xref: /openbmc/linux/arch/riscv/kernel/probes/kprobes.c (revision 0cb4228f)
1 // SPDX-License-Identifier: GPL-2.0+
2 
3 #define pr_fmt(fmt) "kprobes: " fmt
4 
5 #include <linux/kprobes.h>
6 #include <linux/extable.h>
7 #include <linux/slab.h>
8 #include <linux/stop_machine.h>
9 #include <asm/ptrace.h>
10 #include <linux/uaccess.h>
11 #include <asm/sections.h>
12 #include <asm/cacheflush.h>
13 #include <asm/bug.h>
14 #include <asm/patch.h>
15 
16 #include "decode-insn.h"
17 
18 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
19 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
20 
21 static void __kprobes
22 post_kprobe_handler(struct kprobe *, struct kprobe_ctlblk *, struct pt_regs *);
23 
24 static void __kprobes arch_prepare_ss_slot(struct kprobe *p)
25 {
26 	unsigned long offset = GET_INSN_LENGTH(p->opcode);
27 
28 	p->ainsn.api.restore = (unsigned long)p->addr + offset;
29 
30 	patch_text(p->ainsn.api.insn, p->opcode);
31 	patch_text((void *)((unsigned long)(p->ainsn.api.insn) + offset),
32 		   __BUG_INSN_32);
33 }
34 
35 static void __kprobes arch_prepare_simulate(struct kprobe *p)
36 {
37 	p->ainsn.api.restore = 0;
38 }
39 
40 static void __kprobes arch_simulate_insn(struct kprobe *p, struct pt_regs *regs)
41 {
42 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
43 
44 	if (p->ainsn.api.handler)
45 		p->ainsn.api.handler((u32)p->opcode,
46 					(unsigned long)p->addr, regs);
47 
48 	post_kprobe_handler(p, kcb, regs);
49 }
50 
51 int __kprobes arch_prepare_kprobe(struct kprobe *p)
52 {
53 	unsigned long probe_addr = (unsigned long)p->addr;
54 
55 	if (probe_addr & 0x1)
56 		return -EILSEQ;
57 
58 	/* copy instruction */
59 	p->opcode = *p->addr;
60 
61 	/* decode instruction */
62 	switch (riscv_probe_decode_insn(p->addr, &p->ainsn.api)) {
63 	case INSN_REJECTED:	/* insn not supported */
64 		return -EINVAL;
65 
66 	case INSN_GOOD_NO_SLOT:	/* insn need simulation */
67 		p->ainsn.api.insn = NULL;
68 		break;
69 
70 	case INSN_GOOD:	/* instruction uses slot */
71 		p->ainsn.api.insn = get_insn_slot();
72 		if (!p->ainsn.api.insn)
73 			return -ENOMEM;
74 		break;
75 	}
76 
77 	/* prepare the instruction */
78 	if (p->ainsn.api.insn)
79 		arch_prepare_ss_slot(p);
80 	else
81 		arch_prepare_simulate(p);
82 
83 	return 0;
84 }
85 
86 #ifdef CONFIG_MMU
87 void *alloc_insn_page(void)
88 {
89 	return  __vmalloc_node_range(PAGE_SIZE, 1, VMALLOC_START, VMALLOC_END,
90 				     GFP_KERNEL, PAGE_KERNEL_READ_EXEC,
91 				     VM_FLUSH_RESET_PERMS, NUMA_NO_NODE,
92 				     __builtin_return_address(0));
93 }
94 #endif
95 
96 /* install breakpoint in text */
97 void __kprobes arch_arm_kprobe(struct kprobe *p)
98 {
99 	if ((p->opcode & __INSN_LENGTH_MASK) == __INSN_LENGTH_32)
100 		patch_text(p->addr, __BUG_INSN_32);
101 	else
102 		patch_text(p->addr, __BUG_INSN_16);
103 }
104 
105 /* remove breakpoint from text */
106 void __kprobes arch_disarm_kprobe(struct kprobe *p)
107 {
108 	patch_text(p->addr, p->opcode);
109 }
110 
111 void __kprobes arch_remove_kprobe(struct kprobe *p)
112 {
113 }
114 
115 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
116 {
117 	kcb->prev_kprobe.kp = kprobe_running();
118 	kcb->prev_kprobe.status = kcb->kprobe_status;
119 }
120 
121 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
122 {
123 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
124 	kcb->kprobe_status = kcb->prev_kprobe.status;
125 }
126 
127 static void __kprobes set_current_kprobe(struct kprobe *p)
128 {
129 	__this_cpu_write(current_kprobe, p);
130 }
131 
132 /*
133  * Interrupts need to be disabled before single-step mode is set, and not
134  * reenabled until after single-step mode ends.
135  * Without disabling interrupt on local CPU, there is a chance of
136  * interrupt occurrence in the period of exception return and  start of
137  * out-of-line single-step, that result in wrongly single stepping
138  * into the interrupt handler.
139  */
140 static void __kprobes kprobes_save_local_irqflag(struct kprobe_ctlblk *kcb,
141 						struct pt_regs *regs)
142 {
143 	kcb->saved_status = regs->status;
144 	regs->status &= ~SR_SPIE;
145 }
146 
147 static void __kprobes kprobes_restore_local_irqflag(struct kprobe_ctlblk *kcb,
148 						struct pt_regs *regs)
149 {
150 	regs->status = kcb->saved_status;
151 }
152 
153 static void __kprobes setup_singlestep(struct kprobe *p,
154 				       struct pt_regs *regs,
155 				       struct kprobe_ctlblk *kcb, int reenter)
156 {
157 	unsigned long slot;
158 
159 	if (reenter) {
160 		save_previous_kprobe(kcb);
161 		set_current_kprobe(p);
162 		kcb->kprobe_status = KPROBE_REENTER;
163 	} else {
164 		kcb->kprobe_status = KPROBE_HIT_SS;
165 	}
166 
167 	if (p->ainsn.api.insn) {
168 		/* prepare for single stepping */
169 		slot = (unsigned long)p->ainsn.api.insn;
170 
171 		/* IRQs and single stepping do not mix well. */
172 		kprobes_save_local_irqflag(kcb, regs);
173 
174 		instruction_pointer_set(regs, slot);
175 	} else {
176 		/* insn simulation */
177 		arch_simulate_insn(p, regs);
178 	}
179 }
180 
181 static int __kprobes reenter_kprobe(struct kprobe *p,
182 				    struct pt_regs *regs,
183 				    struct kprobe_ctlblk *kcb)
184 {
185 	switch (kcb->kprobe_status) {
186 	case KPROBE_HIT_SSDONE:
187 	case KPROBE_HIT_ACTIVE:
188 		kprobes_inc_nmissed_count(p);
189 		setup_singlestep(p, regs, kcb, 1);
190 		break;
191 	case KPROBE_HIT_SS:
192 	case KPROBE_REENTER:
193 		pr_warn("Failed to recover from reentered kprobes.\n");
194 		dump_kprobe(p);
195 		BUG();
196 		break;
197 	default:
198 		WARN_ON(1);
199 		return 0;
200 	}
201 
202 	return 1;
203 }
204 
205 static void __kprobes
206 post_kprobe_handler(struct kprobe *cur, struct kprobe_ctlblk *kcb, struct pt_regs *regs)
207 {
208 	/* return addr restore if non-branching insn */
209 	if (cur->ainsn.api.restore != 0)
210 		regs->epc = cur->ainsn.api.restore;
211 
212 	/* restore back original saved kprobe variables and continue */
213 	if (kcb->kprobe_status == KPROBE_REENTER) {
214 		restore_previous_kprobe(kcb);
215 		return;
216 	}
217 
218 	/* call post handler */
219 	kcb->kprobe_status = KPROBE_HIT_SSDONE;
220 	if (cur->post_handler)	{
221 		/* post_handler can hit breakpoint and single step
222 		 * again, so we enable D-flag for recursive exception.
223 		 */
224 		cur->post_handler(cur, regs, 0);
225 	}
226 
227 	reset_current_kprobe();
228 }
229 
230 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int trapnr)
231 {
232 	struct kprobe *cur = kprobe_running();
233 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
234 
235 	switch (kcb->kprobe_status) {
236 	case KPROBE_HIT_SS:
237 	case KPROBE_REENTER:
238 		/*
239 		 * We are here because the instruction being single
240 		 * stepped caused a page fault. We reset the current
241 		 * kprobe and the ip points back to the probe address
242 		 * and allow the page fault handler to continue as a
243 		 * normal page fault.
244 		 */
245 		regs->epc = (unsigned long) cur->addr;
246 		BUG_ON(!instruction_pointer(regs));
247 
248 		if (kcb->kprobe_status == KPROBE_REENTER)
249 			restore_previous_kprobe(kcb);
250 		else {
251 			kprobes_restore_local_irqflag(kcb, regs);
252 			reset_current_kprobe();
253 		}
254 
255 		break;
256 	case KPROBE_HIT_ACTIVE:
257 	case KPROBE_HIT_SSDONE:
258 		/*
259 		 * In case the user-specified fault handler returned
260 		 * zero, try to fix up.
261 		 */
262 		if (fixup_exception(regs))
263 			return 1;
264 	}
265 	return 0;
266 }
267 
268 bool __kprobes
269 kprobe_breakpoint_handler(struct pt_regs *regs)
270 {
271 	struct kprobe *p, *cur_kprobe;
272 	struct kprobe_ctlblk *kcb;
273 	unsigned long addr = instruction_pointer(regs);
274 
275 	kcb = get_kprobe_ctlblk();
276 	cur_kprobe = kprobe_running();
277 
278 	p = get_kprobe((kprobe_opcode_t *) addr);
279 
280 	if (p) {
281 		if (cur_kprobe) {
282 			if (reenter_kprobe(p, regs, kcb))
283 				return true;
284 		} else {
285 			/* Probe hit */
286 			set_current_kprobe(p);
287 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
288 
289 			/*
290 			 * If we have no pre-handler or it returned 0, we
291 			 * continue with normal processing.  If we have a
292 			 * pre-handler and it returned non-zero, it will
293 			 * modify the execution path and no need to single
294 			 * stepping. Let's just reset current kprobe and exit.
295 			 *
296 			 * pre_handler can hit a breakpoint and can step thru
297 			 * before return.
298 			 */
299 			if (!p->pre_handler || !p->pre_handler(p, regs))
300 				setup_singlestep(p, regs, kcb, 0);
301 			else
302 				reset_current_kprobe();
303 		}
304 		return true;
305 	}
306 
307 	/*
308 	 * The breakpoint instruction was removed right
309 	 * after we hit it.  Another cpu has removed
310 	 * either a probepoint or a debugger breakpoint
311 	 * at this address.  In either case, no further
312 	 * handling of this interrupt is appropriate.
313 	 * Return back to original instruction, and continue.
314 	 */
315 	return false;
316 }
317 
318 bool __kprobes
319 kprobe_single_step_handler(struct pt_regs *regs)
320 {
321 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
322 	unsigned long addr = instruction_pointer(regs);
323 	struct kprobe *cur = kprobe_running();
324 
325 	if (cur && (kcb->kprobe_status & (KPROBE_HIT_SS | KPROBE_REENTER)) &&
326 	    ((unsigned long)&cur->ainsn.api.insn[0] + GET_INSN_LENGTH(cur->opcode) == addr)) {
327 		kprobes_restore_local_irqflag(kcb, regs);
328 		post_kprobe_handler(cur, kcb, regs);
329 		return true;
330 	}
331 	/* not ours, kprobes should ignore it */
332 	return false;
333 }
334 
335 /*
336  * Provide a blacklist of symbols identifying ranges which cannot be kprobed.
337  * This blacklist is exposed to userspace via debugfs (kprobes/blacklist).
338  */
339 int __init arch_populate_kprobe_blacklist(void)
340 {
341 	int ret;
342 
343 	ret = kprobe_add_area_blacklist((unsigned long)__irqentry_text_start,
344 					(unsigned long)__irqentry_text_end);
345 	return ret;
346 }
347 
348 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
349 {
350 	return 0;
351 }
352 
353 int __init arch_init_kprobes(void)
354 {
355 	return 0;
356 }
357