xref: /openbmc/linux/arch/riscv/kvm/vcpu_exit.c (revision 2425c81f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2019 Western Digital Corporation or its affiliates.
4  *
5  * Authors:
6  *     Anup Patel <anup.patel@wdc.com>
7  */
8 
9 #include <linux/bitops.h>
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <asm/csr.h>
14 
15 #define INSN_OPCODE_MASK	0x007c
16 #define INSN_OPCODE_SHIFT	2
17 #define INSN_OPCODE_SYSTEM	28
18 
19 #define INSN_MASK_WFI		0xffffffff
20 #define INSN_MATCH_WFI		0x10500073
21 
22 #define INSN_MATCH_LB		0x3
23 #define INSN_MASK_LB		0x707f
24 #define INSN_MATCH_LH		0x1003
25 #define INSN_MASK_LH		0x707f
26 #define INSN_MATCH_LW		0x2003
27 #define INSN_MASK_LW		0x707f
28 #define INSN_MATCH_LD		0x3003
29 #define INSN_MASK_LD		0x707f
30 #define INSN_MATCH_LBU		0x4003
31 #define INSN_MASK_LBU		0x707f
32 #define INSN_MATCH_LHU		0x5003
33 #define INSN_MASK_LHU		0x707f
34 #define INSN_MATCH_LWU		0x6003
35 #define INSN_MASK_LWU		0x707f
36 #define INSN_MATCH_SB		0x23
37 #define INSN_MASK_SB		0x707f
38 #define INSN_MATCH_SH		0x1023
39 #define INSN_MASK_SH		0x707f
40 #define INSN_MATCH_SW		0x2023
41 #define INSN_MASK_SW		0x707f
42 #define INSN_MATCH_SD		0x3023
43 #define INSN_MASK_SD		0x707f
44 
45 #define INSN_MATCH_C_LD		0x6000
46 #define INSN_MASK_C_LD		0xe003
47 #define INSN_MATCH_C_SD		0xe000
48 #define INSN_MASK_C_SD		0xe003
49 #define INSN_MATCH_C_LW		0x4000
50 #define INSN_MASK_C_LW		0xe003
51 #define INSN_MATCH_C_SW		0xc000
52 #define INSN_MASK_C_SW		0xe003
53 #define INSN_MATCH_C_LDSP	0x6002
54 #define INSN_MASK_C_LDSP	0xe003
55 #define INSN_MATCH_C_SDSP	0xe002
56 #define INSN_MASK_C_SDSP	0xe003
57 #define INSN_MATCH_C_LWSP	0x4002
58 #define INSN_MASK_C_LWSP	0xe003
59 #define INSN_MATCH_C_SWSP	0xc002
60 #define INSN_MASK_C_SWSP	0xe003
61 
62 #define INSN_16BIT_MASK		0x3
63 
64 #define INSN_IS_16BIT(insn)	(((insn) & INSN_16BIT_MASK) != INSN_16BIT_MASK)
65 
66 #define INSN_LEN(insn)		(INSN_IS_16BIT(insn) ? 2 : 4)
67 
68 #ifdef CONFIG_64BIT
69 #define LOG_REGBYTES		3
70 #else
71 #define LOG_REGBYTES		2
72 #endif
73 #define REGBYTES		(1 << LOG_REGBYTES)
74 
75 #define SH_RD			7
76 #define SH_RS1			15
77 #define SH_RS2			20
78 #define SH_RS2C			2
79 
80 #define RV_X(x, s, n)		(((x) >> (s)) & ((1 << (n)) - 1))
81 #define RVC_LW_IMM(x)		((RV_X(x, 6, 1) << 2) | \
82 				 (RV_X(x, 10, 3) << 3) | \
83 				 (RV_X(x, 5, 1) << 6))
84 #define RVC_LD_IMM(x)		((RV_X(x, 10, 3) << 3) | \
85 				 (RV_X(x, 5, 2) << 6))
86 #define RVC_LWSP_IMM(x)		((RV_X(x, 4, 3) << 2) | \
87 				 (RV_X(x, 12, 1) << 5) | \
88 				 (RV_X(x, 2, 2) << 6))
89 #define RVC_LDSP_IMM(x)		((RV_X(x, 5, 2) << 3) | \
90 				 (RV_X(x, 12, 1) << 5) | \
91 				 (RV_X(x, 2, 3) << 6))
92 #define RVC_SWSP_IMM(x)		((RV_X(x, 9, 4) << 2) | \
93 				 (RV_X(x, 7, 2) << 6))
94 #define RVC_SDSP_IMM(x)		((RV_X(x, 10, 3) << 3) | \
95 				 (RV_X(x, 7, 3) << 6))
96 #define RVC_RS1S(insn)		(8 + RV_X(insn, SH_RD, 3))
97 #define RVC_RS2S(insn)		(8 + RV_X(insn, SH_RS2C, 3))
98 #define RVC_RS2(insn)		RV_X(insn, SH_RS2C, 5)
99 
100 #define SHIFT_RIGHT(x, y)		\
101 	((y) < 0 ? ((x) << -(y)) : ((x) >> (y)))
102 
103 #define REG_MASK			\
104 	((1 << (5 + LOG_REGBYTES)) - (1 << LOG_REGBYTES))
105 
106 #define REG_OFFSET(insn, pos)		\
107 	(SHIFT_RIGHT((insn), (pos) - LOG_REGBYTES) & REG_MASK)
108 
109 #define REG_PTR(insn, pos, regs)	\
110 	((ulong *)((ulong)(regs) + REG_OFFSET(insn, pos)))
111 
112 #define GET_RM(insn)		(((insn) >> 12) & 7)
113 
114 #define GET_RS1(insn, regs)	(*REG_PTR(insn, SH_RS1, regs))
115 #define GET_RS2(insn, regs)	(*REG_PTR(insn, SH_RS2, regs))
116 #define GET_RS1S(insn, regs)	(*REG_PTR(RVC_RS1S(insn), 0, regs))
117 #define GET_RS2S(insn, regs)	(*REG_PTR(RVC_RS2S(insn), 0, regs))
118 #define GET_RS2C(insn, regs)	(*REG_PTR(insn, SH_RS2C, regs))
119 #define GET_SP(regs)		(*REG_PTR(2, 0, regs))
120 #define SET_RD(insn, regs, val)	(*REG_PTR(insn, SH_RD, regs) = (val))
121 #define IMM_I(insn)		((s32)(insn) >> 20)
122 #define IMM_S(insn)		(((s32)(insn) >> 25 << 5) | \
123 				 (s32)(((insn) >> 7) & 0x1f))
124 #define MASK_FUNCT3		0x7000
125 
126 static int truly_illegal_insn(struct kvm_vcpu *vcpu,
127 			      struct kvm_run *run,
128 			      ulong insn)
129 {
130 	struct kvm_cpu_trap utrap = { 0 };
131 
132 	/* Redirect trap to Guest VCPU */
133 	utrap.sepc = vcpu->arch.guest_context.sepc;
134 	utrap.scause = EXC_INST_ILLEGAL;
135 	utrap.stval = insn;
136 	kvm_riscv_vcpu_trap_redirect(vcpu, &utrap);
137 
138 	return 1;
139 }
140 
141 static int system_opcode_insn(struct kvm_vcpu *vcpu,
142 			      struct kvm_run *run,
143 			      ulong insn)
144 {
145 	if ((insn & INSN_MASK_WFI) == INSN_MATCH_WFI) {
146 		vcpu->stat.wfi_exit_stat++;
147 		kvm_riscv_vcpu_wfi(vcpu);
148 		vcpu->arch.guest_context.sepc += INSN_LEN(insn);
149 		return 1;
150 	}
151 
152 	return truly_illegal_insn(vcpu, run, insn);
153 }
154 
155 static int virtual_inst_fault(struct kvm_vcpu *vcpu, struct kvm_run *run,
156 			      struct kvm_cpu_trap *trap)
157 {
158 	unsigned long insn = trap->stval;
159 	struct kvm_cpu_trap utrap = { 0 };
160 	struct kvm_cpu_context *ct;
161 
162 	if (unlikely(INSN_IS_16BIT(insn))) {
163 		if (insn == 0) {
164 			ct = &vcpu->arch.guest_context;
165 			insn = kvm_riscv_vcpu_unpriv_read(vcpu, true,
166 							  ct->sepc,
167 							  &utrap);
168 			if (utrap.scause) {
169 				utrap.sepc = ct->sepc;
170 				kvm_riscv_vcpu_trap_redirect(vcpu, &utrap);
171 				return 1;
172 			}
173 		}
174 		if (INSN_IS_16BIT(insn))
175 			return truly_illegal_insn(vcpu, run, insn);
176 	}
177 
178 	switch ((insn & INSN_OPCODE_MASK) >> INSN_OPCODE_SHIFT) {
179 	case INSN_OPCODE_SYSTEM:
180 		return system_opcode_insn(vcpu, run, insn);
181 	default:
182 		return truly_illegal_insn(vcpu, run, insn);
183 	}
184 }
185 
186 static int emulate_load(struct kvm_vcpu *vcpu, struct kvm_run *run,
187 			unsigned long fault_addr, unsigned long htinst)
188 {
189 	u8 data_buf[8];
190 	unsigned long insn;
191 	int shift = 0, len = 0, insn_len = 0;
192 	struct kvm_cpu_trap utrap = { 0 };
193 	struct kvm_cpu_context *ct = &vcpu->arch.guest_context;
194 
195 	/* Determine trapped instruction */
196 	if (htinst & 0x1) {
197 		/*
198 		 * Bit[0] == 1 implies trapped instruction value is
199 		 * transformed instruction or custom instruction.
200 		 */
201 		insn = htinst | INSN_16BIT_MASK;
202 		insn_len = (htinst & BIT(1)) ? INSN_LEN(insn) : 2;
203 	} else {
204 		/*
205 		 * Bit[0] == 0 implies trapped instruction value is
206 		 * zero or special value.
207 		 */
208 		insn = kvm_riscv_vcpu_unpriv_read(vcpu, true, ct->sepc,
209 						  &utrap);
210 		if (utrap.scause) {
211 			/* Redirect trap if we failed to read instruction */
212 			utrap.sepc = ct->sepc;
213 			kvm_riscv_vcpu_trap_redirect(vcpu, &utrap);
214 			return 1;
215 		}
216 		insn_len = INSN_LEN(insn);
217 	}
218 
219 	/* Decode length of MMIO and shift */
220 	if ((insn & INSN_MASK_LW) == INSN_MATCH_LW) {
221 		len = 4;
222 		shift = 8 * (sizeof(ulong) - len);
223 	} else if ((insn & INSN_MASK_LB) == INSN_MATCH_LB) {
224 		len = 1;
225 		shift = 8 * (sizeof(ulong) - len);
226 	} else if ((insn & INSN_MASK_LBU) == INSN_MATCH_LBU) {
227 		len = 1;
228 		shift = 8 * (sizeof(ulong) - len);
229 #ifdef CONFIG_64BIT
230 	} else if ((insn & INSN_MASK_LD) == INSN_MATCH_LD) {
231 		len = 8;
232 		shift = 8 * (sizeof(ulong) - len);
233 	} else if ((insn & INSN_MASK_LWU) == INSN_MATCH_LWU) {
234 		len = 4;
235 #endif
236 	} else if ((insn & INSN_MASK_LH) == INSN_MATCH_LH) {
237 		len = 2;
238 		shift = 8 * (sizeof(ulong) - len);
239 	} else if ((insn & INSN_MASK_LHU) == INSN_MATCH_LHU) {
240 		len = 2;
241 #ifdef CONFIG_64BIT
242 	} else if ((insn & INSN_MASK_C_LD) == INSN_MATCH_C_LD) {
243 		len = 8;
244 		shift = 8 * (sizeof(ulong) - len);
245 		insn = RVC_RS2S(insn) << SH_RD;
246 	} else if ((insn & INSN_MASK_C_LDSP) == INSN_MATCH_C_LDSP &&
247 		   ((insn >> SH_RD) & 0x1f)) {
248 		len = 8;
249 		shift = 8 * (sizeof(ulong) - len);
250 #endif
251 	} else if ((insn & INSN_MASK_C_LW) == INSN_MATCH_C_LW) {
252 		len = 4;
253 		shift = 8 * (sizeof(ulong) - len);
254 		insn = RVC_RS2S(insn) << SH_RD;
255 	} else if ((insn & INSN_MASK_C_LWSP) == INSN_MATCH_C_LWSP &&
256 		   ((insn >> SH_RD) & 0x1f)) {
257 		len = 4;
258 		shift = 8 * (sizeof(ulong) - len);
259 	} else {
260 		return -EOPNOTSUPP;
261 	}
262 
263 	/* Fault address should be aligned to length of MMIO */
264 	if (fault_addr & (len - 1))
265 		return -EIO;
266 
267 	/* Save instruction decode info */
268 	vcpu->arch.mmio_decode.insn = insn;
269 	vcpu->arch.mmio_decode.insn_len = insn_len;
270 	vcpu->arch.mmio_decode.shift = shift;
271 	vcpu->arch.mmio_decode.len = len;
272 	vcpu->arch.mmio_decode.return_handled = 0;
273 
274 	/* Update MMIO details in kvm_run struct */
275 	run->mmio.is_write = false;
276 	run->mmio.phys_addr = fault_addr;
277 	run->mmio.len = len;
278 
279 	/* Try to handle MMIO access in the kernel */
280 	if (!kvm_io_bus_read(vcpu, KVM_MMIO_BUS, fault_addr, len, data_buf)) {
281 		/* Successfully handled MMIO access in the kernel so resume */
282 		memcpy(run->mmio.data, data_buf, len);
283 		vcpu->stat.mmio_exit_kernel++;
284 		kvm_riscv_vcpu_mmio_return(vcpu, run);
285 		return 1;
286 	}
287 
288 	/* Exit to userspace for MMIO emulation */
289 	vcpu->stat.mmio_exit_user++;
290 	run->exit_reason = KVM_EXIT_MMIO;
291 
292 	return 0;
293 }
294 
295 static int emulate_store(struct kvm_vcpu *vcpu, struct kvm_run *run,
296 			 unsigned long fault_addr, unsigned long htinst)
297 {
298 	u8 data8;
299 	u16 data16;
300 	u32 data32;
301 	u64 data64;
302 	ulong data;
303 	unsigned long insn;
304 	int len = 0, insn_len = 0;
305 	struct kvm_cpu_trap utrap = { 0 };
306 	struct kvm_cpu_context *ct = &vcpu->arch.guest_context;
307 
308 	/* Determine trapped instruction */
309 	if (htinst & 0x1) {
310 		/*
311 		 * Bit[0] == 1 implies trapped instruction value is
312 		 * transformed instruction or custom instruction.
313 		 */
314 		insn = htinst | INSN_16BIT_MASK;
315 		insn_len = (htinst & BIT(1)) ? INSN_LEN(insn) : 2;
316 	} else {
317 		/*
318 		 * Bit[0] == 0 implies trapped instruction value is
319 		 * zero or special value.
320 		 */
321 		insn = kvm_riscv_vcpu_unpriv_read(vcpu, true, ct->sepc,
322 						  &utrap);
323 		if (utrap.scause) {
324 			/* Redirect trap if we failed to read instruction */
325 			utrap.sepc = ct->sepc;
326 			kvm_riscv_vcpu_trap_redirect(vcpu, &utrap);
327 			return 1;
328 		}
329 		insn_len = INSN_LEN(insn);
330 	}
331 
332 	data = GET_RS2(insn, &vcpu->arch.guest_context);
333 	data8 = data16 = data32 = data64 = data;
334 
335 	if ((insn & INSN_MASK_SW) == INSN_MATCH_SW) {
336 		len = 4;
337 	} else if ((insn & INSN_MASK_SB) == INSN_MATCH_SB) {
338 		len = 1;
339 #ifdef CONFIG_64BIT
340 	} else if ((insn & INSN_MASK_SD) == INSN_MATCH_SD) {
341 		len = 8;
342 #endif
343 	} else if ((insn & INSN_MASK_SH) == INSN_MATCH_SH) {
344 		len = 2;
345 #ifdef CONFIG_64BIT
346 	} else if ((insn & INSN_MASK_C_SD) == INSN_MATCH_C_SD) {
347 		len = 8;
348 		data64 = GET_RS2S(insn, &vcpu->arch.guest_context);
349 	} else if ((insn & INSN_MASK_C_SDSP) == INSN_MATCH_C_SDSP &&
350 		   ((insn >> SH_RD) & 0x1f)) {
351 		len = 8;
352 		data64 = GET_RS2C(insn, &vcpu->arch.guest_context);
353 #endif
354 	} else if ((insn & INSN_MASK_C_SW) == INSN_MATCH_C_SW) {
355 		len = 4;
356 		data32 = GET_RS2S(insn, &vcpu->arch.guest_context);
357 	} else if ((insn & INSN_MASK_C_SWSP) == INSN_MATCH_C_SWSP &&
358 		   ((insn >> SH_RD) & 0x1f)) {
359 		len = 4;
360 		data32 = GET_RS2C(insn, &vcpu->arch.guest_context);
361 	} else {
362 		return -EOPNOTSUPP;
363 	}
364 
365 	/* Fault address should be aligned to length of MMIO */
366 	if (fault_addr & (len - 1))
367 		return -EIO;
368 
369 	/* Save instruction decode info */
370 	vcpu->arch.mmio_decode.insn = insn;
371 	vcpu->arch.mmio_decode.insn_len = insn_len;
372 	vcpu->arch.mmio_decode.shift = 0;
373 	vcpu->arch.mmio_decode.len = len;
374 	vcpu->arch.mmio_decode.return_handled = 0;
375 
376 	/* Copy data to kvm_run instance */
377 	switch (len) {
378 	case 1:
379 		*((u8 *)run->mmio.data) = data8;
380 		break;
381 	case 2:
382 		*((u16 *)run->mmio.data) = data16;
383 		break;
384 	case 4:
385 		*((u32 *)run->mmio.data) = data32;
386 		break;
387 	case 8:
388 		*((u64 *)run->mmio.data) = data64;
389 		break;
390 	default:
391 		return -EOPNOTSUPP;
392 	}
393 
394 	/* Update MMIO details in kvm_run struct */
395 	run->mmio.is_write = true;
396 	run->mmio.phys_addr = fault_addr;
397 	run->mmio.len = len;
398 
399 	/* Try to handle MMIO access in the kernel */
400 	if (!kvm_io_bus_write(vcpu, KVM_MMIO_BUS,
401 			      fault_addr, len, run->mmio.data)) {
402 		/* Successfully handled MMIO access in the kernel so resume */
403 		vcpu->stat.mmio_exit_kernel++;
404 		kvm_riscv_vcpu_mmio_return(vcpu, run);
405 		return 1;
406 	}
407 
408 	/* Exit to userspace for MMIO emulation */
409 	vcpu->stat.mmio_exit_user++;
410 	run->exit_reason = KVM_EXIT_MMIO;
411 
412 	return 0;
413 }
414 
415 static int stage2_page_fault(struct kvm_vcpu *vcpu, struct kvm_run *run,
416 			     struct kvm_cpu_trap *trap)
417 {
418 	struct kvm_memory_slot *memslot;
419 	unsigned long hva, fault_addr;
420 	bool writeable;
421 	gfn_t gfn;
422 	int ret;
423 
424 	fault_addr = (trap->htval << 2) | (trap->stval & 0x3);
425 	gfn = fault_addr >> PAGE_SHIFT;
426 	memslot = gfn_to_memslot(vcpu->kvm, gfn);
427 	hva = gfn_to_hva_memslot_prot(memslot, gfn, &writeable);
428 
429 	if (kvm_is_error_hva(hva) ||
430 	    (trap->scause == EXC_STORE_GUEST_PAGE_FAULT && !writeable)) {
431 		switch (trap->scause) {
432 		case EXC_LOAD_GUEST_PAGE_FAULT:
433 			return emulate_load(vcpu, run, fault_addr,
434 					    trap->htinst);
435 		case EXC_STORE_GUEST_PAGE_FAULT:
436 			return emulate_store(vcpu, run, fault_addr,
437 					     trap->htinst);
438 		default:
439 			return -EOPNOTSUPP;
440 		};
441 	}
442 
443 	ret = kvm_riscv_stage2_map(vcpu, memslot, fault_addr, hva,
444 		(trap->scause == EXC_STORE_GUEST_PAGE_FAULT) ? true : false);
445 	if (ret < 0)
446 		return ret;
447 
448 	return 1;
449 }
450 
451 /**
452  * kvm_riscv_vcpu_wfi -- Emulate wait for interrupt (WFI) behaviour
453  *
454  * @vcpu: The VCPU pointer
455  */
456 void kvm_riscv_vcpu_wfi(struct kvm_vcpu *vcpu)
457 {
458 	if (!kvm_arch_vcpu_runnable(vcpu)) {
459 		srcu_read_unlock(&vcpu->kvm->srcu, vcpu->arch.srcu_idx);
460 		kvm_vcpu_halt(vcpu);
461 		vcpu->arch.srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
462 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
463 	}
464 }
465 
466 /**
467  * kvm_riscv_vcpu_unpriv_read -- Read machine word from Guest memory
468  *
469  * @vcpu: The VCPU pointer
470  * @read_insn: Flag representing whether we are reading instruction
471  * @guest_addr: Guest address to read
472  * @trap: Output pointer to trap details
473  */
474 unsigned long kvm_riscv_vcpu_unpriv_read(struct kvm_vcpu *vcpu,
475 					 bool read_insn,
476 					 unsigned long guest_addr,
477 					 struct kvm_cpu_trap *trap)
478 {
479 	register unsigned long taddr asm("a0") = (unsigned long)trap;
480 	register unsigned long ttmp asm("a1");
481 	register unsigned long val asm("t0");
482 	register unsigned long tmp asm("t1");
483 	register unsigned long addr asm("t2") = guest_addr;
484 	unsigned long flags;
485 	unsigned long old_stvec, old_hstatus;
486 
487 	local_irq_save(flags);
488 
489 	old_hstatus = csr_swap(CSR_HSTATUS, vcpu->arch.guest_context.hstatus);
490 	old_stvec = csr_swap(CSR_STVEC, (ulong)&__kvm_riscv_unpriv_trap);
491 
492 	if (read_insn) {
493 		/*
494 		 * HLVX.HU instruction
495 		 * 0110010 00011 rs1 100 rd 1110011
496 		 */
497 		asm volatile ("\n"
498 			".option push\n"
499 			".option norvc\n"
500 			"add %[ttmp], %[taddr], 0\n"
501 			/*
502 			 * HLVX.HU %[val], (%[addr])
503 			 * HLVX.HU t0, (t2)
504 			 * 0110010 00011 00111 100 00101 1110011
505 			 */
506 			".word 0x6433c2f3\n"
507 			"andi %[tmp], %[val], 3\n"
508 			"addi %[tmp], %[tmp], -3\n"
509 			"bne %[tmp], zero, 2f\n"
510 			"addi %[addr], %[addr], 2\n"
511 			/*
512 			 * HLVX.HU %[tmp], (%[addr])
513 			 * HLVX.HU t1, (t2)
514 			 * 0110010 00011 00111 100 00110 1110011
515 			 */
516 			".word 0x6433c373\n"
517 			"sll %[tmp], %[tmp], 16\n"
518 			"add %[val], %[val], %[tmp]\n"
519 			"2:\n"
520 			".option pop"
521 		: [val] "=&r" (val), [tmp] "=&r" (tmp),
522 		  [taddr] "+&r" (taddr), [ttmp] "+&r" (ttmp),
523 		  [addr] "+&r" (addr) : : "memory");
524 
525 		if (trap->scause == EXC_LOAD_PAGE_FAULT)
526 			trap->scause = EXC_INST_PAGE_FAULT;
527 	} else {
528 		/*
529 		 * HLV.D instruction
530 		 * 0110110 00000 rs1 100 rd 1110011
531 		 *
532 		 * HLV.W instruction
533 		 * 0110100 00000 rs1 100 rd 1110011
534 		 */
535 		asm volatile ("\n"
536 			".option push\n"
537 			".option norvc\n"
538 			"add %[ttmp], %[taddr], 0\n"
539 #ifdef CONFIG_64BIT
540 			/*
541 			 * HLV.D %[val], (%[addr])
542 			 * HLV.D t0, (t2)
543 			 * 0110110 00000 00111 100 00101 1110011
544 			 */
545 			".word 0x6c03c2f3\n"
546 #else
547 			/*
548 			 * HLV.W %[val], (%[addr])
549 			 * HLV.W t0, (t2)
550 			 * 0110100 00000 00111 100 00101 1110011
551 			 */
552 			".word 0x6803c2f3\n"
553 #endif
554 			".option pop"
555 		: [val] "=&r" (val),
556 		  [taddr] "+&r" (taddr), [ttmp] "+&r" (ttmp)
557 		: [addr] "r" (addr) : "memory");
558 	}
559 
560 	csr_write(CSR_STVEC, old_stvec);
561 	csr_write(CSR_HSTATUS, old_hstatus);
562 
563 	local_irq_restore(flags);
564 
565 	return val;
566 }
567 
568 /**
569  * kvm_riscv_vcpu_trap_redirect -- Redirect trap to Guest
570  *
571  * @vcpu: The VCPU pointer
572  * @trap: Trap details
573  */
574 void kvm_riscv_vcpu_trap_redirect(struct kvm_vcpu *vcpu,
575 				  struct kvm_cpu_trap *trap)
576 {
577 	unsigned long vsstatus = csr_read(CSR_VSSTATUS);
578 
579 	/* Change Guest SSTATUS.SPP bit */
580 	vsstatus &= ~SR_SPP;
581 	if (vcpu->arch.guest_context.sstatus & SR_SPP)
582 		vsstatus |= SR_SPP;
583 
584 	/* Change Guest SSTATUS.SPIE bit */
585 	vsstatus &= ~SR_SPIE;
586 	if (vsstatus & SR_SIE)
587 		vsstatus |= SR_SPIE;
588 
589 	/* Clear Guest SSTATUS.SIE bit */
590 	vsstatus &= ~SR_SIE;
591 
592 	/* Update Guest SSTATUS */
593 	csr_write(CSR_VSSTATUS, vsstatus);
594 
595 	/* Update Guest SCAUSE, STVAL, and SEPC */
596 	csr_write(CSR_VSCAUSE, trap->scause);
597 	csr_write(CSR_VSTVAL, trap->stval);
598 	csr_write(CSR_VSEPC, trap->sepc);
599 
600 	/* Set Guest PC to Guest exception vector */
601 	vcpu->arch.guest_context.sepc = csr_read(CSR_VSTVEC);
602 }
603 
604 /**
605  * kvm_riscv_vcpu_mmio_return -- Handle MMIO loads after user space emulation
606  *			     or in-kernel IO emulation
607  *
608  * @vcpu: The VCPU pointer
609  * @run:  The VCPU run struct containing the mmio data
610  */
611 int kvm_riscv_vcpu_mmio_return(struct kvm_vcpu *vcpu, struct kvm_run *run)
612 {
613 	u8 data8;
614 	u16 data16;
615 	u32 data32;
616 	u64 data64;
617 	ulong insn;
618 	int len, shift;
619 
620 	if (vcpu->arch.mmio_decode.return_handled)
621 		return 0;
622 
623 	vcpu->arch.mmio_decode.return_handled = 1;
624 	insn = vcpu->arch.mmio_decode.insn;
625 
626 	if (run->mmio.is_write)
627 		goto done;
628 
629 	len = vcpu->arch.mmio_decode.len;
630 	shift = vcpu->arch.mmio_decode.shift;
631 
632 	switch (len) {
633 	case 1:
634 		data8 = *((u8 *)run->mmio.data);
635 		SET_RD(insn, &vcpu->arch.guest_context,
636 			(ulong)data8 << shift >> shift);
637 		break;
638 	case 2:
639 		data16 = *((u16 *)run->mmio.data);
640 		SET_RD(insn, &vcpu->arch.guest_context,
641 			(ulong)data16 << shift >> shift);
642 		break;
643 	case 4:
644 		data32 = *((u32 *)run->mmio.data);
645 		SET_RD(insn, &vcpu->arch.guest_context,
646 			(ulong)data32 << shift >> shift);
647 		break;
648 	case 8:
649 		data64 = *((u64 *)run->mmio.data);
650 		SET_RD(insn, &vcpu->arch.guest_context,
651 			(ulong)data64 << shift >> shift);
652 		break;
653 	default:
654 		return -EOPNOTSUPP;
655 	}
656 
657 done:
658 	/* Move to next instruction */
659 	vcpu->arch.guest_context.sepc += vcpu->arch.mmio_decode.insn_len;
660 
661 	return 0;
662 }
663 
664 /*
665  * Return > 0 to return to guest, < 0 on error, 0 (and set exit_reason) on
666  * proper exit to userspace.
667  */
668 int kvm_riscv_vcpu_exit(struct kvm_vcpu *vcpu, struct kvm_run *run,
669 			struct kvm_cpu_trap *trap)
670 {
671 	int ret;
672 
673 	/* If we got host interrupt then do nothing */
674 	if (trap->scause & CAUSE_IRQ_FLAG)
675 		return 1;
676 
677 	/* Handle guest traps */
678 	ret = -EFAULT;
679 	run->exit_reason = KVM_EXIT_UNKNOWN;
680 	switch (trap->scause) {
681 	case EXC_VIRTUAL_INST_FAULT:
682 		if (vcpu->arch.guest_context.hstatus & HSTATUS_SPV)
683 			ret = virtual_inst_fault(vcpu, run, trap);
684 		break;
685 	case EXC_INST_GUEST_PAGE_FAULT:
686 	case EXC_LOAD_GUEST_PAGE_FAULT:
687 	case EXC_STORE_GUEST_PAGE_FAULT:
688 		if (vcpu->arch.guest_context.hstatus & HSTATUS_SPV)
689 			ret = stage2_page_fault(vcpu, run, trap);
690 		break;
691 	case EXC_SUPERVISOR_SYSCALL:
692 		if (vcpu->arch.guest_context.hstatus & HSTATUS_SPV)
693 			ret = kvm_riscv_vcpu_sbi_ecall(vcpu, run);
694 		break;
695 	default:
696 		break;
697 	}
698 
699 	/* Print details in-case of error */
700 	if (ret < 0) {
701 		kvm_err("VCPU exit error %d\n", ret);
702 		kvm_err("SEPC=0x%lx SSTATUS=0x%lx HSTATUS=0x%lx\n",
703 			vcpu->arch.guest_context.sepc,
704 			vcpu->arch.guest_context.sstatus,
705 			vcpu->arch.guest_context.hstatus);
706 		kvm_err("SCAUSE=0x%lx STVAL=0x%lx HTVAL=0x%lx HTINST=0x%lx\n",
707 			trap->scause, trap->stval, trap->htval, trap->htinst);
708 	}
709 
710 	return ret;
711 }
712