1 // SPDX-License-Identifier: GPL-2.0+ 2 3 #include <linux/kprobes.h> 4 #include <linux/extable.h> 5 #include <linux/slab.h> 6 #include <linux/stop_machine.h> 7 #include <asm/ptrace.h> 8 #include <linux/uaccess.h> 9 #include <asm/sections.h> 10 #include <asm/cacheflush.h> 11 #include <asm/bug.h> 12 #include <asm/patch.h> 13 14 #include "decode-insn.h" 15 16 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; 17 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 18 19 static void __kprobes 20 post_kprobe_handler(struct kprobe_ctlblk *, struct pt_regs *); 21 22 static void __kprobes arch_prepare_ss_slot(struct kprobe *p) 23 { 24 unsigned long offset = GET_INSN_LENGTH(p->opcode); 25 26 p->ainsn.api.restore = (unsigned long)p->addr + offset; 27 28 patch_text(p->ainsn.api.insn, p->opcode); 29 patch_text((void *)((unsigned long)(p->ainsn.api.insn) + offset), 30 __BUG_INSN_32); 31 } 32 33 static void __kprobes arch_prepare_simulate(struct kprobe *p) 34 { 35 p->ainsn.api.restore = 0; 36 } 37 38 static void __kprobes arch_simulate_insn(struct kprobe *p, struct pt_regs *regs) 39 { 40 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 41 42 if (p->ainsn.api.handler) 43 p->ainsn.api.handler((u32)p->opcode, 44 (unsigned long)p->addr, regs); 45 46 post_kprobe_handler(kcb, regs); 47 } 48 49 int __kprobes arch_prepare_kprobe(struct kprobe *p) 50 { 51 unsigned long probe_addr = (unsigned long)p->addr; 52 53 if (probe_addr & 0x1) { 54 pr_warn("Address not aligned.\n"); 55 56 return -EINVAL; 57 } 58 59 /* copy instruction */ 60 p->opcode = *p->addr; 61 62 /* decode instruction */ 63 switch (riscv_probe_decode_insn(p->addr, &p->ainsn.api)) { 64 case INSN_REJECTED: /* insn not supported */ 65 return -EINVAL; 66 67 case INSN_GOOD_NO_SLOT: /* insn need simulation */ 68 p->ainsn.api.insn = NULL; 69 break; 70 71 case INSN_GOOD: /* instruction uses slot */ 72 p->ainsn.api.insn = get_insn_slot(); 73 if (!p->ainsn.api.insn) 74 return -ENOMEM; 75 break; 76 } 77 78 /* prepare the instruction */ 79 if (p->ainsn.api.insn) 80 arch_prepare_ss_slot(p); 81 else 82 arch_prepare_simulate(p); 83 84 return 0; 85 } 86 87 void *alloc_insn_page(void) 88 { 89 return __vmalloc_node_range(PAGE_SIZE, 1, VMALLOC_START, VMALLOC_END, 90 GFP_KERNEL, PAGE_KERNEL_READ_EXEC, 91 VM_FLUSH_RESET_PERMS, NUMA_NO_NODE, 92 __builtin_return_address(0)); 93 } 94 95 /* install breakpoint in text */ 96 void __kprobes arch_arm_kprobe(struct kprobe *p) 97 { 98 if ((p->opcode & __INSN_LENGTH_MASK) == __INSN_LENGTH_32) 99 patch_text(p->addr, __BUG_INSN_32); 100 else 101 patch_text(p->addr, __BUG_INSN_16); 102 } 103 104 /* remove breakpoint from text */ 105 void __kprobes arch_disarm_kprobe(struct kprobe *p) 106 { 107 patch_text(p->addr, p->opcode); 108 } 109 110 void __kprobes arch_remove_kprobe(struct kprobe *p) 111 { 112 } 113 114 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) 115 { 116 kcb->prev_kprobe.kp = kprobe_running(); 117 kcb->prev_kprobe.status = kcb->kprobe_status; 118 } 119 120 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) 121 { 122 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); 123 kcb->kprobe_status = kcb->prev_kprobe.status; 124 } 125 126 static void __kprobes set_current_kprobe(struct kprobe *p) 127 { 128 __this_cpu_write(current_kprobe, p); 129 } 130 131 /* 132 * Interrupts need to be disabled before single-step mode is set, and not 133 * reenabled until after single-step mode ends. 134 * Without disabling interrupt on local CPU, there is a chance of 135 * interrupt occurrence in the period of exception return and start of 136 * out-of-line single-step, that result in wrongly single stepping 137 * into the interrupt handler. 138 */ 139 static void __kprobes kprobes_save_local_irqflag(struct kprobe_ctlblk *kcb, 140 struct pt_regs *regs) 141 { 142 kcb->saved_status = regs->status; 143 regs->status &= ~SR_SPIE; 144 } 145 146 static void __kprobes kprobes_restore_local_irqflag(struct kprobe_ctlblk *kcb, 147 struct pt_regs *regs) 148 { 149 regs->status = kcb->saved_status; 150 } 151 152 static void __kprobes 153 set_ss_context(struct kprobe_ctlblk *kcb, unsigned long addr, struct kprobe *p) 154 { 155 unsigned long offset = GET_INSN_LENGTH(p->opcode); 156 157 kcb->ss_ctx.ss_pending = true; 158 kcb->ss_ctx.match_addr = addr + offset; 159 } 160 161 static void __kprobes clear_ss_context(struct kprobe_ctlblk *kcb) 162 { 163 kcb->ss_ctx.ss_pending = false; 164 kcb->ss_ctx.match_addr = 0; 165 } 166 167 static void __kprobes setup_singlestep(struct kprobe *p, 168 struct pt_regs *regs, 169 struct kprobe_ctlblk *kcb, int reenter) 170 { 171 unsigned long slot; 172 173 if (reenter) { 174 save_previous_kprobe(kcb); 175 set_current_kprobe(p); 176 kcb->kprobe_status = KPROBE_REENTER; 177 } else { 178 kcb->kprobe_status = KPROBE_HIT_SS; 179 } 180 181 if (p->ainsn.api.insn) { 182 /* prepare for single stepping */ 183 slot = (unsigned long)p->ainsn.api.insn; 184 185 set_ss_context(kcb, slot, p); /* mark pending ss */ 186 187 /* IRQs and single stepping do not mix well. */ 188 kprobes_save_local_irqflag(kcb, regs); 189 190 instruction_pointer_set(regs, slot); 191 } else { 192 /* insn simulation */ 193 arch_simulate_insn(p, regs); 194 } 195 } 196 197 static int __kprobes reenter_kprobe(struct kprobe *p, 198 struct pt_regs *regs, 199 struct kprobe_ctlblk *kcb) 200 { 201 switch (kcb->kprobe_status) { 202 case KPROBE_HIT_SSDONE: 203 case KPROBE_HIT_ACTIVE: 204 kprobes_inc_nmissed_count(p); 205 setup_singlestep(p, regs, kcb, 1); 206 break; 207 case KPROBE_HIT_SS: 208 case KPROBE_REENTER: 209 pr_warn("Unrecoverable kprobe detected.\n"); 210 dump_kprobe(p); 211 BUG(); 212 break; 213 default: 214 WARN_ON(1); 215 return 0; 216 } 217 218 return 1; 219 } 220 221 static void __kprobes 222 post_kprobe_handler(struct kprobe_ctlblk *kcb, struct pt_regs *regs) 223 { 224 struct kprobe *cur = kprobe_running(); 225 226 if (!cur) 227 return; 228 229 /* return addr restore if non-branching insn */ 230 if (cur->ainsn.api.restore != 0) 231 regs->epc = cur->ainsn.api.restore; 232 233 /* restore back original saved kprobe variables and continue */ 234 if (kcb->kprobe_status == KPROBE_REENTER) { 235 restore_previous_kprobe(kcb); 236 return; 237 } 238 239 /* call post handler */ 240 kcb->kprobe_status = KPROBE_HIT_SSDONE; 241 if (cur->post_handler) { 242 /* post_handler can hit breakpoint and single step 243 * again, so we enable D-flag for recursive exception. 244 */ 245 cur->post_handler(cur, regs, 0); 246 } 247 248 reset_current_kprobe(); 249 } 250 251 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int trapnr) 252 { 253 struct kprobe *cur = kprobe_running(); 254 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 255 256 switch (kcb->kprobe_status) { 257 case KPROBE_HIT_SS: 258 case KPROBE_REENTER: 259 /* 260 * We are here because the instruction being single 261 * stepped caused a page fault. We reset the current 262 * kprobe and the ip points back to the probe address 263 * and allow the page fault handler to continue as a 264 * normal page fault. 265 */ 266 regs->epc = (unsigned long) cur->addr; 267 BUG_ON(!instruction_pointer(regs)); 268 269 if (kcb->kprobe_status == KPROBE_REENTER) 270 restore_previous_kprobe(kcb); 271 else { 272 kprobes_restore_local_irqflag(kcb, regs); 273 reset_current_kprobe(); 274 } 275 276 break; 277 case KPROBE_HIT_ACTIVE: 278 case KPROBE_HIT_SSDONE: 279 /* 280 * We increment the nmissed count for accounting, 281 * we can also use npre/npostfault count for accounting 282 * these specific fault cases. 283 */ 284 kprobes_inc_nmissed_count(cur); 285 286 /* 287 * We come here because instructions in the pre/post 288 * handler caused the page_fault, this could happen 289 * if handler tries to access user space by 290 * copy_from_user(), get_user() etc. Let the 291 * user-specified handler try to fix it first. 292 */ 293 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) 294 return 1; 295 296 /* 297 * In case the user-specified fault handler returned 298 * zero, try to fix up. 299 */ 300 if (fixup_exception(regs)) 301 return 1; 302 } 303 return 0; 304 } 305 306 bool __kprobes 307 kprobe_breakpoint_handler(struct pt_regs *regs) 308 { 309 struct kprobe *p, *cur_kprobe; 310 struct kprobe_ctlblk *kcb; 311 unsigned long addr = instruction_pointer(regs); 312 313 kcb = get_kprobe_ctlblk(); 314 cur_kprobe = kprobe_running(); 315 316 p = get_kprobe((kprobe_opcode_t *) addr); 317 318 if (p) { 319 if (cur_kprobe) { 320 if (reenter_kprobe(p, regs, kcb)) 321 return true; 322 } else { 323 /* Probe hit */ 324 set_current_kprobe(p); 325 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 326 327 /* 328 * If we have no pre-handler or it returned 0, we 329 * continue with normal processing. If we have a 330 * pre-handler and it returned non-zero, it will 331 * modify the execution path and no need to single 332 * stepping. Let's just reset current kprobe and exit. 333 * 334 * pre_handler can hit a breakpoint and can step thru 335 * before return. 336 */ 337 if (!p->pre_handler || !p->pre_handler(p, regs)) 338 setup_singlestep(p, regs, kcb, 0); 339 else 340 reset_current_kprobe(); 341 } 342 return true; 343 } 344 345 /* 346 * The breakpoint instruction was removed right 347 * after we hit it. Another cpu has removed 348 * either a probepoint or a debugger breakpoint 349 * at this address. In either case, no further 350 * handling of this interrupt is appropriate. 351 * Return back to original instruction, and continue. 352 */ 353 return false; 354 } 355 356 bool __kprobes 357 kprobe_single_step_handler(struct pt_regs *regs) 358 { 359 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 360 361 if ((kcb->ss_ctx.ss_pending) 362 && (kcb->ss_ctx.match_addr == instruction_pointer(regs))) { 363 clear_ss_context(kcb); /* clear pending ss */ 364 365 kprobes_restore_local_irqflag(kcb, regs); 366 367 post_kprobe_handler(kcb, regs); 368 return true; 369 } 370 return false; 371 } 372 373 /* 374 * Provide a blacklist of symbols identifying ranges which cannot be kprobed. 375 * This blacklist is exposed to userspace via debugfs (kprobes/blacklist). 376 */ 377 int __init arch_populate_kprobe_blacklist(void) 378 { 379 int ret; 380 381 ret = kprobe_add_area_blacklist((unsigned long)__irqentry_text_start, 382 (unsigned long)__irqentry_text_end); 383 return ret; 384 } 385 386 void __kprobes __used *trampoline_probe_handler(struct pt_regs *regs) 387 { 388 return (void *)kretprobe_trampoline_handler(regs, &kretprobe_trampoline, NULL); 389 } 390 391 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, 392 struct pt_regs *regs) 393 { 394 ri->ret_addr = (kprobe_opcode_t *)regs->ra; 395 ri->fp = NULL; 396 regs->ra = (unsigned long) &kretprobe_trampoline; 397 } 398 399 int __kprobes arch_trampoline_kprobe(struct kprobe *p) 400 { 401 return 0; 402 } 403 404 int __init arch_init_kprobes(void) 405 { 406 return 0; 407 } 408