xref: /openbmc/linux/arch/riscv/kernel/cacheinfo.c (revision b4646da0573fae9dfa2b8f1f10936cb6eedd7230)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2017 SiFive
4  */
5 
6 #include <linux/cpu.h>
7 #include <linux/of.h>
8 #include <asm/cacheinfo.h>
9 
10 static struct riscv_cacheinfo_ops *rv_cache_ops;
11 
12 void riscv_set_cacheinfo_ops(struct riscv_cacheinfo_ops *ops)
13 {
14 	rv_cache_ops = ops;
15 }
16 EXPORT_SYMBOL_GPL(riscv_set_cacheinfo_ops);
17 
18 const struct attribute_group *
19 cache_get_priv_group(struct cacheinfo *this_leaf)
20 {
21 	if (rv_cache_ops && rv_cache_ops->get_priv_group)
22 		return rv_cache_ops->get_priv_group(this_leaf);
23 	return NULL;
24 }
25 
26 static struct cacheinfo *get_cacheinfo(u32 level, enum cache_type type)
27 {
28 	/*
29 	 * Using raw_smp_processor_id() elides a preemptability check, but this
30 	 * is really indicative of a larger problem: the cacheinfo UABI assumes
31 	 * that cores have a homonogenous view of the cache hierarchy.  That
32 	 * happens to be the case for the current set of RISC-V systems, but
33 	 * likely won't be true in general.  Since there's no way to provide
34 	 * correct information for these systems via the current UABI we're
35 	 * just eliding the check for now.
36 	 */
37 	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(raw_smp_processor_id());
38 	struct cacheinfo *this_leaf;
39 	int index;
40 
41 	for (index = 0; index < this_cpu_ci->num_leaves; index++) {
42 		this_leaf = this_cpu_ci->info_list + index;
43 		if (this_leaf->level == level && this_leaf->type == type)
44 			return this_leaf;
45 	}
46 
47 	return NULL;
48 }
49 
50 uintptr_t get_cache_size(u32 level, enum cache_type type)
51 {
52 	struct cacheinfo *this_leaf = get_cacheinfo(level, type);
53 
54 	return this_leaf ? this_leaf->size : 0;
55 }
56 
57 uintptr_t get_cache_geometry(u32 level, enum cache_type type)
58 {
59 	struct cacheinfo *this_leaf = get_cacheinfo(level, type);
60 
61 	return this_leaf ? (this_leaf->ways_of_associativity << 16 |
62 			    this_leaf->coherency_line_size) :
63 			   0;
64 }
65 
66 static void ci_leaf_init(struct cacheinfo *this_leaf,
67 			 struct device_node *node,
68 			 enum cache_type type, unsigned int level)
69 {
70 	this_leaf->level = level;
71 	this_leaf->type = type;
72 }
73 
74 int populate_cache_leaves(unsigned int cpu)
75 {
76 	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
77 	struct cacheinfo *this_leaf = this_cpu_ci->info_list;
78 	struct device_node *np = of_cpu_device_node_get(cpu);
79 	struct device_node *prev = NULL;
80 	int levels = 1, level = 1;
81 
82 	if (of_property_read_bool(np, "cache-size"))
83 		ci_leaf_init(this_leaf++, np, CACHE_TYPE_UNIFIED, level);
84 	if (of_property_read_bool(np, "i-cache-size"))
85 		ci_leaf_init(this_leaf++, np, CACHE_TYPE_INST, level);
86 	if (of_property_read_bool(np, "d-cache-size"))
87 		ci_leaf_init(this_leaf++, np, CACHE_TYPE_DATA, level);
88 
89 	prev = np;
90 	while ((np = of_find_next_cache_node(np))) {
91 		of_node_put(prev);
92 		prev = np;
93 		if (!of_device_is_compatible(np, "cache"))
94 			break;
95 		if (of_property_read_u32(np, "cache-level", &level))
96 			break;
97 		if (level <= levels)
98 			break;
99 		if (of_property_read_bool(np, "cache-size"))
100 			ci_leaf_init(this_leaf++, np, CACHE_TYPE_UNIFIED, level);
101 		if (of_property_read_bool(np, "i-cache-size"))
102 			ci_leaf_init(this_leaf++, np, CACHE_TYPE_INST, level);
103 		if (of_property_read_bool(np, "d-cache-size"))
104 			ci_leaf_init(this_leaf++, np, CACHE_TYPE_DATA, level);
105 		levels = level;
106 	}
107 	of_node_put(np);
108 
109 	return 0;
110 }
111