1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (C) 2012 Regents of the University of California 4 */ 5 6 #ifndef _ASM_RISCV_PGTABLE_H 7 #define _ASM_RISCV_PGTABLE_H 8 9 #include <linux/mmzone.h> 10 #include <linux/sizes.h> 11 12 #include <asm/pgtable-bits.h> 13 14 #ifndef CONFIG_MMU 15 #define KERNEL_LINK_ADDR PAGE_OFFSET 16 #define KERN_VIRT_SIZE (UL(-1)) 17 #else 18 19 #define ADDRESS_SPACE_END (UL(-1)) 20 21 #ifdef CONFIG_64BIT 22 /* Leave 2GB for kernel and BPF at the end of the address space */ 23 #define KERNEL_LINK_ADDR (ADDRESS_SPACE_END - SZ_2G + 1) 24 #else 25 #define KERNEL_LINK_ADDR PAGE_OFFSET 26 #endif 27 28 /* Number of entries in the page global directory */ 29 #define PTRS_PER_PGD (PAGE_SIZE / sizeof(pgd_t)) 30 /* Number of entries in the page table */ 31 #define PTRS_PER_PTE (PAGE_SIZE / sizeof(pte_t)) 32 33 /* 34 * Half of the kernel address space (half of the entries of the page global 35 * directory) is for the direct mapping. 36 */ 37 #define KERN_VIRT_SIZE ((PTRS_PER_PGD / 2 * PGDIR_SIZE) / 2) 38 39 #define VMALLOC_SIZE (KERN_VIRT_SIZE >> 1) 40 #define VMALLOC_END PAGE_OFFSET 41 #define VMALLOC_START (PAGE_OFFSET - VMALLOC_SIZE) 42 43 #define BPF_JIT_REGION_SIZE (SZ_128M) 44 #ifdef CONFIG_64BIT 45 #define BPF_JIT_REGION_START (BPF_JIT_REGION_END - BPF_JIT_REGION_SIZE) 46 #define BPF_JIT_REGION_END (MODULES_END) 47 #else 48 #define BPF_JIT_REGION_START (PAGE_OFFSET - BPF_JIT_REGION_SIZE) 49 #define BPF_JIT_REGION_END (VMALLOC_END) 50 #endif 51 52 /* Modules always live before the kernel */ 53 #ifdef CONFIG_64BIT 54 /* This is used to define the end of the KASAN shadow region */ 55 #define MODULES_LOWEST_VADDR (KERNEL_LINK_ADDR - SZ_2G) 56 #define MODULES_VADDR (PFN_ALIGN((unsigned long)&_end) - SZ_2G) 57 #define MODULES_END (PFN_ALIGN((unsigned long)&_start)) 58 #endif 59 60 /* 61 * Roughly size the vmemmap space to be large enough to fit enough 62 * struct pages to map half the virtual address space. Then 63 * position vmemmap directly below the VMALLOC region. 64 */ 65 #ifdef CONFIG_64BIT 66 #define VA_BITS (pgtable_l5_enabled ? \ 67 57 : (pgtable_l4_enabled ? 48 : 39)) 68 #else 69 #define VA_BITS 32 70 #endif 71 72 #define VMEMMAP_SHIFT \ 73 (VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT) 74 #define VMEMMAP_SIZE BIT(VMEMMAP_SHIFT) 75 #define VMEMMAP_END VMALLOC_START 76 #define VMEMMAP_START (VMALLOC_START - VMEMMAP_SIZE) 77 78 /* 79 * Define vmemmap for pfn_to_page & page_to_pfn calls. Needed if kernel 80 * is configured with CONFIG_SPARSEMEM_VMEMMAP enabled. 81 */ 82 #define vmemmap ((struct page *)VMEMMAP_START) 83 84 #define PCI_IO_SIZE SZ_16M 85 #define PCI_IO_END VMEMMAP_START 86 #define PCI_IO_START (PCI_IO_END - PCI_IO_SIZE) 87 88 #define FIXADDR_TOP PCI_IO_START 89 #ifdef CONFIG_64BIT 90 #define FIXADDR_SIZE PMD_SIZE 91 #else 92 #define FIXADDR_SIZE PGDIR_SIZE 93 #endif 94 #define FIXADDR_START (FIXADDR_TOP - FIXADDR_SIZE) 95 96 #endif 97 98 #ifdef CONFIG_XIP_KERNEL 99 #define XIP_OFFSET SZ_32M 100 #define XIP_OFFSET_MASK (SZ_32M - 1) 101 #else 102 #define XIP_OFFSET 0 103 #endif 104 105 #ifndef __ASSEMBLY__ 106 107 #include <asm/page.h> 108 #include <asm/tlbflush.h> 109 #include <linux/mm_types.h> 110 111 #define __page_val_to_pfn(_val) (((_val) & _PAGE_PFN_MASK) >> _PAGE_PFN_SHIFT) 112 113 #ifdef CONFIG_64BIT 114 #include <asm/pgtable-64.h> 115 #else 116 #include <asm/pgtable-32.h> 117 #endif /* CONFIG_64BIT */ 118 119 #include <linux/page_table_check.h> 120 121 #ifdef CONFIG_XIP_KERNEL 122 #define XIP_FIXUP(addr) ({ \ 123 uintptr_t __a = (uintptr_t)(addr); \ 124 (__a >= CONFIG_XIP_PHYS_ADDR && \ 125 __a < CONFIG_XIP_PHYS_ADDR + XIP_OFFSET * 2) ? \ 126 __a - CONFIG_XIP_PHYS_ADDR + CONFIG_PHYS_RAM_BASE - XIP_OFFSET :\ 127 __a; \ 128 }) 129 #else 130 #define XIP_FIXUP(addr) (addr) 131 #endif /* CONFIG_XIP_KERNEL */ 132 133 struct pt_alloc_ops { 134 pte_t *(*get_pte_virt)(phys_addr_t pa); 135 phys_addr_t (*alloc_pte)(uintptr_t va); 136 #ifndef __PAGETABLE_PMD_FOLDED 137 pmd_t *(*get_pmd_virt)(phys_addr_t pa); 138 phys_addr_t (*alloc_pmd)(uintptr_t va); 139 pud_t *(*get_pud_virt)(phys_addr_t pa); 140 phys_addr_t (*alloc_pud)(uintptr_t va); 141 p4d_t *(*get_p4d_virt)(phys_addr_t pa); 142 phys_addr_t (*alloc_p4d)(uintptr_t va); 143 #endif 144 }; 145 146 extern struct pt_alloc_ops pt_ops __initdata; 147 148 #ifdef CONFIG_MMU 149 /* Number of PGD entries that a user-mode program can use */ 150 #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE) 151 152 /* Page protection bits */ 153 #define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_USER) 154 155 #define PAGE_NONE __pgprot(_PAGE_PROT_NONE | _PAGE_READ) 156 #define PAGE_READ __pgprot(_PAGE_BASE | _PAGE_READ) 157 #define PAGE_WRITE __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_WRITE) 158 #define PAGE_EXEC __pgprot(_PAGE_BASE | _PAGE_EXEC) 159 #define PAGE_READ_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC) 160 #define PAGE_WRITE_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | \ 161 _PAGE_EXEC | _PAGE_WRITE) 162 163 #define PAGE_COPY PAGE_READ 164 #define PAGE_COPY_EXEC PAGE_EXEC 165 #define PAGE_COPY_READ_EXEC PAGE_READ_EXEC 166 #define PAGE_SHARED PAGE_WRITE 167 #define PAGE_SHARED_EXEC PAGE_WRITE_EXEC 168 169 #define _PAGE_KERNEL (_PAGE_READ \ 170 | _PAGE_WRITE \ 171 | _PAGE_PRESENT \ 172 | _PAGE_ACCESSED \ 173 | _PAGE_DIRTY \ 174 | _PAGE_GLOBAL) 175 176 #define PAGE_KERNEL __pgprot(_PAGE_KERNEL) 177 #define PAGE_KERNEL_READ __pgprot(_PAGE_KERNEL & ~_PAGE_WRITE) 178 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL | _PAGE_EXEC) 179 #define PAGE_KERNEL_READ_EXEC __pgprot((_PAGE_KERNEL & ~_PAGE_WRITE) \ 180 | _PAGE_EXEC) 181 182 #define PAGE_TABLE __pgprot(_PAGE_TABLE) 183 184 #define _PAGE_IOREMAP ((_PAGE_KERNEL & ~_PAGE_MTMASK) | _PAGE_IO) 185 #define PAGE_KERNEL_IO __pgprot(_PAGE_IOREMAP) 186 187 extern pgd_t swapper_pg_dir[]; 188 189 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 190 static inline int pmd_present(pmd_t pmd) 191 { 192 /* 193 * Checking for _PAGE_LEAF is needed too because: 194 * When splitting a THP, split_huge_page() will temporarily clear 195 * the present bit, in this situation, pmd_present() and 196 * pmd_trans_huge() still needs to return true. 197 */ 198 return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE | _PAGE_LEAF)); 199 } 200 #else 201 static inline int pmd_present(pmd_t pmd) 202 { 203 return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE)); 204 } 205 #endif 206 207 static inline int pmd_none(pmd_t pmd) 208 { 209 return (pmd_val(pmd) == 0); 210 } 211 212 static inline int pmd_bad(pmd_t pmd) 213 { 214 return !pmd_present(pmd) || (pmd_val(pmd) & _PAGE_LEAF); 215 } 216 217 #define pmd_leaf pmd_leaf 218 static inline int pmd_leaf(pmd_t pmd) 219 { 220 return pmd_present(pmd) && (pmd_val(pmd) & _PAGE_LEAF); 221 } 222 223 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd) 224 { 225 *pmdp = pmd; 226 } 227 228 static inline void pmd_clear(pmd_t *pmdp) 229 { 230 set_pmd(pmdp, __pmd(0)); 231 } 232 233 static inline pgd_t pfn_pgd(unsigned long pfn, pgprot_t prot) 234 { 235 unsigned long prot_val = pgprot_val(prot); 236 237 ALT_THEAD_PMA(prot_val); 238 239 return __pgd((pfn << _PAGE_PFN_SHIFT) | prot_val); 240 } 241 242 static inline unsigned long _pgd_pfn(pgd_t pgd) 243 { 244 return __page_val_to_pfn(pgd_val(pgd)); 245 } 246 247 static inline struct page *pmd_page(pmd_t pmd) 248 { 249 return pfn_to_page(__page_val_to_pfn(pmd_val(pmd))); 250 } 251 252 static inline unsigned long pmd_page_vaddr(pmd_t pmd) 253 { 254 return (unsigned long)pfn_to_virt(__page_val_to_pfn(pmd_val(pmd))); 255 } 256 257 static inline pte_t pmd_pte(pmd_t pmd) 258 { 259 return __pte(pmd_val(pmd)); 260 } 261 262 static inline pte_t pud_pte(pud_t pud) 263 { 264 return __pte(pud_val(pud)); 265 } 266 267 /* Yields the page frame number (PFN) of a page table entry */ 268 static inline unsigned long pte_pfn(pte_t pte) 269 { 270 return __page_val_to_pfn(pte_val(pte)); 271 } 272 273 #define pte_page(x) pfn_to_page(pte_pfn(x)) 274 275 /* Constructs a page table entry */ 276 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot) 277 { 278 unsigned long prot_val = pgprot_val(prot); 279 280 ALT_THEAD_PMA(prot_val); 281 282 return __pte((pfn << _PAGE_PFN_SHIFT) | prot_val); 283 } 284 285 #define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot) 286 287 static inline int pte_present(pte_t pte) 288 { 289 return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE)); 290 } 291 292 static inline int pte_none(pte_t pte) 293 { 294 return (pte_val(pte) == 0); 295 } 296 297 static inline int pte_write(pte_t pte) 298 { 299 return pte_val(pte) & _PAGE_WRITE; 300 } 301 302 static inline int pte_exec(pte_t pte) 303 { 304 return pte_val(pte) & _PAGE_EXEC; 305 } 306 307 static inline int pte_user(pte_t pte) 308 { 309 return pte_val(pte) & _PAGE_USER; 310 } 311 312 static inline int pte_huge(pte_t pte) 313 { 314 return pte_present(pte) && (pte_val(pte) & _PAGE_LEAF); 315 } 316 317 static inline int pte_dirty(pte_t pte) 318 { 319 return pte_val(pte) & _PAGE_DIRTY; 320 } 321 322 static inline int pte_young(pte_t pte) 323 { 324 return pte_val(pte) & _PAGE_ACCESSED; 325 } 326 327 static inline int pte_special(pte_t pte) 328 { 329 return pte_val(pte) & _PAGE_SPECIAL; 330 } 331 332 /* static inline pte_t pte_rdprotect(pte_t pte) */ 333 334 static inline pte_t pte_wrprotect(pte_t pte) 335 { 336 return __pte(pte_val(pte) & ~(_PAGE_WRITE)); 337 } 338 339 /* static inline pte_t pte_mkread(pte_t pte) */ 340 341 static inline pte_t pte_mkwrite(pte_t pte) 342 { 343 return __pte(pte_val(pte) | _PAGE_WRITE); 344 } 345 346 /* static inline pte_t pte_mkexec(pte_t pte) */ 347 348 static inline pte_t pte_mkdirty(pte_t pte) 349 { 350 return __pte(pte_val(pte) | _PAGE_DIRTY); 351 } 352 353 static inline pte_t pte_mkclean(pte_t pte) 354 { 355 return __pte(pte_val(pte) & ~(_PAGE_DIRTY)); 356 } 357 358 static inline pte_t pte_mkyoung(pte_t pte) 359 { 360 return __pte(pte_val(pte) | _PAGE_ACCESSED); 361 } 362 363 static inline pte_t pte_mkold(pte_t pte) 364 { 365 return __pte(pte_val(pte) & ~(_PAGE_ACCESSED)); 366 } 367 368 static inline pte_t pte_mkspecial(pte_t pte) 369 { 370 return __pte(pte_val(pte) | _PAGE_SPECIAL); 371 } 372 373 static inline pte_t pte_mkhuge(pte_t pte) 374 { 375 return pte; 376 } 377 378 #ifdef CONFIG_NUMA_BALANCING 379 /* 380 * See the comment in include/asm-generic/pgtable.h 381 */ 382 static inline int pte_protnone(pte_t pte) 383 { 384 return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE)) == _PAGE_PROT_NONE; 385 } 386 387 static inline int pmd_protnone(pmd_t pmd) 388 { 389 return pte_protnone(pmd_pte(pmd)); 390 } 391 #endif 392 393 /* Modify page protection bits */ 394 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 395 { 396 unsigned long newprot_val = pgprot_val(newprot); 397 398 ALT_THEAD_PMA(newprot_val); 399 400 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | newprot_val); 401 } 402 403 #define pgd_ERROR(e) \ 404 pr_err("%s:%d: bad pgd " PTE_FMT ".\n", __FILE__, __LINE__, pgd_val(e)) 405 406 407 /* Commit new configuration to MMU hardware */ 408 static inline void update_mmu_cache(struct vm_area_struct *vma, 409 unsigned long address, pte_t *ptep) 410 { 411 /* 412 * The kernel assumes that TLBs don't cache invalid entries, but 413 * in RISC-V, SFENCE.VMA specifies an ordering constraint, not a 414 * cache flush; it is necessary even after writing invalid entries. 415 * Relying on flush_tlb_fix_spurious_fault would suffice, but 416 * the extra traps reduce performance. So, eagerly SFENCE.VMA. 417 */ 418 flush_tlb_page(vma, address); 419 } 420 421 #define __HAVE_ARCH_UPDATE_MMU_TLB 422 #define update_mmu_tlb update_mmu_cache 423 424 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma, 425 unsigned long address, pmd_t *pmdp) 426 { 427 pte_t *ptep = (pte_t *)pmdp; 428 429 update_mmu_cache(vma, address, ptep); 430 } 431 432 #define __HAVE_ARCH_PTE_SAME 433 static inline int pte_same(pte_t pte_a, pte_t pte_b) 434 { 435 return pte_val(pte_a) == pte_val(pte_b); 436 } 437 438 /* 439 * Certain architectures need to do special things when PTEs within 440 * a page table are directly modified. Thus, the following hook is 441 * made available. 442 */ 443 static inline void set_pte(pte_t *ptep, pte_t pteval) 444 { 445 *ptep = pteval; 446 } 447 448 void flush_icache_pte(pte_t pte); 449 450 static inline void __set_pte_at(struct mm_struct *mm, 451 unsigned long addr, pte_t *ptep, pte_t pteval) 452 { 453 if (pte_present(pteval) && pte_exec(pteval)) 454 flush_icache_pte(pteval); 455 456 set_pte(ptep, pteval); 457 } 458 459 static inline void set_pte_at(struct mm_struct *mm, 460 unsigned long addr, pte_t *ptep, pte_t pteval) 461 { 462 page_table_check_pte_set(mm, addr, ptep, pteval); 463 __set_pte_at(mm, addr, ptep, pteval); 464 } 465 466 static inline void pte_clear(struct mm_struct *mm, 467 unsigned long addr, pte_t *ptep) 468 { 469 __set_pte_at(mm, addr, ptep, __pte(0)); 470 } 471 472 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 473 static inline int ptep_set_access_flags(struct vm_area_struct *vma, 474 unsigned long address, pte_t *ptep, 475 pte_t entry, int dirty) 476 { 477 if (!pte_same(*ptep, entry)) 478 set_pte_at(vma->vm_mm, address, ptep, entry); 479 /* 480 * update_mmu_cache will unconditionally execute, handling both 481 * the case that the PTE changed and the spurious fault case. 482 */ 483 return true; 484 } 485 486 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR 487 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 488 unsigned long address, pte_t *ptep) 489 { 490 pte_t pte = __pte(atomic_long_xchg((atomic_long_t *)ptep, 0)); 491 492 page_table_check_pte_clear(mm, address, pte); 493 494 return pte; 495 } 496 497 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 498 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 499 unsigned long address, 500 pte_t *ptep) 501 { 502 if (!pte_young(*ptep)) 503 return 0; 504 return test_and_clear_bit(_PAGE_ACCESSED_OFFSET, &pte_val(*ptep)); 505 } 506 507 #define __HAVE_ARCH_PTEP_SET_WRPROTECT 508 static inline void ptep_set_wrprotect(struct mm_struct *mm, 509 unsigned long address, pte_t *ptep) 510 { 511 atomic_long_and(~(unsigned long)_PAGE_WRITE, (atomic_long_t *)ptep); 512 } 513 514 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 515 static inline int ptep_clear_flush_young(struct vm_area_struct *vma, 516 unsigned long address, pte_t *ptep) 517 { 518 /* 519 * This comment is borrowed from x86, but applies equally to RISC-V: 520 * 521 * Clearing the accessed bit without a TLB flush 522 * doesn't cause data corruption. [ It could cause incorrect 523 * page aging and the (mistaken) reclaim of hot pages, but the 524 * chance of that should be relatively low. ] 525 * 526 * So as a performance optimization don't flush the TLB when 527 * clearing the accessed bit, it will eventually be flushed by 528 * a context switch or a VM operation anyway. [ In the rare 529 * event of it not getting flushed for a long time the delay 530 * shouldn't really matter because there's no real memory 531 * pressure for swapout to react to. ] 532 */ 533 return ptep_test_and_clear_young(vma, address, ptep); 534 } 535 536 #define pgprot_noncached pgprot_noncached 537 static inline pgprot_t pgprot_noncached(pgprot_t _prot) 538 { 539 unsigned long prot = pgprot_val(_prot); 540 541 prot &= ~_PAGE_MTMASK; 542 prot |= _PAGE_IO; 543 544 return __pgprot(prot); 545 } 546 547 #define pgprot_writecombine pgprot_writecombine 548 static inline pgprot_t pgprot_writecombine(pgprot_t _prot) 549 { 550 unsigned long prot = pgprot_val(_prot); 551 552 prot &= ~_PAGE_MTMASK; 553 prot |= _PAGE_NOCACHE; 554 555 return __pgprot(prot); 556 } 557 558 /* 559 * THP functions 560 */ 561 static inline pmd_t pte_pmd(pte_t pte) 562 { 563 return __pmd(pte_val(pte)); 564 } 565 566 static inline pmd_t pmd_mkhuge(pmd_t pmd) 567 { 568 return pmd; 569 } 570 571 static inline pmd_t pmd_mkinvalid(pmd_t pmd) 572 { 573 return __pmd(pmd_val(pmd) & ~(_PAGE_PRESENT|_PAGE_PROT_NONE)); 574 } 575 576 #define __pmd_to_phys(pmd) (__page_val_to_pfn(pmd_val(pmd)) << PAGE_SHIFT) 577 578 static inline unsigned long pmd_pfn(pmd_t pmd) 579 { 580 return ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT); 581 } 582 583 #define __pud_to_phys(pud) (__page_val_to_pfn(pud_val(pud)) << PAGE_SHIFT) 584 585 static inline unsigned long pud_pfn(pud_t pud) 586 { 587 return ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT); 588 } 589 590 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 591 { 592 return pte_pmd(pte_modify(pmd_pte(pmd), newprot)); 593 } 594 595 #define pmd_write pmd_write 596 static inline int pmd_write(pmd_t pmd) 597 { 598 return pte_write(pmd_pte(pmd)); 599 } 600 601 static inline int pmd_dirty(pmd_t pmd) 602 { 603 return pte_dirty(pmd_pte(pmd)); 604 } 605 606 #define pmd_young pmd_young 607 static inline int pmd_young(pmd_t pmd) 608 { 609 return pte_young(pmd_pte(pmd)); 610 } 611 612 static inline int pmd_user(pmd_t pmd) 613 { 614 return pte_user(pmd_pte(pmd)); 615 } 616 617 static inline pmd_t pmd_mkold(pmd_t pmd) 618 { 619 return pte_pmd(pte_mkold(pmd_pte(pmd))); 620 } 621 622 static inline pmd_t pmd_mkyoung(pmd_t pmd) 623 { 624 return pte_pmd(pte_mkyoung(pmd_pte(pmd))); 625 } 626 627 static inline pmd_t pmd_mkwrite(pmd_t pmd) 628 { 629 return pte_pmd(pte_mkwrite(pmd_pte(pmd))); 630 } 631 632 static inline pmd_t pmd_wrprotect(pmd_t pmd) 633 { 634 return pte_pmd(pte_wrprotect(pmd_pte(pmd))); 635 } 636 637 static inline pmd_t pmd_mkclean(pmd_t pmd) 638 { 639 return pte_pmd(pte_mkclean(pmd_pte(pmd))); 640 } 641 642 static inline pmd_t pmd_mkdirty(pmd_t pmd) 643 { 644 return pte_pmd(pte_mkdirty(pmd_pte(pmd))); 645 } 646 647 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr, 648 pmd_t *pmdp, pmd_t pmd) 649 { 650 page_table_check_pmd_set(mm, addr, pmdp, pmd); 651 return __set_pte_at(mm, addr, (pte_t *)pmdp, pmd_pte(pmd)); 652 } 653 654 static inline void set_pud_at(struct mm_struct *mm, unsigned long addr, 655 pud_t *pudp, pud_t pud) 656 { 657 page_table_check_pud_set(mm, addr, pudp, pud); 658 return __set_pte_at(mm, addr, (pte_t *)pudp, pud_pte(pud)); 659 } 660 661 #ifdef CONFIG_PAGE_TABLE_CHECK 662 static inline bool pte_user_accessible_page(pte_t pte) 663 { 664 return pte_present(pte) && pte_user(pte); 665 } 666 667 static inline bool pmd_user_accessible_page(pmd_t pmd) 668 { 669 return pmd_leaf(pmd) && pmd_user(pmd); 670 } 671 672 static inline bool pud_user_accessible_page(pud_t pud) 673 { 674 return pud_leaf(pud) && pud_user(pud); 675 } 676 #endif 677 678 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 679 static inline int pmd_trans_huge(pmd_t pmd) 680 { 681 return pmd_leaf(pmd); 682 } 683 684 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 685 static inline int pmdp_set_access_flags(struct vm_area_struct *vma, 686 unsigned long address, pmd_t *pmdp, 687 pmd_t entry, int dirty) 688 { 689 return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty); 690 } 691 692 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 693 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 694 unsigned long address, pmd_t *pmdp) 695 { 696 return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp); 697 } 698 699 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 700 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 701 unsigned long address, pmd_t *pmdp) 702 { 703 pmd_t pmd = __pmd(atomic_long_xchg((atomic_long_t *)pmdp, 0)); 704 705 page_table_check_pmd_clear(mm, address, pmd); 706 707 return pmd; 708 } 709 710 #define __HAVE_ARCH_PMDP_SET_WRPROTECT 711 static inline void pmdp_set_wrprotect(struct mm_struct *mm, 712 unsigned long address, pmd_t *pmdp) 713 { 714 ptep_set_wrprotect(mm, address, (pte_t *)pmdp); 715 } 716 717 #define pmdp_establish pmdp_establish 718 static inline pmd_t pmdp_establish(struct vm_area_struct *vma, 719 unsigned long address, pmd_t *pmdp, pmd_t pmd) 720 { 721 page_table_check_pmd_set(vma->vm_mm, address, pmdp, pmd); 722 return __pmd(atomic_long_xchg((atomic_long_t *)pmdp, pmd_val(pmd))); 723 } 724 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 725 726 /* 727 * Encode and decode a swap entry 728 * 729 * Format of swap PTE: 730 * bit 0: _PAGE_PRESENT (zero) 731 * bit 1 to 3: _PAGE_LEAF (zero) 732 * bit 5: _PAGE_PROT_NONE (zero) 733 * bits 6 to 10: swap type 734 * bits 10 to XLEN-1: swap offset 735 */ 736 #define __SWP_TYPE_SHIFT 6 737 #define __SWP_TYPE_BITS 5 738 #define __SWP_TYPE_MASK ((1UL << __SWP_TYPE_BITS) - 1) 739 #define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT) 740 741 #define MAX_SWAPFILES_CHECK() \ 742 BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS) 743 744 #define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK) 745 #define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT) 746 #define __swp_entry(type, offset) ((swp_entry_t) \ 747 { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) }) 748 749 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 750 #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 751 752 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 753 #define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) }) 754 #define __swp_entry_to_pmd(swp) __pmd((swp).val) 755 #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */ 756 757 /* 758 * In the RV64 Linux scheme, we give the user half of the virtual-address space 759 * and give the kernel the other (upper) half. 760 */ 761 #ifdef CONFIG_64BIT 762 #define KERN_VIRT_START (-(BIT(VA_BITS)) + TASK_SIZE) 763 #else 764 #define KERN_VIRT_START FIXADDR_START 765 #endif 766 767 /* 768 * Task size is 0x4000000000 for RV64 or 0x9fc00000 for RV32. 769 * Note that PGDIR_SIZE must evenly divide TASK_SIZE. 770 * Task size is: 771 * - 0x9fc00000 (~2.5GB) for RV32. 772 * - 0x4000000000 ( 256GB) for RV64 using SV39 mmu 773 * - 0x800000000000 ( 128TB) for RV64 using SV48 mmu 774 * 775 * Note that PGDIR_SIZE must evenly divide TASK_SIZE since "RISC-V 776 * Instruction Set Manual Volume II: Privileged Architecture" states that 777 * "load and store effective addresses, which are 64bits, must have bits 778 * 63–48 all equal to bit 47, or else a page-fault exception will occur." 779 */ 780 #ifdef CONFIG_64BIT 781 #define TASK_SIZE_64 (PGDIR_SIZE * PTRS_PER_PGD / 2) 782 #define TASK_SIZE_MIN (PGDIR_SIZE_L3 * PTRS_PER_PGD / 2) 783 784 #ifdef CONFIG_COMPAT 785 #define TASK_SIZE_32 (_AC(0x80000000, UL) - PAGE_SIZE) 786 #define TASK_SIZE (test_thread_flag(TIF_32BIT) ? \ 787 TASK_SIZE_32 : TASK_SIZE_64) 788 #else 789 #define TASK_SIZE TASK_SIZE_64 790 #endif 791 792 #else 793 #define TASK_SIZE FIXADDR_START 794 #define TASK_SIZE_MIN TASK_SIZE 795 #endif 796 797 #else /* CONFIG_MMU */ 798 799 #define PAGE_SHARED __pgprot(0) 800 #define PAGE_KERNEL __pgprot(0) 801 #define swapper_pg_dir NULL 802 #define TASK_SIZE 0xffffffffUL 803 #define VMALLOC_START 0 804 #define VMALLOC_END TASK_SIZE 805 806 #endif /* !CONFIG_MMU */ 807 808 extern char _start[]; 809 extern void *_dtb_early_va; 810 extern uintptr_t _dtb_early_pa; 811 #if defined(CONFIG_XIP_KERNEL) && defined(CONFIG_MMU) 812 #define dtb_early_va (*(void **)XIP_FIXUP(&_dtb_early_va)) 813 #define dtb_early_pa (*(uintptr_t *)XIP_FIXUP(&_dtb_early_pa)) 814 #else 815 #define dtb_early_va _dtb_early_va 816 #define dtb_early_pa _dtb_early_pa 817 #endif /* CONFIG_XIP_KERNEL */ 818 extern u64 satp_mode; 819 extern bool pgtable_l4_enabled; 820 821 void paging_init(void); 822 void misc_mem_init(void); 823 824 /* 825 * ZERO_PAGE is a global shared page that is always zero, 826 * used for zero-mapped memory areas, etc. 827 */ 828 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]; 829 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 830 831 #endif /* !__ASSEMBLY__ */ 832 833 #endif /* _ASM_RISCV_PGTABLE_H */ 834