xref: /openbmc/linux/arch/riscv/kvm/vcpu.c (revision 2cfe9bbe)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2019 Western Digital Corporation or its affiliates.
4  *
5  * Authors:
6  *     Anup Patel <anup.patel@wdc.com>
7  */
8 
9 #include <linux/bitops.h>
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kdebug.h>
13 #include <linux/module.h>
14 #include <linux/percpu.h>
15 #include <linux/uaccess.h>
16 #include <linux/vmalloc.h>
17 #include <linux/sched/signal.h>
18 #include <linux/fs.h>
19 #include <linux/kvm_host.h>
20 #include <asm/csr.h>
21 #include <asm/hwcap.h>
22 
23 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
24 	KVM_GENERIC_VCPU_STATS(),
25 	STATS_DESC_COUNTER(VCPU, ecall_exit_stat),
26 	STATS_DESC_COUNTER(VCPU, wfi_exit_stat),
27 	STATS_DESC_COUNTER(VCPU, mmio_exit_user),
28 	STATS_DESC_COUNTER(VCPU, mmio_exit_kernel),
29 	STATS_DESC_COUNTER(VCPU, csr_exit_user),
30 	STATS_DESC_COUNTER(VCPU, csr_exit_kernel),
31 	STATS_DESC_COUNTER(VCPU, exits)
32 };
33 
34 const struct kvm_stats_header kvm_vcpu_stats_header = {
35 	.name_size = KVM_STATS_NAME_SIZE,
36 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
37 	.id_offset = sizeof(struct kvm_stats_header),
38 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
39 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
40 		       sizeof(kvm_vcpu_stats_desc),
41 };
42 
43 #define KVM_RISCV_BASE_ISA_MASK		GENMASK(25, 0)
44 
45 /* Mapping between KVM ISA Extension ID & Host ISA extension ID */
46 static const unsigned long kvm_isa_ext_arr[] = {
47 	RISCV_ISA_EXT_a,
48 	RISCV_ISA_EXT_c,
49 	RISCV_ISA_EXT_d,
50 	RISCV_ISA_EXT_f,
51 	RISCV_ISA_EXT_h,
52 	RISCV_ISA_EXT_i,
53 	RISCV_ISA_EXT_m,
54 	RISCV_ISA_EXT_SVPBMT,
55 };
56 
57 static unsigned long kvm_riscv_vcpu_base2isa_ext(unsigned long base_ext)
58 {
59 	unsigned long i;
60 
61 	for (i = 0; i < KVM_RISCV_ISA_EXT_MAX; i++) {
62 		if (kvm_isa_ext_arr[i] == base_ext)
63 			return i;
64 	}
65 
66 	return KVM_RISCV_ISA_EXT_MAX;
67 }
68 
69 static bool kvm_riscv_vcpu_isa_enable_allowed(unsigned long ext)
70 {
71 	switch (ext) {
72 	case KVM_RISCV_ISA_EXT_H:
73 		return false;
74 	default:
75 		break;
76 	}
77 
78 	return true;
79 }
80 
81 static bool kvm_riscv_vcpu_isa_disable_allowed(unsigned long ext)
82 {
83 	switch (ext) {
84 	case KVM_RISCV_ISA_EXT_A:
85 	case KVM_RISCV_ISA_EXT_C:
86 	case KVM_RISCV_ISA_EXT_I:
87 	case KVM_RISCV_ISA_EXT_M:
88 		return false;
89 	default:
90 		break;
91 	}
92 
93 	return true;
94 }
95 
96 static void kvm_riscv_reset_vcpu(struct kvm_vcpu *vcpu)
97 {
98 	struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
99 	struct kvm_vcpu_csr *reset_csr = &vcpu->arch.guest_reset_csr;
100 	struct kvm_cpu_context *cntx = &vcpu->arch.guest_context;
101 	struct kvm_cpu_context *reset_cntx = &vcpu->arch.guest_reset_context;
102 	bool loaded;
103 
104 	/**
105 	 * The preemption should be disabled here because it races with
106 	 * kvm_sched_out/kvm_sched_in(called from preempt notifiers) which
107 	 * also calls vcpu_load/put.
108 	 */
109 	get_cpu();
110 	loaded = (vcpu->cpu != -1);
111 	if (loaded)
112 		kvm_arch_vcpu_put(vcpu);
113 
114 	vcpu->arch.last_exit_cpu = -1;
115 
116 	memcpy(csr, reset_csr, sizeof(*csr));
117 
118 	memcpy(cntx, reset_cntx, sizeof(*cntx));
119 
120 	kvm_riscv_vcpu_fp_reset(vcpu);
121 
122 	kvm_riscv_vcpu_timer_reset(vcpu);
123 
124 	WRITE_ONCE(vcpu->arch.irqs_pending, 0);
125 	WRITE_ONCE(vcpu->arch.irqs_pending_mask, 0);
126 
127 	vcpu->arch.hfence_head = 0;
128 	vcpu->arch.hfence_tail = 0;
129 	memset(vcpu->arch.hfence_queue, 0, sizeof(vcpu->arch.hfence_queue));
130 
131 	/* Reset the guest CSRs for hotplug usecase */
132 	if (loaded)
133 		kvm_arch_vcpu_load(vcpu, smp_processor_id());
134 	put_cpu();
135 }
136 
137 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
138 {
139 	return 0;
140 }
141 
142 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
143 {
144 	struct kvm_cpu_context *cntx;
145 	struct kvm_vcpu_csr *reset_csr = &vcpu->arch.guest_reset_csr;
146 	unsigned long host_isa, i;
147 
148 	/* Mark this VCPU never ran */
149 	vcpu->arch.ran_atleast_once = false;
150 	vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
151 	bitmap_zero(vcpu->arch.isa, RISCV_ISA_EXT_MAX);
152 
153 	/* Setup ISA features available to VCPU */
154 	for (i = 0; i < ARRAY_SIZE(kvm_isa_ext_arr); i++) {
155 		host_isa = kvm_isa_ext_arr[i];
156 		if (__riscv_isa_extension_available(NULL, host_isa) &&
157 		    kvm_riscv_vcpu_isa_enable_allowed(i))
158 			set_bit(host_isa, vcpu->arch.isa);
159 	}
160 
161 	/* Setup VCPU hfence queue */
162 	spin_lock_init(&vcpu->arch.hfence_lock);
163 
164 	/* Setup reset state of shadow SSTATUS and HSTATUS CSRs */
165 	cntx = &vcpu->arch.guest_reset_context;
166 	cntx->sstatus = SR_SPP | SR_SPIE;
167 	cntx->hstatus = 0;
168 	cntx->hstatus |= HSTATUS_VTW;
169 	cntx->hstatus |= HSTATUS_SPVP;
170 	cntx->hstatus |= HSTATUS_SPV;
171 
172 	/* By default, make CY, TM, and IR counters accessible in VU mode */
173 	reset_csr->scounteren = 0x7;
174 
175 	/* Setup VCPU timer */
176 	kvm_riscv_vcpu_timer_init(vcpu);
177 
178 	/* Reset VCPU */
179 	kvm_riscv_reset_vcpu(vcpu);
180 
181 	return 0;
182 }
183 
184 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
185 {
186 	/**
187 	 * vcpu with id 0 is the designated boot cpu.
188 	 * Keep all vcpus with non-zero id in power-off state so that
189 	 * they can be brought up using SBI HSM extension.
190 	 */
191 	if (vcpu->vcpu_idx != 0)
192 		kvm_riscv_vcpu_power_off(vcpu);
193 }
194 
195 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
196 {
197 	/* Cleanup VCPU timer */
198 	kvm_riscv_vcpu_timer_deinit(vcpu);
199 
200 	/* Free unused pages pre-allocated for G-stage page table mappings */
201 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
202 }
203 
204 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
205 {
206 	return kvm_riscv_vcpu_has_interrupts(vcpu, 1UL << IRQ_VS_TIMER);
207 }
208 
209 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
210 {
211 }
212 
213 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
214 {
215 }
216 
217 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
218 {
219 	return (kvm_riscv_vcpu_has_interrupts(vcpu, -1UL) &&
220 		!vcpu->arch.power_off && !vcpu->arch.pause);
221 }
222 
223 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
224 {
225 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
226 }
227 
228 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
229 {
230 	return (vcpu->arch.guest_context.sstatus & SR_SPP) ? true : false;
231 }
232 
233 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
234 {
235 	return VM_FAULT_SIGBUS;
236 }
237 
238 static int kvm_riscv_vcpu_get_reg_config(struct kvm_vcpu *vcpu,
239 					 const struct kvm_one_reg *reg)
240 {
241 	unsigned long __user *uaddr =
242 			(unsigned long __user *)(unsigned long)reg->addr;
243 	unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK |
244 					    KVM_REG_SIZE_MASK |
245 					    KVM_REG_RISCV_CONFIG);
246 	unsigned long reg_val;
247 
248 	if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long))
249 		return -EINVAL;
250 
251 	switch (reg_num) {
252 	case KVM_REG_RISCV_CONFIG_REG(isa):
253 		reg_val = vcpu->arch.isa[0] & KVM_RISCV_BASE_ISA_MASK;
254 		break;
255 	default:
256 		return -EINVAL;
257 	}
258 
259 	if (copy_to_user(uaddr, &reg_val, KVM_REG_SIZE(reg->id)))
260 		return -EFAULT;
261 
262 	return 0;
263 }
264 
265 static int kvm_riscv_vcpu_set_reg_config(struct kvm_vcpu *vcpu,
266 					 const struct kvm_one_reg *reg)
267 {
268 	unsigned long __user *uaddr =
269 			(unsigned long __user *)(unsigned long)reg->addr;
270 	unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK |
271 					    KVM_REG_SIZE_MASK |
272 					    KVM_REG_RISCV_CONFIG);
273 	unsigned long i, isa_ext, reg_val;
274 
275 	if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long))
276 		return -EINVAL;
277 
278 	if (copy_from_user(&reg_val, uaddr, KVM_REG_SIZE(reg->id)))
279 		return -EFAULT;
280 
281 	/* This ONE REG interface is only defined for single letter extensions */
282 	if (fls(reg_val) >= RISCV_ISA_EXT_BASE)
283 		return -EINVAL;
284 
285 	switch (reg_num) {
286 	case KVM_REG_RISCV_CONFIG_REG(isa):
287 		if (!vcpu->arch.ran_atleast_once) {
288 			/* Ignore the enable/disable request for certain extensions */
289 			for (i = 0; i < RISCV_ISA_EXT_BASE; i++) {
290 				isa_ext = kvm_riscv_vcpu_base2isa_ext(i);
291 				if (isa_ext >= KVM_RISCV_ISA_EXT_MAX) {
292 					reg_val &= ~BIT(i);
293 					continue;
294 				}
295 				if (!kvm_riscv_vcpu_isa_enable_allowed(isa_ext))
296 					if (reg_val & BIT(i))
297 						reg_val &= ~BIT(i);
298 				if (!kvm_riscv_vcpu_isa_disable_allowed(isa_ext))
299 					if (!(reg_val & BIT(i)))
300 						reg_val |= BIT(i);
301 			}
302 			reg_val &= riscv_isa_extension_base(NULL);
303 			/* Do not modify anything beyond single letter extensions */
304 			reg_val = (vcpu->arch.isa[0] & ~KVM_RISCV_BASE_ISA_MASK) |
305 				  (reg_val & KVM_RISCV_BASE_ISA_MASK);
306 			vcpu->arch.isa[0] = reg_val;
307 			kvm_riscv_vcpu_fp_reset(vcpu);
308 		} else {
309 			return -EOPNOTSUPP;
310 		}
311 		break;
312 	default:
313 		return -EINVAL;
314 	}
315 
316 	return 0;
317 }
318 
319 static int kvm_riscv_vcpu_get_reg_core(struct kvm_vcpu *vcpu,
320 				       const struct kvm_one_reg *reg)
321 {
322 	struct kvm_cpu_context *cntx = &vcpu->arch.guest_context;
323 	unsigned long __user *uaddr =
324 			(unsigned long __user *)(unsigned long)reg->addr;
325 	unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK |
326 					    KVM_REG_SIZE_MASK |
327 					    KVM_REG_RISCV_CORE);
328 	unsigned long reg_val;
329 
330 	if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long))
331 		return -EINVAL;
332 	if (reg_num >= sizeof(struct kvm_riscv_core) / sizeof(unsigned long))
333 		return -EINVAL;
334 
335 	if (reg_num == KVM_REG_RISCV_CORE_REG(regs.pc))
336 		reg_val = cntx->sepc;
337 	else if (KVM_REG_RISCV_CORE_REG(regs.pc) < reg_num &&
338 		 reg_num <= KVM_REG_RISCV_CORE_REG(regs.t6))
339 		reg_val = ((unsigned long *)cntx)[reg_num];
340 	else if (reg_num == KVM_REG_RISCV_CORE_REG(mode))
341 		reg_val = (cntx->sstatus & SR_SPP) ?
342 				KVM_RISCV_MODE_S : KVM_RISCV_MODE_U;
343 	else
344 		return -EINVAL;
345 
346 	if (copy_to_user(uaddr, &reg_val, KVM_REG_SIZE(reg->id)))
347 		return -EFAULT;
348 
349 	return 0;
350 }
351 
352 static int kvm_riscv_vcpu_set_reg_core(struct kvm_vcpu *vcpu,
353 				       const struct kvm_one_reg *reg)
354 {
355 	struct kvm_cpu_context *cntx = &vcpu->arch.guest_context;
356 	unsigned long __user *uaddr =
357 			(unsigned long __user *)(unsigned long)reg->addr;
358 	unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK |
359 					    KVM_REG_SIZE_MASK |
360 					    KVM_REG_RISCV_CORE);
361 	unsigned long reg_val;
362 
363 	if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long))
364 		return -EINVAL;
365 	if (reg_num >= sizeof(struct kvm_riscv_core) / sizeof(unsigned long))
366 		return -EINVAL;
367 
368 	if (copy_from_user(&reg_val, uaddr, KVM_REG_SIZE(reg->id)))
369 		return -EFAULT;
370 
371 	if (reg_num == KVM_REG_RISCV_CORE_REG(regs.pc))
372 		cntx->sepc = reg_val;
373 	else if (KVM_REG_RISCV_CORE_REG(regs.pc) < reg_num &&
374 		 reg_num <= KVM_REG_RISCV_CORE_REG(regs.t6))
375 		((unsigned long *)cntx)[reg_num] = reg_val;
376 	else if (reg_num == KVM_REG_RISCV_CORE_REG(mode)) {
377 		if (reg_val == KVM_RISCV_MODE_S)
378 			cntx->sstatus |= SR_SPP;
379 		else
380 			cntx->sstatus &= ~SR_SPP;
381 	} else
382 		return -EINVAL;
383 
384 	return 0;
385 }
386 
387 static int kvm_riscv_vcpu_get_reg_csr(struct kvm_vcpu *vcpu,
388 				      const struct kvm_one_reg *reg)
389 {
390 	struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
391 	unsigned long __user *uaddr =
392 			(unsigned long __user *)(unsigned long)reg->addr;
393 	unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK |
394 					    KVM_REG_SIZE_MASK |
395 					    KVM_REG_RISCV_CSR);
396 	unsigned long reg_val;
397 
398 	if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long))
399 		return -EINVAL;
400 	if (reg_num >= sizeof(struct kvm_riscv_csr) / sizeof(unsigned long))
401 		return -EINVAL;
402 
403 	if (reg_num == KVM_REG_RISCV_CSR_REG(sip)) {
404 		kvm_riscv_vcpu_flush_interrupts(vcpu);
405 		reg_val = (csr->hvip >> VSIP_TO_HVIP_SHIFT) & VSIP_VALID_MASK;
406 	} else
407 		reg_val = ((unsigned long *)csr)[reg_num];
408 
409 	if (copy_to_user(uaddr, &reg_val, KVM_REG_SIZE(reg->id)))
410 		return -EFAULT;
411 
412 	return 0;
413 }
414 
415 static int kvm_riscv_vcpu_set_reg_csr(struct kvm_vcpu *vcpu,
416 				      const struct kvm_one_reg *reg)
417 {
418 	struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
419 	unsigned long __user *uaddr =
420 			(unsigned long __user *)(unsigned long)reg->addr;
421 	unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK |
422 					    KVM_REG_SIZE_MASK |
423 					    KVM_REG_RISCV_CSR);
424 	unsigned long reg_val;
425 
426 	if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long))
427 		return -EINVAL;
428 	if (reg_num >= sizeof(struct kvm_riscv_csr) / sizeof(unsigned long))
429 		return -EINVAL;
430 
431 	if (copy_from_user(&reg_val, uaddr, KVM_REG_SIZE(reg->id)))
432 		return -EFAULT;
433 
434 	if (reg_num == KVM_REG_RISCV_CSR_REG(sip)) {
435 		reg_val &= VSIP_VALID_MASK;
436 		reg_val <<= VSIP_TO_HVIP_SHIFT;
437 	}
438 
439 	((unsigned long *)csr)[reg_num] = reg_val;
440 
441 	if (reg_num == KVM_REG_RISCV_CSR_REG(sip))
442 		WRITE_ONCE(vcpu->arch.irqs_pending_mask, 0);
443 
444 	return 0;
445 }
446 
447 static int kvm_riscv_vcpu_get_reg_isa_ext(struct kvm_vcpu *vcpu,
448 					  const struct kvm_one_reg *reg)
449 {
450 	unsigned long __user *uaddr =
451 			(unsigned long __user *)(unsigned long)reg->addr;
452 	unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK |
453 					    KVM_REG_SIZE_MASK |
454 					    KVM_REG_RISCV_ISA_EXT);
455 	unsigned long reg_val = 0;
456 	unsigned long host_isa_ext;
457 
458 	if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long))
459 		return -EINVAL;
460 
461 	if (reg_num >= KVM_RISCV_ISA_EXT_MAX ||
462 	    reg_num >= ARRAY_SIZE(kvm_isa_ext_arr))
463 		return -EINVAL;
464 
465 	host_isa_ext = kvm_isa_ext_arr[reg_num];
466 	if (__riscv_isa_extension_available(vcpu->arch.isa, host_isa_ext))
467 		reg_val = 1; /* Mark the given extension as available */
468 
469 	if (copy_to_user(uaddr, &reg_val, KVM_REG_SIZE(reg->id)))
470 		return -EFAULT;
471 
472 	return 0;
473 }
474 
475 static int kvm_riscv_vcpu_set_reg_isa_ext(struct kvm_vcpu *vcpu,
476 					  const struct kvm_one_reg *reg)
477 {
478 	unsigned long __user *uaddr =
479 			(unsigned long __user *)(unsigned long)reg->addr;
480 	unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK |
481 					    KVM_REG_SIZE_MASK |
482 					    KVM_REG_RISCV_ISA_EXT);
483 	unsigned long reg_val;
484 	unsigned long host_isa_ext;
485 
486 	if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long))
487 		return -EINVAL;
488 
489 	if (reg_num >= KVM_RISCV_ISA_EXT_MAX ||
490 	    reg_num >= ARRAY_SIZE(kvm_isa_ext_arr))
491 		return -EINVAL;
492 
493 	if (copy_from_user(&reg_val, uaddr, KVM_REG_SIZE(reg->id)))
494 		return -EFAULT;
495 
496 	host_isa_ext = kvm_isa_ext_arr[reg_num];
497 	if (!__riscv_isa_extension_available(NULL, host_isa_ext))
498 		return	-EOPNOTSUPP;
499 
500 	if (!vcpu->arch.ran_atleast_once) {
501 		/*
502 		 * All multi-letter extension and a few single letter
503 		 * extension can be disabled
504 		 */
505 		if (reg_val == 1 &&
506 		    kvm_riscv_vcpu_isa_enable_allowed(reg_num))
507 			set_bit(host_isa_ext, vcpu->arch.isa);
508 		else if (!reg_val &&
509 			 kvm_riscv_vcpu_isa_disable_allowed(reg_num))
510 			clear_bit(host_isa_ext, vcpu->arch.isa);
511 		else
512 			return -EINVAL;
513 		kvm_riscv_vcpu_fp_reset(vcpu);
514 	} else {
515 		return -EOPNOTSUPP;
516 	}
517 
518 	return 0;
519 }
520 
521 static int kvm_riscv_vcpu_set_reg(struct kvm_vcpu *vcpu,
522 				  const struct kvm_one_reg *reg)
523 {
524 	if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_CONFIG)
525 		return kvm_riscv_vcpu_set_reg_config(vcpu, reg);
526 	else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_CORE)
527 		return kvm_riscv_vcpu_set_reg_core(vcpu, reg);
528 	else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_CSR)
529 		return kvm_riscv_vcpu_set_reg_csr(vcpu, reg);
530 	else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_TIMER)
531 		return kvm_riscv_vcpu_set_reg_timer(vcpu, reg);
532 	else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_FP_F)
533 		return kvm_riscv_vcpu_set_reg_fp(vcpu, reg,
534 						 KVM_REG_RISCV_FP_F);
535 	else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_FP_D)
536 		return kvm_riscv_vcpu_set_reg_fp(vcpu, reg,
537 						 KVM_REG_RISCV_FP_D);
538 	else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_ISA_EXT)
539 		return kvm_riscv_vcpu_set_reg_isa_ext(vcpu, reg);
540 
541 	return -EINVAL;
542 }
543 
544 static int kvm_riscv_vcpu_get_reg(struct kvm_vcpu *vcpu,
545 				  const struct kvm_one_reg *reg)
546 {
547 	if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_CONFIG)
548 		return kvm_riscv_vcpu_get_reg_config(vcpu, reg);
549 	else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_CORE)
550 		return kvm_riscv_vcpu_get_reg_core(vcpu, reg);
551 	else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_CSR)
552 		return kvm_riscv_vcpu_get_reg_csr(vcpu, reg);
553 	else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_TIMER)
554 		return kvm_riscv_vcpu_get_reg_timer(vcpu, reg);
555 	else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_FP_F)
556 		return kvm_riscv_vcpu_get_reg_fp(vcpu, reg,
557 						 KVM_REG_RISCV_FP_F);
558 	else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_FP_D)
559 		return kvm_riscv_vcpu_get_reg_fp(vcpu, reg,
560 						 KVM_REG_RISCV_FP_D);
561 	else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_ISA_EXT)
562 		return kvm_riscv_vcpu_get_reg_isa_ext(vcpu, reg);
563 
564 	return -EINVAL;
565 }
566 
567 long kvm_arch_vcpu_async_ioctl(struct file *filp,
568 			       unsigned int ioctl, unsigned long arg)
569 {
570 	struct kvm_vcpu *vcpu = filp->private_data;
571 	void __user *argp = (void __user *)arg;
572 
573 	if (ioctl == KVM_INTERRUPT) {
574 		struct kvm_interrupt irq;
575 
576 		if (copy_from_user(&irq, argp, sizeof(irq)))
577 			return -EFAULT;
578 
579 		if (irq.irq == KVM_INTERRUPT_SET)
580 			return kvm_riscv_vcpu_set_interrupt(vcpu, IRQ_VS_EXT);
581 		else
582 			return kvm_riscv_vcpu_unset_interrupt(vcpu, IRQ_VS_EXT);
583 	}
584 
585 	return -ENOIOCTLCMD;
586 }
587 
588 long kvm_arch_vcpu_ioctl(struct file *filp,
589 			 unsigned int ioctl, unsigned long arg)
590 {
591 	struct kvm_vcpu *vcpu = filp->private_data;
592 	void __user *argp = (void __user *)arg;
593 	long r = -EINVAL;
594 
595 	switch (ioctl) {
596 	case KVM_SET_ONE_REG:
597 	case KVM_GET_ONE_REG: {
598 		struct kvm_one_reg reg;
599 
600 		r = -EFAULT;
601 		if (copy_from_user(&reg, argp, sizeof(reg)))
602 			break;
603 
604 		if (ioctl == KVM_SET_ONE_REG)
605 			r = kvm_riscv_vcpu_set_reg(vcpu, &reg);
606 		else
607 			r = kvm_riscv_vcpu_get_reg(vcpu, &reg);
608 		break;
609 	}
610 	default:
611 		break;
612 	}
613 
614 	return r;
615 }
616 
617 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
618 				  struct kvm_sregs *sregs)
619 {
620 	return -EINVAL;
621 }
622 
623 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
624 				  struct kvm_sregs *sregs)
625 {
626 	return -EINVAL;
627 }
628 
629 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
630 {
631 	return -EINVAL;
632 }
633 
634 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
635 {
636 	return -EINVAL;
637 }
638 
639 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
640 				  struct kvm_translation *tr)
641 {
642 	return -EINVAL;
643 }
644 
645 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
646 {
647 	return -EINVAL;
648 }
649 
650 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
651 {
652 	return -EINVAL;
653 }
654 
655 void kvm_riscv_vcpu_flush_interrupts(struct kvm_vcpu *vcpu)
656 {
657 	struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
658 	unsigned long mask, val;
659 
660 	if (READ_ONCE(vcpu->arch.irqs_pending_mask)) {
661 		mask = xchg_acquire(&vcpu->arch.irqs_pending_mask, 0);
662 		val = READ_ONCE(vcpu->arch.irqs_pending) & mask;
663 
664 		csr->hvip &= ~mask;
665 		csr->hvip |= val;
666 	}
667 }
668 
669 void kvm_riscv_vcpu_sync_interrupts(struct kvm_vcpu *vcpu)
670 {
671 	unsigned long hvip;
672 	struct kvm_vcpu_arch *v = &vcpu->arch;
673 	struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
674 
675 	/* Read current HVIP and VSIE CSRs */
676 	csr->vsie = csr_read(CSR_VSIE);
677 
678 	/* Sync-up HVIP.VSSIP bit changes does by Guest */
679 	hvip = csr_read(CSR_HVIP);
680 	if ((csr->hvip ^ hvip) & (1UL << IRQ_VS_SOFT)) {
681 		if (hvip & (1UL << IRQ_VS_SOFT)) {
682 			if (!test_and_set_bit(IRQ_VS_SOFT,
683 					      &v->irqs_pending_mask))
684 				set_bit(IRQ_VS_SOFT, &v->irqs_pending);
685 		} else {
686 			if (!test_and_set_bit(IRQ_VS_SOFT,
687 					      &v->irqs_pending_mask))
688 				clear_bit(IRQ_VS_SOFT, &v->irqs_pending);
689 		}
690 	}
691 }
692 
693 int kvm_riscv_vcpu_set_interrupt(struct kvm_vcpu *vcpu, unsigned int irq)
694 {
695 	if (irq != IRQ_VS_SOFT &&
696 	    irq != IRQ_VS_TIMER &&
697 	    irq != IRQ_VS_EXT)
698 		return -EINVAL;
699 
700 	set_bit(irq, &vcpu->arch.irqs_pending);
701 	smp_mb__before_atomic();
702 	set_bit(irq, &vcpu->arch.irqs_pending_mask);
703 
704 	kvm_vcpu_kick(vcpu);
705 
706 	return 0;
707 }
708 
709 int kvm_riscv_vcpu_unset_interrupt(struct kvm_vcpu *vcpu, unsigned int irq)
710 {
711 	if (irq != IRQ_VS_SOFT &&
712 	    irq != IRQ_VS_TIMER &&
713 	    irq != IRQ_VS_EXT)
714 		return -EINVAL;
715 
716 	clear_bit(irq, &vcpu->arch.irqs_pending);
717 	smp_mb__before_atomic();
718 	set_bit(irq, &vcpu->arch.irqs_pending_mask);
719 
720 	return 0;
721 }
722 
723 bool kvm_riscv_vcpu_has_interrupts(struct kvm_vcpu *vcpu, unsigned long mask)
724 {
725 	unsigned long ie = ((vcpu->arch.guest_csr.vsie & VSIP_VALID_MASK)
726 			    << VSIP_TO_HVIP_SHIFT) & mask;
727 
728 	return (READ_ONCE(vcpu->arch.irqs_pending) & ie) ? true : false;
729 }
730 
731 void kvm_riscv_vcpu_power_off(struct kvm_vcpu *vcpu)
732 {
733 	vcpu->arch.power_off = true;
734 	kvm_make_request(KVM_REQ_SLEEP, vcpu);
735 	kvm_vcpu_kick(vcpu);
736 }
737 
738 void kvm_riscv_vcpu_power_on(struct kvm_vcpu *vcpu)
739 {
740 	vcpu->arch.power_off = false;
741 	kvm_vcpu_wake_up(vcpu);
742 }
743 
744 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
745 				    struct kvm_mp_state *mp_state)
746 {
747 	if (vcpu->arch.power_off)
748 		mp_state->mp_state = KVM_MP_STATE_STOPPED;
749 	else
750 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
751 
752 	return 0;
753 }
754 
755 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
756 				    struct kvm_mp_state *mp_state)
757 {
758 	int ret = 0;
759 
760 	switch (mp_state->mp_state) {
761 	case KVM_MP_STATE_RUNNABLE:
762 		vcpu->arch.power_off = false;
763 		break;
764 	case KVM_MP_STATE_STOPPED:
765 		kvm_riscv_vcpu_power_off(vcpu);
766 		break;
767 	default:
768 		ret = -EINVAL;
769 	}
770 
771 	return ret;
772 }
773 
774 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
775 					struct kvm_guest_debug *dbg)
776 {
777 	/* TODO; To be implemented later. */
778 	return -EINVAL;
779 }
780 
781 static void kvm_riscv_vcpu_update_config(const unsigned long *isa)
782 {
783 	u64 henvcfg = 0;
784 
785 	if (__riscv_isa_extension_available(isa, RISCV_ISA_EXT_SVPBMT))
786 		henvcfg |= ENVCFG_PBMTE;
787 
788 	csr_write(CSR_HENVCFG, henvcfg);
789 #ifdef CONFIG_32BIT
790 	csr_write(CSR_HENVCFGH, henvcfg >> 32);
791 #endif
792 }
793 
794 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
795 {
796 	struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
797 
798 	csr_write(CSR_VSSTATUS, csr->vsstatus);
799 	csr_write(CSR_VSIE, csr->vsie);
800 	csr_write(CSR_VSTVEC, csr->vstvec);
801 	csr_write(CSR_VSSCRATCH, csr->vsscratch);
802 	csr_write(CSR_VSEPC, csr->vsepc);
803 	csr_write(CSR_VSCAUSE, csr->vscause);
804 	csr_write(CSR_VSTVAL, csr->vstval);
805 	csr_write(CSR_HVIP, csr->hvip);
806 	csr_write(CSR_VSATP, csr->vsatp);
807 
808 	kvm_riscv_vcpu_update_config(vcpu->arch.isa);
809 
810 	kvm_riscv_gstage_update_hgatp(vcpu);
811 
812 	kvm_riscv_vcpu_timer_restore(vcpu);
813 
814 	kvm_riscv_vcpu_host_fp_save(&vcpu->arch.host_context);
815 	kvm_riscv_vcpu_guest_fp_restore(&vcpu->arch.guest_context,
816 					vcpu->arch.isa);
817 
818 	vcpu->cpu = cpu;
819 }
820 
821 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
822 {
823 	struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
824 
825 	vcpu->cpu = -1;
826 
827 	kvm_riscv_vcpu_guest_fp_save(&vcpu->arch.guest_context,
828 				     vcpu->arch.isa);
829 	kvm_riscv_vcpu_host_fp_restore(&vcpu->arch.host_context);
830 
831 	csr->vsstatus = csr_read(CSR_VSSTATUS);
832 	csr->vsie = csr_read(CSR_VSIE);
833 	csr->vstvec = csr_read(CSR_VSTVEC);
834 	csr->vsscratch = csr_read(CSR_VSSCRATCH);
835 	csr->vsepc = csr_read(CSR_VSEPC);
836 	csr->vscause = csr_read(CSR_VSCAUSE);
837 	csr->vstval = csr_read(CSR_VSTVAL);
838 	csr->hvip = csr_read(CSR_HVIP);
839 	csr->vsatp = csr_read(CSR_VSATP);
840 }
841 
842 static void kvm_riscv_check_vcpu_requests(struct kvm_vcpu *vcpu)
843 {
844 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
845 
846 	if (kvm_request_pending(vcpu)) {
847 		if (kvm_check_request(KVM_REQ_SLEEP, vcpu)) {
848 			kvm_vcpu_srcu_read_unlock(vcpu);
849 			rcuwait_wait_event(wait,
850 				(!vcpu->arch.power_off) && (!vcpu->arch.pause),
851 				TASK_INTERRUPTIBLE);
852 			kvm_vcpu_srcu_read_lock(vcpu);
853 
854 			if (vcpu->arch.power_off || vcpu->arch.pause) {
855 				/*
856 				 * Awaken to handle a signal, request to
857 				 * sleep again later.
858 				 */
859 				kvm_make_request(KVM_REQ_SLEEP, vcpu);
860 			}
861 		}
862 
863 		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
864 			kvm_riscv_reset_vcpu(vcpu);
865 
866 		if (kvm_check_request(KVM_REQ_UPDATE_HGATP, vcpu))
867 			kvm_riscv_gstage_update_hgatp(vcpu);
868 
869 		if (kvm_check_request(KVM_REQ_FENCE_I, vcpu))
870 			kvm_riscv_fence_i_process(vcpu);
871 
872 		/*
873 		 * The generic KVM_REQ_TLB_FLUSH is same as
874 		 * KVM_REQ_HFENCE_GVMA_VMID_ALL
875 		 */
876 		if (kvm_check_request(KVM_REQ_HFENCE_GVMA_VMID_ALL, vcpu))
877 			kvm_riscv_hfence_gvma_vmid_all_process(vcpu);
878 
879 		if (kvm_check_request(KVM_REQ_HFENCE_VVMA_ALL, vcpu))
880 			kvm_riscv_hfence_vvma_all_process(vcpu);
881 
882 		if (kvm_check_request(KVM_REQ_HFENCE, vcpu))
883 			kvm_riscv_hfence_process(vcpu);
884 	}
885 }
886 
887 static void kvm_riscv_update_hvip(struct kvm_vcpu *vcpu)
888 {
889 	struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
890 
891 	csr_write(CSR_HVIP, csr->hvip);
892 }
893 
894 /*
895  * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
896  * the vCPU is running.
897  *
898  * This must be noinstr as instrumentation may make use of RCU, and this is not
899  * safe during the EQS.
900  */
901 static void noinstr kvm_riscv_vcpu_enter_exit(struct kvm_vcpu *vcpu)
902 {
903 	guest_state_enter_irqoff();
904 	__kvm_riscv_switch_to(&vcpu->arch);
905 	vcpu->arch.last_exit_cpu = vcpu->cpu;
906 	guest_state_exit_irqoff();
907 }
908 
909 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
910 {
911 	int ret;
912 	struct kvm_cpu_trap trap;
913 	struct kvm_run *run = vcpu->run;
914 
915 	/* Mark this VCPU ran at least once */
916 	vcpu->arch.ran_atleast_once = true;
917 
918 	kvm_vcpu_srcu_read_lock(vcpu);
919 
920 	switch (run->exit_reason) {
921 	case KVM_EXIT_MMIO:
922 		/* Process MMIO value returned from user-space */
923 		ret = kvm_riscv_vcpu_mmio_return(vcpu, vcpu->run);
924 		break;
925 	case KVM_EXIT_RISCV_SBI:
926 		/* Process SBI value returned from user-space */
927 		ret = kvm_riscv_vcpu_sbi_return(vcpu, vcpu->run);
928 		break;
929 	case KVM_EXIT_RISCV_CSR:
930 		/* Process CSR value returned from user-space */
931 		ret = kvm_riscv_vcpu_csr_return(vcpu, vcpu->run);
932 		break;
933 	default:
934 		ret = 0;
935 		break;
936 	}
937 	if (ret) {
938 		kvm_vcpu_srcu_read_unlock(vcpu);
939 		return ret;
940 	}
941 
942 	if (run->immediate_exit) {
943 		kvm_vcpu_srcu_read_unlock(vcpu);
944 		return -EINTR;
945 	}
946 
947 	vcpu_load(vcpu);
948 
949 	kvm_sigset_activate(vcpu);
950 
951 	ret = 1;
952 	run->exit_reason = KVM_EXIT_UNKNOWN;
953 	while (ret > 0) {
954 		/* Check conditions before entering the guest */
955 		cond_resched();
956 
957 		kvm_riscv_gstage_vmid_update(vcpu);
958 
959 		kvm_riscv_check_vcpu_requests(vcpu);
960 
961 		local_irq_disable();
962 
963 		/*
964 		 * Exit if we have a signal pending so that we can deliver
965 		 * the signal to user space.
966 		 */
967 		if (signal_pending(current)) {
968 			ret = -EINTR;
969 			run->exit_reason = KVM_EXIT_INTR;
970 		}
971 
972 		/*
973 		 * Ensure we set mode to IN_GUEST_MODE after we disable
974 		 * interrupts and before the final VCPU requests check.
975 		 * See the comment in kvm_vcpu_exiting_guest_mode() and
976 		 * Documentation/virt/kvm/vcpu-requests.rst
977 		 */
978 		vcpu->mode = IN_GUEST_MODE;
979 
980 		kvm_vcpu_srcu_read_unlock(vcpu);
981 		smp_mb__after_srcu_read_unlock();
982 
983 		/*
984 		 * We might have got VCPU interrupts updated asynchronously
985 		 * so update it in HW.
986 		 */
987 		kvm_riscv_vcpu_flush_interrupts(vcpu);
988 
989 		/* Update HVIP CSR for current CPU */
990 		kvm_riscv_update_hvip(vcpu);
991 
992 		if (ret <= 0 ||
993 		    kvm_riscv_gstage_vmid_ver_changed(&vcpu->kvm->arch.vmid) ||
994 		    kvm_request_pending(vcpu)) {
995 			vcpu->mode = OUTSIDE_GUEST_MODE;
996 			local_irq_enable();
997 			kvm_vcpu_srcu_read_lock(vcpu);
998 			continue;
999 		}
1000 
1001 		/*
1002 		 * Cleanup stale TLB enteries
1003 		 *
1004 		 * Note: This should be done after G-stage VMID has been
1005 		 * updated using kvm_riscv_gstage_vmid_ver_changed()
1006 		 */
1007 		kvm_riscv_local_tlb_sanitize(vcpu);
1008 
1009 		guest_timing_enter_irqoff();
1010 
1011 		kvm_riscv_vcpu_enter_exit(vcpu);
1012 
1013 		vcpu->mode = OUTSIDE_GUEST_MODE;
1014 		vcpu->stat.exits++;
1015 
1016 		/*
1017 		 * Save SCAUSE, STVAL, HTVAL, and HTINST because we might
1018 		 * get an interrupt between __kvm_riscv_switch_to() and
1019 		 * local_irq_enable() which can potentially change CSRs.
1020 		 */
1021 		trap.sepc = vcpu->arch.guest_context.sepc;
1022 		trap.scause = csr_read(CSR_SCAUSE);
1023 		trap.stval = csr_read(CSR_STVAL);
1024 		trap.htval = csr_read(CSR_HTVAL);
1025 		trap.htinst = csr_read(CSR_HTINST);
1026 
1027 		/* Syncup interrupts state with HW */
1028 		kvm_riscv_vcpu_sync_interrupts(vcpu);
1029 
1030 		preempt_disable();
1031 
1032 		/*
1033 		 * We must ensure that any pending interrupts are taken before
1034 		 * we exit guest timing so that timer ticks are accounted as
1035 		 * guest time. Transiently unmask interrupts so that any
1036 		 * pending interrupts are taken.
1037 		 *
1038 		 * There's no barrier which ensures that pending interrupts are
1039 		 * recognised, so we just hope that the CPU takes any pending
1040 		 * interrupts between the enable and disable.
1041 		 */
1042 		local_irq_enable();
1043 		local_irq_disable();
1044 
1045 		guest_timing_exit_irqoff();
1046 
1047 		local_irq_enable();
1048 
1049 		preempt_enable();
1050 
1051 		kvm_vcpu_srcu_read_lock(vcpu);
1052 
1053 		ret = kvm_riscv_vcpu_exit(vcpu, run, &trap);
1054 	}
1055 
1056 	kvm_sigset_deactivate(vcpu);
1057 
1058 	vcpu_put(vcpu);
1059 
1060 	kvm_vcpu_srcu_read_unlock(vcpu);
1061 
1062 	return ret;
1063 }
1064