xref: /openbmc/linux/arch/riscv/include/asm/pgtable.h (revision fcbd8037f7df694aa7bfb7ce82c0c7f5e53e7b7b)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012 Regents of the University of California
4  */
5 
6 #ifndef _ASM_RISCV_PGTABLE_H
7 #define _ASM_RISCV_PGTABLE_H
8 
9 #include <linux/mmzone.h>
10 #include <linux/sizes.h>
11 
12 #include <asm/pgtable-bits.h>
13 
14 #ifndef __ASSEMBLY__
15 
16 /* Page Upper Directory not used in RISC-V */
17 #include <asm-generic/pgtable-nopud.h>
18 #include <asm/page.h>
19 #include <asm/tlbflush.h>
20 #include <linux/mm_types.h>
21 
22 #ifdef CONFIG_64BIT
23 #include <asm/pgtable-64.h>
24 #else
25 #include <asm/pgtable-32.h>
26 #endif /* CONFIG_64BIT */
27 
28 /* Number of entries in the page global directory */
29 #define PTRS_PER_PGD    (PAGE_SIZE / sizeof(pgd_t))
30 /* Number of entries in the page table */
31 #define PTRS_PER_PTE    (PAGE_SIZE / sizeof(pte_t))
32 
33 /* Number of PGD entries that a user-mode program can use */
34 #define USER_PTRS_PER_PGD   (TASK_SIZE / PGDIR_SIZE)
35 #define FIRST_USER_ADDRESS  0
36 
37 /* Page protection bits */
38 #define _PAGE_BASE	(_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_USER)
39 
40 #define PAGE_NONE		__pgprot(_PAGE_PROT_NONE)
41 #define PAGE_READ		__pgprot(_PAGE_BASE | _PAGE_READ)
42 #define PAGE_WRITE		__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_WRITE)
43 #define PAGE_EXEC		__pgprot(_PAGE_BASE | _PAGE_EXEC)
44 #define PAGE_READ_EXEC		__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
45 #define PAGE_WRITE_EXEC		__pgprot(_PAGE_BASE | _PAGE_READ |	\
46 					 _PAGE_EXEC | _PAGE_WRITE)
47 
48 #define PAGE_COPY		PAGE_READ
49 #define PAGE_COPY_EXEC		PAGE_EXEC
50 #define PAGE_COPY_READ_EXEC	PAGE_READ_EXEC
51 #define PAGE_SHARED		PAGE_WRITE
52 #define PAGE_SHARED_EXEC	PAGE_WRITE_EXEC
53 
54 #define _PAGE_KERNEL		(_PAGE_READ \
55 				| _PAGE_WRITE \
56 				| _PAGE_PRESENT \
57 				| _PAGE_ACCESSED \
58 				| _PAGE_DIRTY)
59 
60 #define PAGE_KERNEL		__pgprot(_PAGE_KERNEL)
61 #define PAGE_KERNEL_EXEC	__pgprot(_PAGE_KERNEL | _PAGE_EXEC)
62 
63 #define PAGE_TABLE		__pgprot(_PAGE_TABLE)
64 
65 extern pgd_t swapper_pg_dir[];
66 
67 /* MAP_PRIVATE permissions: xwr (copy-on-write) */
68 #define __P000	PAGE_NONE
69 #define __P001	PAGE_READ
70 #define __P010	PAGE_COPY
71 #define __P011	PAGE_COPY
72 #define __P100	PAGE_EXEC
73 #define __P101	PAGE_READ_EXEC
74 #define __P110	PAGE_COPY_EXEC
75 #define __P111	PAGE_COPY_READ_EXEC
76 
77 /* MAP_SHARED permissions: xwr */
78 #define __S000	PAGE_NONE
79 #define __S001	PAGE_READ
80 #define __S010	PAGE_SHARED
81 #define __S011	PAGE_SHARED
82 #define __S100	PAGE_EXEC
83 #define __S101	PAGE_READ_EXEC
84 #define __S110	PAGE_SHARED_EXEC
85 #define __S111	PAGE_SHARED_EXEC
86 
87 #define VMALLOC_SIZE     (KERN_VIRT_SIZE >> 1)
88 #define VMALLOC_END      (PAGE_OFFSET - 1)
89 #define VMALLOC_START    (PAGE_OFFSET - VMALLOC_SIZE)
90 #define PCI_IO_SIZE      SZ_16M
91 
92 /*
93  * Roughly size the vmemmap space to be large enough to fit enough
94  * struct pages to map half the virtual address space. Then
95  * position vmemmap directly below the VMALLOC region.
96  */
97 #define VMEMMAP_SHIFT \
98 	(CONFIG_VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT)
99 #define VMEMMAP_SIZE	BIT(VMEMMAP_SHIFT)
100 #define VMEMMAP_END	(VMALLOC_START - 1)
101 #define VMEMMAP_START	(VMALLOC_START - VMEMMAP_SIZE)
102 
103 #define vmemmap		((struct page *)VMEMMAP_START)
104 
105 #define PCI_IO_END       VMEMMAP_START
106 #define PCI_IO_START     (PCI_IO_END - PCI_IO_SIZE)
107 #define FIXADDR_TOP      PCI_IO_START
108 
109 #ifdef CONFIG_64BIT
110 #define FIXADDR_SIZE     PMD_SIZE
111 #else
112 #define FIXADDR_SIZE     PGDIR_SIZE
113 #endif
114 #define FIXADDR_START    (FIXADDR_TOP - FIXADDR_SIZE)
115 
116 /*
117  * ZERO_PAGE is a global shared page that is always zero,
118  * used for zero-mapped memory areas, etc.
119  */
120 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
121 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
122 
123 static inline int pmd_present(pmd_t pmd)
124 {
125 	return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
126 }
127 
128 static inline int pmd_none(pmd_t pmd)
129 {
130 	return (pmd_val(pmd) == 0);
131 }
132 
133 static inline int pmd_bad(pmd_t pmd)
134 {
135 	return !pmd_present(pmd);
136 }
137 
138 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
139 {
140 	*pmdp = pmd;
141 }
142 
143 static inline void pmd_clear(pmd_t *pmdp)
144 {
145 	set_pmd(pmdp, __pmd(0));
146 }
147 
148 static inline pgd_t pfn_pgd(unsigned long pfn, pgprot_t prot)
149 {
150 	return __pgd((pfn << _PAGE_PFN_SHIFT) | pgprot_val(prot));
151 }
152 
153 static inline unsigned long _pgd_pfn(pgd_t pgd)
154 {
155 	return pgd_val(pgd) >> _PAGE_PFN_SHIFT;
156 }
157 
158 #define pgd_index(addr) (((addr) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
159 
160 /* Locate an entry in the page global directory */
161 static inline pgd_t *pgd_offset(const struct mm_struct *mm, unsigned long addr)
162 {
163 	return mm->pgd + pgd_index(addr);
164 }
165 /* Locate an entry in the kernel page global directory */
166 #define pgd_offset_k(addr)      pgd_offset(&init_mm, (addr))
167 
168 static inline struct page *pmd_page(pmd_t pmd)
169 {
170 	return pfn_to_page(pmd_val(pmd) >> _PAGE_PFN_SHIFT);
171 }
172 
173 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
174 {
175 	return (unsigned long)pfn_to_virt(pmd_val(pmd) >> _PAGE_PFN_SHIFT);
176 }
177 
178 /* Yields the page frame number (PFN) of a page table entry */
179 static inline unsigned long pte_pfn(pte_t pte)
180 {
181 	return (pte_val(pte) >> _PAGE_PFN_SHIFT);
182 }
183 
184 #define pte_page(x)     pfn_to_page(pte_pfn(x))
185 
186 /* Constructs a page table entry */
187 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot)
188 {
189 	return __pte((pfn << _PAGE_PFN_SHIFT) | pgprot_val(prot));
190 }
191 
192 #define mk_pte(page, prot)       pfn_pte(page_to_pfn(page), prot)
193 
194 #define pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
195 
196 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long addr)
197 {
198 	return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(addr);
199 }
200 
201 #define pte_offset_map(dir, addr)	pte_offset_kernel((dir), (addr))
202 #define pte_unmap(pte)			((void)(pte))
203 
204 static inline int pte_present(pte_t pte)
205 {
206 	return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
207 }
208 
209 static inline int pte_none(pte_t pte)
210 {
211 	return (pte_val(pte) == 0);
212 }
213 
214 static inline int pte_write(pte_t pte)
215 {
216 	return pte_val(pte) & _PAGE_WRITE;
217 }
218 
219 static inline int pte_exec(pte_t pte)
220 {
221 	return pte_val(pte) & _PAGE_EXEC;
222 }
223 
224 static inline int pte_huge(pte_t pte)
225 {
226 	return pte_present(pte)
227 		&& (pte_val(pte) & (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC));
228 }
229 
230 static inline int pte_dirty(pte_t pte)
231 {
232 	return pte_val(pte) & _PAGE_DIRTY;
233 }
234 
235 static inline int pte_young(pte_t pte)
236 {
237 	return pte_val(pte) & _PAGE_ACCESSED;
238 }
239 
240 static inline int pte_special(pte_t pte)
241 {
242 	return pte_val(pte) & _PAGE_SPECIAL;
243 }
244 
245 /* static inline pte_t pte_rdprotect(pte_t pte) */
246 
247 static inline pte_t pte_wrprotect(pte_t pte)
248 {
249 	return __pte(pte_val(pte) & ~(_PAGE_WRITE));
250 }
251 
252 /* static inline pte_t pte_mkread(pte_t pte) */
253 
254 static inline pte_t pte_mkwrite(pte_t pte)
255 {
256 	return __pte(pte_val(pte) | _PAGE_WRITE);
257 }
258 
259 /* static inline pte_t pte_mkexec(pte_t pte) */
260 
261 static inline pte_t pte_mkdirty(pte_t pte)
262 {
263 	return __pte(pte_val(pte) | _PAGE_DIRTY);
264 }
265 
266 static inline pte_t pte_mkclean(pte_t pte)
267 {
268 	return __pte(pte_val(pte) & ~(_PAGE_DIRTY));
269 }
270 
271 static inline pte_t pte_mkyoung(pte_t pte)
272 {
273 	return __pte(pte_val(pte) | _PAGE_ACCESSED);
274 }
275 
276 static inline pte_t pte_mkold(pte_t pte)
277 {
278 	return __pte(pte_val(pte) & ~(_PAGE_ACCESSED));
279 }
280 
281 static inline pte_t pte_mkspecial(pte_t pte)
282 {
283 	return __pte(pte_val(pte) | _PAGE_SPECIAL);
284 }
285 
286 static inline pte_t pte_mkhuge(pte_t pte)
287 {
288 	return pte;
289 }
290 
291 /* Modify page protection bits */
292 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
293 {
294 	return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
295 }
296 
297 #define pgd_ERROR(e) \
298 	pr_err("%s:%d: bad pgd " PTE_FMT ".\n", __FILE__, __LINE__, pgd_val(e))
299 
300 
301 /* Commit new configuration to MMU hardware */
302 static inline void update_mmu_cache(struct vm_area_struct *vma,
303 	unsigned long address, pte_t *ptep)
304 {
305 	/*
306 	 * The kernel assumes that TLBs don't cache invalid entries, but
307 	 * in RISC-V, SFENCE.VMA specifies an ordering constraint, not a
308 	 * cache flush; it is necessary even after writing invalid entries.
309 	 * Relying on flush_tlb_fix_spurious_fault would suffice, but
310 	 * the extra traps reduce performance.  So, eagerly SFENCE.VMA.
311 	 */
312 	local_flush_tlb_page(address);
313 }
314 
315 #define __HAVE_ARCH_PTE_SAME
316 static inline int pte_same(pte_t pte_a, pte_t pte_b)
317 {
318 	return pte_val(pte_a) == pte_val(pte_b);
319 }
320 
321 /*
322  * Certain architectures need to do special things when PTEs within
323  * a page table are directly modified.  Thus, the following hook is
324  * made available.
325  */
326 static inline void set_pte(pte_t *ptep, pte_t pteval)
327 {
328 	*ptep = pteval;
329 }
330 
331 void flush_icache_pte(pte_t pte);
332 
333 static inline void set_pte_at(struct mm_struct *mm,
334 	unsigned long addr, pte_t *ptep, pte_t pteval)
335 {
336 	if (pte_present(pteval) && pte_exec(pteval))
337 		flush_icache_pte(pteval);
338 
339 	set_pte(ptep, pteval);
340 }
341 
342 static inline void pte_clear(struct mm_struct *mm,
343 	unsigned long addr, pte_t *ptep)
344 {
345 	set_pte_at(mm, addr, ptep, __pte(0));
346 }
347 
348 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
349 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
350 					unsigned long address, pte_t *ptep,
351 					pte_t entry, int dirty)
352 {
353 	if (!pte_same(*ptep, entry))
354 		set_pte_at(vma->vm_mm, address, ptep, entry);
355 	/*
356 	 * update_mmu_cache will unconditionally execute, handling both
357 	 * the case that the PTE changed and the spurious fault case.
358 	 */
359 	return true;
360 }
361 
362 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
363 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
364 				       unsigned long address, pte_t *ptep)
365 {
366 	return __pte(atomic_long_xchg((atomic_long_t *)ptep, 0));
367 }
368 
369 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
370 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
371 					    unsigned long address,
372 					    pte_t *ptep)
373 {
374 	if (!pte_young(*ptep))
375 		return 0;
376 	return test_and_clear_bit(_PAGE_ACCESSED_OFFSET, &pte_val(*ptep));
377 }
378 
379 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
380 static inline void ptep_set_wrprotect(struct mm_struct *mm,
381 				      unsigned long address, pte_t *ptep)
382 {
383 	atomic_long_and(~(unsigned long)_PAGE_WRITE, (atomic_long_t *)ptep);
384 }
385 
386 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
387 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
388 					 unsigned long address, pte_t *ptep)
389 {
390 	/*
391 	 * This comment is borrowed from x86, but applies equally to RISC-V:
392 	 *
393 	 * Clearing the accessed bit without a TLB flush
394 	 * doesn't cause data corruption. [ It could cause incorrect
395 	 * page aging and the (mistaken) reclaim of hot pages, but the
396 	 * chance of that should be relatively low. ]
397 	 *
398 	 * So as a performance optimization don't flush the TLB when
399 	 * clearing the accessed bit, it will eventually be flushed by
400 	 * a context switch or a VM operation anyway. [ In the rare
401 	 * event of it not getting flushed for a long time the delay
402 	 * shouldn't really matter because there's no real memory
403 	 * pressure for swapout to react to. ]
404 	 */
405 	return ptep_test_and_clear_young(vma, address, ptep);
406 }
407 
408 /*
409  * Encode and decode a swap entry
410  *
411  * Format of swap PTE:
412  *	bit            0:	_PAGE_PRESENT (zero)
413  *	bit            1:	_PAGE_PROT_NONE (zero)
414  *	bits      2 to 6:	swap type
415  *	bits 7 to XLEN-1:	swap offset
416  */
417 #define __SWP_TYPE_SHIFT	2
418 #define __SWP_TYPE_BITS		5
419 #define __SWP_TYPE_MASK		((1UL << __SWP_TYPE_BITS) - 1)
420 #define __SWP_OFFSET_SHIFT	(__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
421 
422 #define MAX_SWAPFILES_CHECK()	\
423 	BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
424 
425 #define __swp_type(x)	(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
426 #define __swp_offset(x)	((x).val >> __SWP_OFFSET_SHIFT)
427 #define __swp_entry(type, offset) ((swp_entry_t) \
428 	{ ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
429 
430 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
431 #define __swp_entry_to_pte(x)	((pte_t) { (x).val })
432 
433 #define kern_addr_valid(addr)   (1) /* FIXME */
434 
435 extern void *dtb_early_va;
436 extern void setup_bootmem(void);
437 extern void paging_init(void);
438 
439 /*
440  * Task size is 0x4000000000 for RV64 or 0x9fc00000 for RV32.
441  * Note that PGDIR_SIZE must evenly divide TASK_SIZE.
442  */
443 #ifdef CONFIG_64BIT
444 #define TASK_SIZE (PGDIR_SIZE * PTRS_PER_PGD / 2)
445 #else
446 #define TASK_SIZE FIXADDR_START
447 #endif
448 
449 #include <asm-generic/pgtable.h>
450 
451 #endif /* !__ASSEMBLY__ */
452 
453 #endif /* _ASM_RISCV_PGTABLE_H */
454