcpu->arch.guest_context.sstatus, 705 vcpu->arch.guest_context.hstatus); 706 kvm_err("SCAUSE=0x%lx STVAL=0x%lx HTVAL=0x%lx HTINST=0x%lx\n", 707 trap->scause, trap->stval, trap->htval, trap->htinst); 708 } 709 710 return ret; 711 } 712