xref: /openbmc/linux/arch/riscv/kernel/ptrace.c (revision 19dc81b4017baffd6e919fd71cfc8dcbd5442e15)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2010 Tilera Corporation. All Rights Reserved.
4  * Copyright 2015 Regents of the University of California
5  * Copyright 2017 SiFive
6  *
7  * Copied from arch/tile/kernel/ptrace.c
8  */
9 
10 #include <asm/ptrace.h>
11 #include <asm/syscall.h>
12 #include <asm/thread_info.h>
13 #include <asm/switch_to.h>
14 #include <linux/audit.h>
15 #include <linux/ptrace.h>
16 #include <linux/elf.h>
17 #include <linux/regset.h>
18 #include <linux/sched.h>
19 #include <linux/sched/task_stack.h>
20 #include <linux/tracehook.h>
21 
22 #define CREATE_TRACE_POINTS
23 #include <trace/events/syscalls.h>
24 
25 enum riscv_regset {
26 	REGSET_X,
27 #ifdef CONFIG_FPU
28 	REGSET_F,
29 #endif
30 };
31 
32 static int riscv_gpr_get(struct task_struct *target,
33 			 const struct user_regset *regset,
34 			 struct membuf to)
35 {
36 	return membuf_write(&to, task_pt_regs(target),
37 			    sizeof(struct user_regs_struct));
38 }
39 
40 static int riscv_gpr_set(struct task_struct *target,
41 			 const struct user_regset *regset,
42 			 unsigned int pos, unsigned int count,
43 			 const void *kbuf, const void __user *ubuf)
44 {
45 	struct pt_regs *regs;
46 
47 	regs = task_pt_regs(target);
48 	return user_regset_copyin(&pos, &count, &kbuf, &ubuf, regs, 0, -1);
49 }
50 
51 #ifdef CONFIG_FPU
52 static int riscv_fpr_get(struct task_struct *target,
53 			 const struct user_regset *regset,
54 			 struct membuf to)
55 {
56 	struct __riscv_d_ext_state *fstate = &target->thread.fstate;
57 
58 	if (target == current)
59 		fstate_save(current, task_pt_regs(current));
60 
61 	membuf_write(&to, fstate, offsetof(struct __riscv_d_ext_state, fcsr));
62 	membuf_store(&to, fstate->fcsr);
63 	return membuf_zero(&to, 4);	// explicitly pad
64 }
65 
66 static int riscv_fpr_set(struct task_struct *target,
67 			 const struct user_regset *regset,
68 			 unsigned int pos, unsigned int count,
69 			 const void *kbuf, const void __user *ubuf)
70 {
71 	int ret;
72 	struct __riscv_d_ext_state *fstate = &target->thread.fstate;
73 
74 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, fstate, 0,
75 				 offsetof(struct __riscv_d_ext_state, fcsr));
76 	if (!ret) {
77 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, fstate, 0,
78 					 offsetof(struct __riscv_d_ext_state, fcsr) +
79 					 sizeof(fstate->fcsr));
80 	}
81 
82 	return ret;
83 }
84 #endif
85 
86 static const struct user_regset riscv_user_regset[] = {
87 	[REGSET_X] = {
88 		.core_note_type = NT_PRSTATUS,
89 		.n = ELF_NGREG,
90 		.size = sizeof(elf_greg_t),
91 		.align = sizeof(elf_greg_t),
92 		.regset_get = riscv_gpr_get,
93 		.set = riscv_gpr_set,
94 	},
95 #ifdef CONFIG_FPU
96 	[REGSET_F] = {
97 		.core_note_type = NT_PRFPREG,
98 		.n = ELF_NFPREG,
99 		.size = sizeof(elf_fpreg_t),
100 		.align = sizeof(elf_fpreg_t),
101 		.regset_get = riscv_fpr_get,
102 		.set = riscv_fpr_set,
103 	},
104 #endif
105 };
106 
107 static const struct user_regset_view riscv_user_native_view = {
108 	.name = "riscv",
109 	.e_machine = EM_RISCV,
110 	.regsets = riscv_user_regset,
111 	.n = ARRAY_SIZE(riscv_user_regset),
112 };
113 
114 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
115 {
116 	return &riscv_user_native_view;
117 }
118 
119 struct pt_regs_offset {
120 	const char *name;
121 	int offset;
122 };
123 
124 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
125 #define REG_OFFSET_END {.name = NULL, .offset = 0}
126 
127 static const struct pt_regs_offset regoffset_table[] = {
128 	REG_OFFSET_NAME(epc),
129 	REG_OFFSET_NAME(ra),
130 	REG_OFFSET_NAME(sp),
131 	REG_OFFSET_NAME(gp),
132 	REG_OFFSET_NAME(tp),
133 	REG_OFFSET_NAME(t0),
134 	REG_OFFSET_NAME(t1),
135 	REG_OFFSET_NAME(t2),
136 	REG_OFFSET_NAME(s0),
137 	REG_OFFSET_NAME(s1),
138 	REG_OFFSET_NAME(a0),
139 	REG_OFFSET_NAME(a1),
140 	REG_OFFSET_NAME(a2),
141 	REG_OFFSET_NAME(a3),
142 	REG_OFFSET_NAME(a4),
143 	REG_OFFSET_NAME(a5),
144 	REG_OFFSET_NAME(a6),
145 	REG_OFFSET_NAME(a7),
146 	REG_OFFSET_NAME(s2),
147 	REG_OFFSET_NAME(s3),
148 	REG_OFFSET_NAME(s4),
149 	REG_OFFSET_NAME(s5),
150 	REG_OFFSET_NAME(s6),
151 	REG_OFFSET_NAME(s7),
152 	REG_OFFSET_NAME(s8),
153 	REG_OFFSET_NAME(s9),
154 	REG_OFFSET_NAME(s10),
155 	REG_OFFSET_NAME(s11),
156 	REG_OFFSET_NAME(t3),
157 	REG_OFFSET_NAME(t4),
158 	REG_OFFSET_NAME(t5),
159 	REG_OFFSET_NAME(t6),
160 	REG_OFFSET_NAME(status),
161 	REG_OFFSET_NAME(badaddr),
162 	REG_OFFSET_NAME(cause),
163 	REG_OFFSET_NAME(orig_a0),
164 	REG_OFFSET_END,
165 };
166 
167 /**
168  * regs_query_register_offset() - query register offset from its name
169  * @name:	the name of a register
170  *
171  * regs_query_register_offset() returns the offset of a register in struct
172  * pt_regs from its name. If the name is invalid, this returns -EINVAL;
173  */
174 int regs_query_register_offset(const char *name)
175 {
176 	const struct pt_regs_offset *roff;
177 
178 	for (roff = regoffset_table; roff->name != NULL; roff++)
179 		if (!strcmp(roff->name, name))
180 			return roff->offset;
181 	return -EINVAL;
182 }
183 
184 /**
185  * regs_within_kernel_stack() - check the address in the stack
186  * @regs:      pt_regs which contains kernel stack pointer.
187  * @addr:      address which is checked.
188  *
189  * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
190  * If @addr is within the kernel stack, it returns true. If not, returns false.
191  */
192 static bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
193 {
194 	return (addr & ~(THREAD_SIZE - 1))  ==
195 		(kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1));
196 }
197 
198 /**
199  * regs_get_kernel_stack_nth() - get Nth entry of the stack
200  * @regs:	pt_regs which contains kernel stack pointer.
201  * @n:		stack entry number.
202  *
203  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
204  * is specified by @regs. If the @n th entry is NOT in the kernel stack,
205  * this returns 0.
206  */
207 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
208 {
209 	unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
210 
211 	addr += n;
212 	if (regs_within_kernel_stack(regs, (unsigned long)addr))
213 		return *addr;
214 	else
215 		return 0;
216 }
217 
218 void ptrace_disable(struct task_struct *child)
219 {
220 	clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
221 }
222 
223 long arch_ptrace(struct task_struct *child, long request,
224 		 unsigned long addr, unsigned long data)
225 {
226 	long ret = -EIO;
227 
228 	switch (request) {
229 	default:
230 		ret = ptrace_request(child, request, addr, data);
231 		break;
232 	}
233 
234 	return ret;
235 }
236 
237 /*
238  * Allows PTRACE_SYSCALL to work.  These are called from entry.S in
239  * {handle,ret_from}_syscall.
240  */
241 __visible int do_syscall_trace_enter(struct pt_regs *regs)
242 {
243 	if (test_thread_flag(TIF_SYSCALL_TRACE))
244 		if (tracehook_report_syscall_entry(regs))
245 			return -1;
246 
247 	/*
248 	 * Do the secure computing after ptrace; failures should be fast.
249 	 * If this fails we might have return value in a0 from seccomp
250 	 * (via SECCOMP_RET_ERRNO/TRACE).
251 	 */
252 	if (secure_computing() == -1)
253 		return -1;
254 
255 #ifdef CONFIG_HAVE_SYSCALL_TRACEPOINTS
256 	if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
257 		trace_sys_enter(regs, syscall_get_nr(current, regs));
258 #endif
259 
260 	audit_syscall_entry(regs->a7, regs->a0, regs->a1, regs->a2, regs->a3);
261 	return 0;
262 }
263 
264 __visible void do_syscall_trace_exit(struct pt_regs *regs)
265 {
266 	audit_syscall_exit(regs);
267 
268 	if (test_thread_flag(TIF_SYSCALL_TRACE))
269 		tracehook_report_syscall_exit(regs, 0);
270 
271 #ifdef CONFIG_HAVE_SYSCALL_TRACEPOINTS
272 	if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
273 		trace_sys_exit(regs, regs_return_value(regs));
274 #endif
275 }
276