1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (C) 2012 Regents of the University of California 4 */ 5 6 #ifndef _ASM_RISCV_PGTABLE_H 7 #define _ASM_RISCV_PGTABLE_H 8 9 #include <linux/mmzone.h> 10 #include <linux/sizes.h> 11 12 #include <asm/pgtable-bits.h> 13 14 #ifndef CONFIG_MMU 15 #define KERNEL_LINK_ADDR PAGE_OFFSET 16 #define KERN_VIRT_SIZE (UL(-1)) 17 #else 18 19 #define ADDRESS_SPACE_END (UL(-1)) 20 21 #ifdef CONFIG_64BIT 22 /* Leave 2GB for kernel and BPF at the end of the address space */ 23 #define KERNEL_LINK_ADDR (ADDRESS_SPACE_END - SZ_2G + 1) 24 #else 25 #define KERNEL_LINK_ADDR PAGE_OFFSET 26 #endif 27 28 /* Number of entries in the page global directory */ 29 #define PTRS_PER_PGD (PAGE_SIZE / sizeof(pgd_t)) 30 /* Number of entries in the page table */ 31 #define PTRS_PER_PTE (PAGE_SIZE / sizeof(pte_t)) 32 33 /* 34 * Half of the kernel address space (1/4 of the entries of the page global 35 * directory) is for the direct mapping. 36 */ 37 #define KERN_VIRT_SIZE ((PTRS_PER_PGD / 2 * PGDIR_SIZE) / 2) 38 39 #define VMALLOC_SIZE (KERN_VIRT_SIZE >> 1) 40 #define VMALLOC_END PAGE_OFFSET 41 #define VMALLOC_START (PAGE_OFFSET - VMALLOC_SIZE) 42 43 #define BPF_JIT_REGION_SIZE (SZ_128M) 44 #ifdef CONFIG_64BIT 45 #define BPF_JIT_REGION_START (BPF_JIT_REGION_END - BPF_JIT_REGION_SIZE) 46 #define BPF_JIT_REGION_END (MODULES_END) 47 #else 48 #define BPF_JIT_REGION_START (PAGE_OFFSET - BPF_JIT_REGION_SIZE) 49 #define BPF_JIT_REGION_END (VMALLOC_END) 50 #endif 51 52 /* Modules always live before the kernel */ 53 #ifdef CONFIG_64BIT 54 /* This is used to define the end of the KASAN shadow region */ 55 #define MODULES_LOWEST_VADDR (KERNEL_LINK_ADDR - SZ_2G) 56 #define MODULES_VADDR (PFN_ALIGN((unsigned long)&_end) - SZ_2G) 57 #define MODULES_END (PFN_ALIGN((unsigned long)&_start)) 58 #endif 59 60 /* 61 * Roughly size the vmemmap space to be large enough to fit enough 62 * struct pages to map half the virtual address space. Then 63 * position vmemmap directly below the VMALLOC region. 64 */ 65 #define VA_BITS_SV32 32 66 #ifdef CONFIG_64BIT 67 #define VA_BITS_SV39 39 68 #define VA_BITS_SV48 48 69 #define VA_BITS_SV57 57 70 71 #define VA_BITS (pgtable_l5_enabled ? \ 72 VA_BITS_SV57 : (pgtable_l4_enabled ? VA_BITS_SV48 : VA_BITS_SV39)) 73 #else 74 #define VA_BITS VA_BITS_SV32 75 #endif 76 77 #define VMEMMAP_SHIFT \ 78 (VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT) 79 #define VMEMMAP_SIZE BIT(VMEMMAP_SHIFT) 80 #define VMEMMAP_END VMALLOC_START 81 #define VMEMMAP_START (VMALLOC_START - VMEMMAP_SIZE) 82 83 /* 84 * Define vmemmap for pfn_to_page & page_to_pfn calls. Needed if kernel 85 * is configured with CONFIG_SPARSEMEM_VMEMMAP enabled. 86 */ 87 #define vmemmap ((struct page *)VMEMMAP_START - (phys_ram_base >> PAGE_SHIFT)) 88 89 #define PCI_IO_SIZE SZ_16M 90 #define PCI_IO_END VMEMMAP_START 91 #define PCI_IO_START (PCI_IO_END - PCI_IO_SIZE) 92 93 #define FIXADDR_TOP PCI_IO_START 94 #ifdef CONFIG_64BIT 95 #define MAX_FDT_SIZE PMD_SIZE 96 #define FIX_FDT_SIZE (MAX_FDT_SIZE + SZ_2M) 97 #define FIXADDR_SIZE (PMD_SIZE + FIX_FDT_SIZE) 98 #else 99 #define MAX_FDT_SIZE PGDIR_SIZE 100 #define FIX_FDT_SIZE MAX_FDT_SIZE 101 #define FIXADDR_SIZE (PGDIR_SIZE + FIX_FDT_SIZE) 102 #endif 103 #define FIXADDR_START (FIXADDR_TOP - FIXADDR_SIZE) 104 105 #endif 106 107 #ifdef CONFIG_XIP_KERNEL 108 #define XIP_OFFSET SZ_32M 109 #define XIP_OFFSET_MASK (SZ_32M - 1) 110 #else 111 #define XIP_OFFSET 0 112 #endif 113 114 #ifndef __ASSEMBLY__ 115 116 #include <asm/page.h> 117 #include <asm/tlbflush.h> 118 #include <linux/mm_types.h> 119 #include <asm/compat.h> 120 121 #define __page_val_to_pfn(_val) (((_val) & _PAGE_PFN_MASK) >> _PAGE_PFN_SHIFT) 122 123 #ifdef CONFIG_64BIT 124 #include <asm/pgtable-64.h> 125 126 #define VA_USER_SV39 (UL(1) << (VA_BITS_SV39 - 1)) 127 #define VA_USER_SV48 (UL(1) << (VA_BITS_SV48 - 1)) 128 #define VA_USER_SV57 (UL(1) << (VA_BITS_SV57 - 1)) 129 130 #ifdef CONFIG_COMPAT 131 #define MMAP_VA_BITS_64 ((VA_BITS >= VA_BITS_SV48) ? VA_BITS_SV48 : VA_BITS) 132 #define MMAP_MIN_VA_BITS_64 (VA_BITS_SV39) 133 #define MMAP_VA_BITS (is_compat_task() ? VA_BITS_SV32 : MMAP_VA_BITS_64) 134 #define MMAP_MIN_VA_BITS (is_compat_task() ? VA_BITS_SV32 : MMAP_MIN_VA_BITS_64) 135 #else 136 #define MMAP_VA_BITS ((VA_BITS >= VA_BITS_SV48) ? VA_BITS_SV48 : VA_BITS) 137 #define MMAP_MIN_VA_BITS (VA_BITS_SV39) 138 #endif /* CONFIG_COMPAT */ 139 140 #else 141 #include <asm/pgtable-32.h> 142 #endif /* CONFIG_64BIT */ 143 144 #include <linux/page_table_check.h> 145 146 #ifdef CONFIG_XIP_KERNEL 147 #define XIP_FIXUP(addr) ({ \ 148 uintptr_t __a = (uintptr_t)(addr); \ 149 (__a >= CONFIG_XIP_PHYS_ADDR && \ 150 __a < CONFIG_XIP_PHYS_ADDR + XIP_OFFSET * 2) ? \ 151 __a - CONFIG_XIP_PHYS_ADDR + CONFIG_PHYS_RAM_BASE - XIP_OFFSET :\ 152 __a; \ 153 }) 154 #else 155 #define XIP_FIXUP(addr) (addr) 156 #endif /* CONFIG_XIP_KERNEL */ 157 158 struct pt_alloc_ops { 159 pte_t *(*get_pte_virt)(phys_addr_t pa); 160 phys_addr_t (*alloc_pte)(uintptr_t va); 161 #ifndef __PAGETABLE_PMD_FOLDED 162 pmd_t *(*get_pmd_virt)(phys_addr_t pa); 163 phys_addr_t (*alloc_pmd)(uintptr_t va); 164 pud_t *(*get_pud_virt)(phys_addr_t pa); 165 phys_addr_t (*alloc_pud)(uintptr_t va); 166 p4d_t *(*get_p4d_virt)(phys_addr_t pa); 167 phys_addr_t (*alloc_p4d)(uintptr_t va); 168 #endif 169 }; 170 171 extern struct pt_alloc_ops pt_ops __initdata; 172 173 #ifdef CONFIG_MMU 174 /* Number of PGD entries that a user-mode program can use */ 175 #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE) 176 177 /* Page protection bits */ 178 #define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_USER) 179 180 #define PAGE_NONE __pgprot(_PAGE_PROT_NONE | _PAGE_READ) 181 #define PAGE_READ __pgprot(_PAGE_BASE | _PAGE_READ) 182 #define PAGE_WRITE __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_WRITE) 183 #define PAGE_EXEC __pgprot(_PAGE_BASE | _PAGE_EXEC) 184 #define PAGE_READ_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC) 185 #define PAGE_WRITE_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | \ 186 _PAGE_EXEC | _PAGE_WRITE) 187 188 #define PAGE_COPY PAGE_READ 189 #define PAGE_COPY_EXEC PAGE_READ_EXEC 190 #define PAGE_SHARED PAGE_WRITE 191 #define PAGE_SHARED_EXEC PAGE_WRITE_EXEC 192 193 #define _PAGE_KERNEL (_PAGE_READ \ 194 | _PAGE_WRITE \ 195 | _PAGE_PRESENT \ 196 | _PAGE_ACCESSED \ 197 | _PAGE_DIRTY \ 198 | _PAGE_GLOBAL) 199 200 #define PAGE_KERNEL __pgprot(_PAGE_KERNEL) 201 #define PAGE_KERNEL_READ __pgprot(_PAGE_KERNEL & ~_PAGE_WRITE) 202 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL | _PAGE_EXEC) 203 #define PAGE_KERNEL_READ_EXEC __pgprot((_PAGE_KERNEL & ~_PAGE_WRITE) \ 204 | _PAGE_EXEC) 205 206 #define PAGE_TABLE __pgprot(_PAGE_TABLE) 207 208 #define _PAGE_IOREMAP ((_PAGE_KERNEL & ~_PAGE_MTMASK) | _PAGE_IO) 209 #define PAGE_KERNEL_IO __pgprot(_PAGE_IOREMAP) 210 211 extern pgd_t swapper_pg_dir[]; 212 extern pgd_t trampoline_pg_dir[]; 213 extern pgd_t early_pg_dir[]; 214 215 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 216 static inline int pmd_present(pmd_t pmd) 217 { 218 /* 219 * Checking for _PAGE_LEAF is needed too because: 220 * When splitting a THP, split_huge_page() will temporarily clear 221 * the present bit, in this situation, pmd_present() and 222 * pmd_trans_huge() still needs to return true. 223 */ 224 return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE | _PAGE_LEAF)); 225 } 226 #else 227 static inline int pmd_present(pmd_t pmd) 228 { 229 return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE)); 230 } 231 #endif 232 233 static inline int pmd_none(pmd_t pmd) 234 { 235 return (pmd_val(pmd) == 0); 236 } 237 238 static inline int pmd_bad(pmd_t pmd) 239 { 240 return !pmd_present(pmd) || (pmd_val(pmd) & _PAGE_LEAF); 241 } 242 243 #define pmd_leaf pmd_leaf 244 static inline int pmd_leaf(pmd_t pmd) 245 { 246 return pmd_present(pmd) && (pmd_val(pmd) & _PAGE_LEAF); 247 } 248 249 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd) 250 { 251 WRITE_ONCE(*pmdp, pmd); 252 } 253 254 static inline void pmd_clear(pmd_t *pmdp) 255 { 256 set_pmd(pmdp, __pmd(0)); 257 } 258 259 static inline pgd_t pfn_pgd(unsigned long pfn, pgprot_t prot) 260 { 261 unsigned long prot_val = pgprot_val(prot); 262 263 ALT_THEAD_PMA(prot_val); 264 265 return __pgd((pfn << _PAGE_PFN_SHIFT) | prot_val); 266 } 267 268 static inline unsigned long _pgd_pfn(pgd_t pgd) 269 { 270 return __page_val_to_pfn(pgd_val(pgd)); 271 } 272 273 static inline struct page *pmd_page(pmd_t pmd) 274 { 275 return pfn_to_page(__page_val_to_pfn(pmd_val(pmd))); 276 } 277 278 static inline unsigned long pmd_page_vaddr(pmd_t pmd) 279 { 280 return (unsigned long)pfn_to_virt(__page_val_to_pfn(pmd_val(pmd))); 281 } 282 283 static inline pte_t pmd_pte(pmd_t pmd) 284 { 285 return __pte(pmd_val(pmd)); 286 } 287 288 static inline pte_t pud_pte(pud_t pud) 289 { 290 return __pte(pud_val(pud)); 291 } 292 293 #ifdef CONFIG_RISCV_ISA_SVNAPOT 294 295 static __always_inline bool has_svnapot(void) 296 { 297 return riscv_has_extension_likely(RISCV_ISA_EXT_SVNAPOT); 298 } 299 300 static inline unsigned long pte_napot(pte_t pte) 301 { 302 return pte_val(pte) & _PAGE_NAPOT; 303 } 304 305 static inline pte_t pte_mknapot(pte_t pte, unsigned int order) 306 { 307 int pos = order - 1 + _PAGE_PFN_SHIFT; 308 unsigned long napot_bit = BIT(pos); 309 unsigned long napot_mask = ~GENMASK(pos, _PAGE_PFN_SHIFT); 310 311 return __pte((pte_val(pte) & napot_mask) | napot_bit | _PAGE_NAPOT); 312 } 313 314 #else 315 316 static __always_inline bool has_svnapot(void) { return false; } 317 318 static inline unsigned long pte_napot(pte_t pte) 319 { 320 return 0; 321 } 322 323 #endif /* CONFIG_RISCV_ISA_SVNAPOT */ 324 325 /* Yields the page frame number (PFN) of a page table entry */ 326 static inline unsigned long pte_pfn(pte_t pte) 327 { 328 unsigned long res = __page_val_to_pfn(pte_val(pte)); 329 330 if (has_svnapot() && pte_napot(pte)) 331 res = res & (res - 1UL); 332 333 return res; 334 } 335 336 #define pte_page(x) pfn_to_page(pte_pfn(x)) 337 338 /* Constructs a page table entry */ 339 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot) 340 { 341 unsigned long prot_val = pgprot_val(prot); 342 343 ALT_THEAD_PMA(prot_val); 344 345 return __pte((pfn << _PAGE_PFN_SHIFT) | prot_val); 346 } 347 348 #define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot) 349 350 static inline int pte_present(pte_t pte) 351 { 352 return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE)); 353 } 354 355 static inline int pte_none(pte_t pte) 356 { 357 return (pte_val(pte) == 0); 358 } 359 360 static inline int pte_write(pte_t pte) 361 { 362 return pte_val(pte) & _PAGE_WRITE; 363 } 364 365 static inline int pte_exec(pte_t pte) 366 { 367 return pte_val(pte) & _PAGE_EXEC; 368 } 369 370 static inline int pte_user(pte_t pte) 371 { 372 return pte_val(pte) & _PAGE_USER; 373 } 374 375 static inline int pte_huge(pte_t pte) 376 { 377 return pte_present(pte) && (pte_val(pte) & _PAGE_LEAF); 378 } 379 380 static inline int pte_dirty(pte_t pte) 381 { 382 return pte_val(pte) & _PAGE_DIRTY; 383 } 384 385 static inline int pte_young(pte_t pte) 386 { 387 return pte_val(pte) & _PAGE_ACCESSED; 388 } 389 390 static inline int pte_special(pte_t pte) 391 { 392 return pte_val(pte) & _PAGE_SPECIAL; 393 } 394 395 /* static inline pte_t pte_rdprotect(pte_t pte) */ 396 397 static inline pte_t pte_wrprotect(pte_t pte) 398 { 399 return __pte(pte_val(pte) & ~(_PAGE_WRITE)); 400 } 401 402 /* static inline pte_t pte_mkread(pte_t pte) */ 403 404 static inline pte_t pte_mkwrite_novma(pte_t pte) 405 { 406 return __pte(pte_val(pte) | _PAGE_WRITE); 407 } 408 409 /* static inline pte_t pte_mkexec(pte_t pte) */ 410 411 static inline pte_t pte_mkdirty(pte_t pte) 412 { 413 return __pte(pte_val(pte) | _PAGE_DIRTY); 414 } 415 416 static inline pte_t pte_mkclean(pte_t pte) 417 { 418 return __pte(pte_val(pte) & ~(_PAGE_DIRTY)); 419 } 420 421 static inline pte_t pte_mkyoung(pte_t pte) 422 { 423 return __pte(pte_val(pte) | _PAGE_ACCESSED); 424 } 425 426 static inline pte_t pte_mkold(pte_t pte) 427 { 428 return __pte(pte_val(pte) & ~(_PAGE_ACCESSED)); 429 } 430 431 static inline pte_t pte_mkspecial(pte_t pte) 432 { 433 return __pte(pte_val(pte) | _PAGE_SPECIAL); 434 } 435 436 static inline pte_t pte_mkhuge(pte_t pte) 437 { 438 return pte; 439 } 440 441 #ifdef CONFIG_RISCV_ISA_SVNAPOT 442 #define pte_leaf_size(pte) (pte_napot(pte) ? \ 443 napot_cont_size(napot_cont_order(pte)) :\ 444 PAGE_SIZE) 445 #endif 446 447 #ifdef CONFIG_NUMA_BALANCING 448 /* 449 * See the comment in include/asm-generic/pgtable.h 450 */ 451 static inline int pte_protnone(pte_t pte) 452 { 453 return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE)) == _PAGE_PROT_NONE; 454 } 455 456 static inline int pmd_protnone(pmd_t pmd) 457 { 458 return pte_protnone(pmd_pte(pmd)); 459 } 460 #endif 461 462 /* Modify page protection bits */ 463 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 464 { 465 unsigned long newprot_val = pgprot_val(newprot); 466 467 ALT_THEAD_PMA(newprot_val); 468 469 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | newprot_val); 470 } 471 472 #define pgd_ERROR(e) \ 473 pr_err("%s:%d: bad pgd " PTE_FMT ".\n", __FILE__, __LINE__, pgd_val(e)) 474 475 476 /* Commit new configuration to MMU hardware */ 477 static inline void update_mmu_cache_range(struct vm_fault *vmf, 478 struct vm_area_struct *vma, unsigned long address, 479 pte_t *ptep, unsigned int nr) 480 { 481 /* 482 * The kernel assumes that TLBs don't cache invalid entries, but 483 * in RISC-V, SFENCE.VMA specifies an ordering constraint, not a 484 * cache flush; it is necessary even after writing invalid entries. 485 * Relying on flush_tlb_fix_spurious_fault would suffice, but 486 * the extra traps reduce performance. So, eagerly SFENCE.VMA. 487 */ 488 while (nr--) 489 local_flush_tlb_page(address + nr * PAGE_SIZE); 490 } 491 #define update_mmu_cache(vma, addr, ptep) \ 492 update_mmu_cache_range(NULL, vma, addr, ptep, 1) 493 494 #define __HAVE_ARCH_UPDATE_MMU_TLB 495 #define update_mmu_tlb update_mmu_cache 496 497 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma, 498 unsigned long address, pmd_t *pmdp) 499 { 500 pte_t *ptep = (pte_t *)pmdp; 501 502 update_mmu_cache(vma, address, ptep); 503 } 504 505 #define __HAVE_ARCH_PTE_SAME 506 static inline int pte_same(pte_t pte_a, pte_t pte_b) 507 { 508 return pte_val(pte_a) == pte_val(pte_b); 509 } 510 511 /* 512 * Certain architectures need to do special things when PTEs within 513 * a page table are directly modified. Thus, the following hook is 514 * made available. 515 */ 516 static inline void set_pte(pte_t *ptep, pte_t pteval) 517 { 518 WRITE_ONCE(*ptep, pteval); 519 } 520 521 void flush_icache_pte(pte_t pte); 522 523 static inline void __set_pte_at(pte_t *ptep, pte_t pteval) 524 { 525 if (pte_present(pteval) && pte_exec(pteval)) 526 flush_icache_pte(pteval); 527 528 set_pte(ptep, pteval); 529 } 530 531 static inline void set_ptes(struct mm_struct *mm, unsigned long addr, 532 pte_t *ptep, pte_t pteval, unsigned int nr) 533 { 534 page_table_check_ptes_set(mm, ptep, pteval, nr); 535 536 for (;;) { 537 __set_pte_at(ptep, pteval); 538 if (--nr == 0) 539 break; 540 ptep++; 541 pte_val(pteval) += 1 << _PAGE_PFN_SHIFT; 542 } 543 } 544 #define set_ptes set_ptes 545 546 static inline void pte_clear(struct mm_struct *mm, 547 unsigned long addr, pte_t *ptep) 548 { 549 __set_pte_at(ptep, __pte(0)); 550 } 551 552 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS /* defined in mm/pgtable.c */ 553 extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address, 554 pte_t *ptep, pte_t entry, int dirty); 555 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG /* defined in mm/pgtable.c */ 556 extern int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long address, 557 pte_t *ptep); 558 559 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR 560 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 561 unsigned long address, pte_t *ptep) 562 { 563 pte_t pte = __pte(atomic_long_xchg((atomic_long_t *)ptep, 0)); 564 565 page_table_check_pte_clear(mm, pte); 566 567 return pte; 568 } 569 570 #define __HAVE_ARCH_PTEP_SET_WRPROTECT 571 static inline void ptep_set_wrprotect(struct mm_struct *mm, 572 unsigned long address, pte_t *ptep) 573 { 574 atomic_long_and(~(unsigned long)_PAGE_WRITE, (atomic_long_t *)ptep); 575 } 576 577 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 578 static inline int ptep_clear_flush_young(struct vm_area_struct *vma, 579 unsigned long address, pte_t *ptep) 580 { 581 /* 582 * This comment is borrowed from x86, but applies equally to RISC-V: 583 * 584 * Clearing the accessed bit without a TLB flush 585 * doesn't cause data corruption. [ It could cause incorrect 586 * page aging and the (mistaken) reclaim of hot pages, but the 587 * chance of that should be relatively low. ] 588 * 589 * So as a performance optimization don't flush the TLB when 590 * clearing the accessed bit, it will eventually be flushed by 591 * a context switch or a VM operation anyway. [ In the rare 592 * event of it not getting flushed for a long time the delay 593 * shouldn't really matter because there's no real memory 594 * pressure for swapout to react to. ] 595 */ 596 return ptep_test_and_clear_young(vma, address, ptep); 597 } 598 599 #define pgprot_noncached pgprot_noncached 600 static inline pgprot_t pgprot_noncached(pgprot_t _prot) 601 { 602 unsigned long prot = pgprot_val(_prot); 603 604 prot &= ~_PAGE_MTMASK; 605 prot |= _PAGE_IO; 606 607 return __pgprot(prot); 608 } 609 610 #define pgprot_writecombine pgprot_writecombine 611 static inline pgprot_t pgprot_writecombine(pgprot_t _prot) 612 { 613 unsigned long prot = pgprot_val(_prot); 614 615 prot &= ~_PAGE_MTMASK; 616 prot |= _PAGE_NOCACHE; 617 618 return __pgprot(prot); 619 } 620 621 /* 622 * THP functions 623 */ 624 static inline pmd_t pte_pmd(pte_t pte) 625 { 626 return __pmd(pte_val(pte)); 627 } 628 629 static inline pmd_t pmd_mkhuge(pmd_t pmd) 630 { 631 return pmd; 632 } 633 634 static inline pmd_t pmd_mkinvalid(pmd_t pmd) 635 { 636 return __pmd(pmd_val(pmd) & ~(_PAGE_PRESENT|_PAGE_PROT_NONE)); 637 } 638 639 #define __pmd_to_phys(pmd) (__page_val_to_pfn(pmd_val(pmd)) << PAGE_SHIFT) 640 641 static inline unsigned long pmd_pfn(pmd_t pmd) 642 { 643 return ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT); 644 } 645 646 #define __pud_to_phys(pud) (__page_val_to_pfn(pud_val(pud)) << PAGE_SHIFT) 647 648 static inline unsigned long pud_pfn(pud_t pud) 649 { 650 return ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT); 651 } 652 653 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 654 { 655 return pte_pmd(pte_modify(pmd_pte(pmd), newprot)); 656 } 657 658 #define pmd_write pmd_write 659 static inline int pmd_write(pmd_t pmd) 660 { 661 return pte_write(pmd_pte(pmd)); 662 } 663 664 static inline int pmd_dirty(pmd_t pmd) 665 { 666 return pte_dirty(pmd_pte(pmd)); 667 } 668 669 #define pmd_young pmd_young 670 static inline int pmd_young(pmd_t pmd) 671 { 672 return pte_young(pmd_pte(pmd)); 673 } 674 675 static inline int pmd_user(pmd_t pmd) 676 { 677 return pte_user(pmd_pte(pmd)); 678 } 679 680 static inline pmd_t pmd_mkold(pmd_t pmd) 681 { 682 return pte_pmd(pte_mkold(pmd_pte(pmd))); 683 } 684 685 static inline pmd_t pmd_mkyoung(pmd_t pmd) 686 { 687 return pte_pmd(pte_mkyoung(pmd_pte(pmd))); 688 } 689 690 static inline pmd_t pmd_mkwrite_novma(pmd_t pmd) 691 { 692 return pte_pmd(pte_mkwrite_novma(pmd_pte(pmd))); 693 } 694 695 static inline pmd_t pmd_wrprotect(pmd_t pmd) 696 { 697 return pte_pmd(pte_wrprotect(pmd_pte(pmd))); 698 } 699 700 static inline pmd_t pmd_mkclean(pmd_t pmd) 701 { 702 return pte_pmd(pte_mkclean(pmd_pte(pmd))); 703 } 704 705 static inline pmd_t pmd_mkdirty(pmd_t pmd) 706 { 707 return pte_pmd(pte_mkdirty(pmd_pte(pmd))); 708 } 709 710 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr, 711 pmd_t *pmdp, pmd_t pmd) 712 { 713 page_table_check_pmd_set(mm, pmdp, pmd); 714 return __set_pte_at((pte_t *)pmdp, pmd_pte(pmd)); 715 } 716 717 static inline void set_pud_at(struct mm_struct *mm, unsigned long addr, 718 pud_t *pudp, pud_t pud) 719 { 720 page_table_check_pud_set(mm, pudp, pud); 721 return __set_pte_at((pte_t *)pudp, pud_pte(pud)); 722 } 723 724 #ifdef CONFIG_PAGE_TABLE_CHECK 725 static inline bool pte_user_accessible_page(pte_t pte) 726 { 727 return pte_present(pte) && pte_user(pte); 728 } 729 730 static inline bool pmd_user_accessible_page(pmd_t pmd) 731 { 732 return pmd_leaf(pmd) && pmd_user(pmd); 733 } 734 735 static inline bool pud_user_accessible_page(pud_t pud) 736 { 737 return pud_leaf(pud) && pud_user(pud); 738 } 739 #endif 740 741 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 742 static inline int pmd_trans_huge(pmd_t pmd) 743 { 744 return pmd_leaf(pmd); 745 } 746 747 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 748 static inline int pmdp_set_access_flags(struct vm_area_struct *vma, 749 unsigned long address, pmd_t *pmdp, 750 pmd_t entry, int dirty) 751 { 752 return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty); 753 } 754 755 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 756 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 757 unsigned long address, pmd_t *pmdp) 758 { 759 return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp); 760 } 761 762 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 763 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 764 unsigned long address, pmd_t *pmdp) 765 { 766 pmd_t pmd = __pmd(atomic_long_xchg((atomic_long_t *)pmdp, 0)); 767 768 page_table_check_pmd_clear(mm, pmd); 769 770 return pmd; 771 } 772 773 #define __HAVE_ARCH_PMDP_SET_WRPROTECT 774 static inline void pmdp_set_wrprotect(struct mm_struct *mm, 775 unsigned long address, pmd_t *pmdp) 776 { 777 ptep_set_wrprotect(mm, address, (pte_t *)pmdp); 778 } 779 780 #define pmdp_establish pmdp_establish 781 static inline pmd_t pmdp_establish(struct vm_area_struct *vma, 782 unsigned long address, pmd_t *pmdp, pmd_t pmd) 783 { 784 page_table_check_pmd_set(vma->vm_mm, pmdp, pmd); 785 return __pmd(atomic_long_xchg((atomic_long_t *)pmdp, pmd_val(pmd))); 786 } 787 788 #define pmdp_collapse_flush pmdp_collapse_flush 789 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 790 unsigned long address, pmd_t *pmdp); 791 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 792 793 /* 794 * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that 795 * are !pte_none() && !pte_present(). 796 * 797 * Format of swap PTE: 798 * bit 0: _PAGE_PRESENT (zero) 799 * bit 1 to 3: _PAGE_LEAF (zero) 800 * bit 5: _PAGE_PROT_NONE (zero) 801 * bit 6: exclusive marker 802 * bits 7 to 11: swap type 803 * bits 11 to XLEN-1: swap offset 804 */ 805 #define __SWP_TYPE_SHIFT 7 806 #define __SWP_TYPE_BITS 5 807 #define __SWP_TYPE_MASK ((1UL << __SWP_TYPE_BITS) - 1) 808 #define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT) 809 810 #define MAX_SWAPFILES_CHECK() \ 811 BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS) 812 813 #define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK) 814 #define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT) 815 #define __swp_entry(type, offset) ((swp_entry_t) \ 816 { (((type) & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT) | \ 817 ((offset) << __SWP_OFFSET_SHIFT) }) 818 819 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 820 #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 821 822 static inline int pte_swp_exclusive(pte_t pte) 823 { 824 return pte_val(pte) & _PAGE_SWP_EXCLUSIVE; 825 } 826 827 static inline pte_t pte_swp_mkexclusive(pte_t pte) 828 { 829 return __pte(pte_val(pte) | _PAGE_SWP_EXCLUSIVE); 830 } 831 832 static inline pte_t pte_swp_clear_exclusive(pte_t pte) 833 { 834 return __pte(pte_val(pte) & ~_PAGE_SWP_EXCLUSIVE); 835 } 836 837 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 838 #define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) }) 839 #define __swp_entry_to_pmd(swp) __pmd((swp).val) 840 #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */ 841 842 /* 843 * In the RV64 Linux scheme, we give the user half of the virtual-address space 844 * and give the kernel the other (upper) half. 845 */ 846 #ifdef CONFIG_64BIT 847 #define KERN_VIRT_START (-(BIT(VA_BITS)) + TASK_SIZE) 848 #else 849 #define KERN_VIRT_START FIXADDR_START 850 #endif 851 852 /* 853 * Task size is 0x4000000000 for RV64 or 0x9fc00000 for RV32. 854 * Note that PGDIR_SIZE must evenly divide TASK_SIZE. 855 * Task size is: 856 * - 0x9fc00000 (~2.5GB) for RV32. 857 * - 0x4000000000 ( 256GB) for RV64 using SV39 mmu 858 * - 0x800000000000 ( 128TB) for RV64 using SV48 mmu 859 * - 0x100000000000000 ( 64PB) for RV64 using SV57 mmu 860 * 861 * Note that PGDIR_SIZE must evenly divide TASK_SIZE since "RISC-V 862 * Instruction Set Manual Volume II: Privileged Architecture" states that 863 * "load and store effective addresses, which are 64bits, must have bits 864 * 63–48 all equal to bit 47, or else a page-fault exception will occur." 865 * Similarly for SV57, bits 63–57 must be equal to bit 56. 866 */ 867 #ifdef CONFIG_64BIT 868 #define TASK_SIZE_64 (PGDIR_SIZE * PTRS_PER_PGD / 2) 869 #define TASK_SIZE_MIN (PGDIR_SIZE_L3 * PTRS_PER_PGD / 2) 870 871 #ifdef CONFIG_COMPAT 872 #define TASK_SIZE_32 (_AC(0x80000000, UL)) 873 #define TASK_SIZE (test_thread_flag(TIF_32BIT) ? \ 874 TASK_SIZE_32 : TASK_SIZE_64) 875 #else 876 #define TASK_SIZE TASK_SIZE_64 877 #endif 878 879 #else 880 #define TASK_SIZE FIXADDR_START 881 #define TASK_SIZE_MIN TASK_SIZE 882 #endif 883 884 #else /* CONFIG_MMU */ 885 886 #define PAGE_SHARED __pgprot(0) 887 #define PAGE_KERNEL __pgprot(0) 888 #define swapper_pg_dir NULL 889 #define TASK_SIZE _AC(-1, UL) 890 #define VMALLOC_START _AC(0, UL) 891 #define VMALLOC_END TASK_SIZE 892 893 #endif /* !CONFIG_MMU */ 894 895 extern char _start[]; 896 extern void *_dtb_early_va; 897 extern uintptr_t _dtb_early_pa; 898 #if defined(CONFIG_XIP_KERNEL) && defined(CONFIG_MMU) 899 #define dtb_early_va (*(void **)XIP_FIXUP(&_dtb_early_va)) 900 #define dtb_early_pa (*(uintptr_t *)XIP_FIXUP(&_dtb_early_pa)) 901 #else 902 #define dtb_early_va _dtb_early_va 903 #define dtb_early_pa _dtb_early_pa 904 #endif /* CONFIG_XIP_KERNEL */ 905 extern u64 satp_mode; 906 extern bool pgtable_l4_enabled; 907 908 void paging_init(void); 909 void misc_mem_init(void); 910 911 /* 912 * ZERO_PAGE is a global shared page that is always zero, 913 * used for zero-mapped memory areas, etc. 914 */ 915 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]; 916 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 917 918 #endif /* !__ASSEMBLY__ */ 919 920 #endif /* _ASM_RISCV_PGTABLE_H */ 921