xref: /openbmc/linux/arch/riscv/include/asm/pgtable.h (revision 7f6964c5)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012 Regents of the University of California
4  */
5 
6 #ifndef _ASM_RISCV_PGTABLE_H
7 #define _ASM_RISCV_PGTABLE_H
8 
9 #include <linux/mmzone.h>
10 
11 #include <asm/pgtable-bits.h>
12 
13 #ifndef __ASSEMBLY__
14 
15 /* Page Upper Directory not used in RISC-V */
16 #include <asm-generic/pgtable-nopud.h>
17 #include <asm/page.h>
18 #include <asm/tlbflush.h>
19 #include <linux/mm_types.h>
20 
21 #ifdef CONFIG_64BIT
22 #include <asm/pgtable-64.h>
23 #else
24 #include <asm/pgtable-32.h>
25 #endif /* CONFIG_64BIT */
26 
27 /* Number of entries in the page global directory */
28 #define PTRS_PER_PGD    (PAGE_SIZE / sizeof(pgd_t))
29 /* Number of entries in the page table */
30 #define PTRS_PER_PTE    (PAGE_SIZE / sizeof(pte_t))
31 
32 /* Number of PGD entries that a user-mode program can use */
33 #define USER_PTRS_PER_PGD   (TASK_SIZE / PGDIR_SIZE)
34 #define FIRST_USER_ADDRESS  0
35 
36 /* Page protection bits */
37 #define _PAGE_BASE	(_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_USER)
38 
39 #define PAGE_NONE		__pgprot(_PAGE_PROT_NONE)
40 #define PAGE_READ		__pgprot(_PAGE_BASE | _PAGE_READ)
41 #define PAGE_WRITE		__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_WRITE)
42 #define PAGE_EXEC		__pgprot(_PAGE_BASE | _PAGE_EXEC)
43 #define PAGE_READ_EXEC		__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
44 #define PAGE_WRITE_EXEC		__pgprot(_PAGE_BASE | _PAGE_READ |	\
45 					 _PAGE_EXEC | _PAGE_WRITE)
46 
47 #define PAGE_COPY		PAGE_READ
48 #define PAGE_COPY_EXEC		PAGE_EXEC
49 #define PAGE_COPY_READ_EXEC	PAGE_READ_EXEC
50 #define PAGE_SHARED		PAGE_WRITE
51 #define PAGE_SHARED_EXEC	PAGE_WRITE_EXEC
52 
53 #define _PAGE_KERNEL		(_PAGE_READ \
54 				| _PAGE_WRITE \
55 				| _PAGE_PRESENT \
56 				| _PAGE_ACCESSED \
57 				| _PAGE_DIRTY)
58 
59 #define PAGE_KERNEL		__pgprot(_PAGE_KERNEL)
60 #define PAGE_KERNEL_EXEC	__pgprot(_PAGE_KERNEL | _PAGE_EXEC)
61 
62 extern pgd_t swapper_pg_dir[];
63 
64 /* MAP_PRIVATE permissions: xwr (copy-on-write) */
65 #define __P000	PAGE_NONE
66 #define __P001	PAGE_READ
67 #define __P010	PAGE_COPY
68 #define __P011	PAGE_COPY
69 #define __P100	PAGE_EXEC
70 #define __P101	PAGE_READ_EXEC
71 #define __P110	PAGE_COPY_EXEC
72 #define __P111	PAGE_COPY_READ_EXEC
73 
74 /* MAP_SHARED permissions: xwr */
75 #define __S000	PAGE_NONE
76 #define __S001	PAGE_READ
77 #define __S010	PAGE_SHARED
78 #define __S011	PAGE_SHARED
79 #define __S100	PAGE_EXEC
80 #define __S101	PAGE_READ_EXEC
81 #define __S110	PAGE_SHARED_EXEC
82 #define __S111	PAGE_SHARED_EXEC
83 
84 /*
85  * ZERO_PAGE is a global shared page that is always zero,
86  * used for zero-mapped memory areas, etc.
87  */
88 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
89 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
90 
91 static inline int pmd_present(pmd_t pmd)
92 {
93 	return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
94 }
95 
96 static inline int pmd_none(pmd_t pmd)
97 {
98 	return (pmd_val(pmd) == 0);
99 }
100 
101 static inline int pmd_bad(pmd_t pmd)
102 {
103 	return !pmd_present(pmd);
104 }
105 
106 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
107 {
108 	*pmdp = pmd;
109 }
110 
111 static inline void pmd_clear(pmd_t *pmdp)
112 {
113 	set_pmd(pmdp, __pmd(0));
114 }
115 
116 
117 static inline pgd_t pfn_pgd(unsigned long pfn, pgprot_t prot)
118 {
119 	return __pgd((pfn << _PAGE_PFN_SHIFT) | pgprot_val(prot));
120 }
121 
122 #define pgd_index(addr) (((addr) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
123 
124 /* Locate an entry in the page global directory */
125 static inline pgd_t *pgd_offset(const struct mm_struct *mm, unsigned long addr)
126 {
127 	return mm->pgd + pgd_index(addr);
128 }
129 /* Locate an entry in the kernel page global directory */
130 #define pgd_offset_k(addr)      pgd_offset(&init_mm, (addr))
131 
132 static inline struct page *pmd_page(pmd_t pmd)
133 {
134 	return pfn_to_page(pmd_val(pmd) >> _PAGE_PFN_SHIFT);
135 }
136 
137 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
138 {
139 	return (unsigned long)pfn_to_virt(pmd_val(pmd) >> _PAGE_PFN_SHIFT);
140 }
141 
142 /* Yields the page frame number (PFN) of a page table entry */
143 static inline unsigned long pte_pfn(pte_t pte)
144 {
145 	return (pte_val(pte) >> _PAGE_PFN_SHIFT);
146 }
147 
148 #define pte_page(x)     pfn_to_page(pte_pfn(x))
149 
150 /* Constructs a page table entry */
151 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot)
152 {
153 	return __pte((pfn << _PAGE_PFN_SHIFT) | pgprot_val(prot));
154 }
155 
156 static inline pte_t mk_pte(struct page *page, pgprot_t prot)
157 {
158 	return pfn_pte(page_to_pfn(page), prot);
159 }
160 
161 #define pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
162 
163 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long addr)
164 {
165 	return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(addr);
166 }
167 
168 #define pte_offset_map(dir, addr)	pte_offset_kernel((dir), (addr))
169 #define pte_unmap(pte)			((void)(pte))
170 
171 static inline int pte_present(pte_t pte)
172 {
173 	return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
174 }
175 
176 static inline int pte_none(pte_t pte)
177 {
178 	return (pte_val(pte) == 0);
179 }
180 
181 static inline int pte_write(pte_t pte)
182 {
183 	return pte_val(pte) & _PAGE_WRITE;
184 }
185 
186 static inline int pte_exec(pte_t pte)
187 {
188 	return pte_val(pte) & _PAGE_EXEC;
189 }
190 
191 static inline int pte_huge(pte_t pte)
192 {
193 	return pte_present(pte)
194 		&& (pte_val(pte) & (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC));
195 }
196 
197 static inline int pte_dirty(pte_t pte)
198 {
199 	return pte_val(pte) & _PAGE_DIRTY;
200 }
201 
202 static inline int pte_young(pte_t pte)
203 {
204 	return pte_val(pte) & _PAGE_ACCESSED;
205 }
206 
207 static inline int pte_special(pte_t pte)
208 {
209 	return pte_val(pte) & _PAGE_SPECIAL;
210 }
211 
212 /* static inline pte_t pte_rdprotect(pte_t pte) */
213 
214 static inline pte_t pte_wrprotect(pte_t pte)
215 {
216 	return __pte(pte_val(pte) & ~(_PAGE_WRITE));
217 }
218 
219 /* static inline pte_t pte_mkread(pte_t pte) */
220 
221 static inline pte_t pte_mkwrite(pte_t pte)
222 {
223 	return __pte(pte_val(pte) | _PAGE_WRITE);
224 }
225 
226 /* static inline pte_t pte_mkexec(pte_t pte) */
227 
228 static inline pte_t pte_mkdirty(pte_t pte)
229 {
230 	return __pte(pte_val(pte) | _PAGE_DIRTY);
231 }
232 
233 static inline pte_t pte_mkclean(pte_t pte)
234 {
235 	return __pte(pte_val(pte) & ~(_PAGE_DIRTY));
236 }
237 
238 static inline pte_t pte_mkyoung(pte_t pte)
239 {
240 	return __pte(pte_val(pte) | _PAGE_ACCESSED);
241 }
242 
243 static inline pte_t pte_mkold(pte_t pte)
244 {
245 	return __pte(pte_val(pte) & ~(_PAGE_ACCESSED));
246 }
247 
248 static inline pte_t pte_mkspecial(pte_t pte)
249 {
250 	return __pte(pte_val(pte) | _PAGE_SPECIAL);
251 }
252 
253 /* Modify page protection bits */
254 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
255 {
256 	return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
257 }
258 
259 #define pgd_ERROR(e) \
260 	pr_err("%s:%d: bad pgd " PTE_FMT ".\n", __FILE__, __LINE__, pgd_val(e))
261 
262 
263 /* Commit new configuration to MMU hardware */
264 static inline void update_mmu_cache(struct vm_area_struct *vma,
265 	unsigned long address, pte_t *ptep)
266 {
267 	/*
268 	 * The kernel assumes that TLBs don't cache invalid entries, but
269 	 * in RISC-V, SFENCE.VMA specifies an ordering constraint, not a
270 	 * cache flush; it is necessary even after writing invalid entries.
271 	 * Relying on flush_tlb_fix_spurious_fault would suffice, but
272 	 * the extra traps reduce performance.  So, eagerly SFENCE.VMA.
273 	 */
274 	local_flush_tlb_page(address);
275 }
276 
277 #define __HAVE_ARCH_PTE_SAME
278 static inline int pte_same(pte_t pte_a, pte_t pte_b)
279 {
280 	return pte_val(pte_a) == pte_val(pte_b);
281 }
282 
283 /*
284  * Certain architectures need to do special things when PTEs within
285  * a page table are directly modified.  Thus, the following hook is
286  * made available.
287  */
288 static inline void set_pte(pte_t *ptep, pte_t pteval)
289 {
290 	*ptep = pteval;
291 }
292 
293 void flush_icache_pte(pte_t pte);
294 
295 static inline void set_pte_at(struct mm_struct *mm,
296 	unsigned long addr, pte_t *ptep, pte_t pteval)
297 {
298 	if (pte_present(pteval) && pte_exec(pteval))
299 		flush_icache_pte(pteval);
300 
301 	set_pte(ptep, pteval);
302 }
303 
304 static inline void pte_clear(struct mm_struct *mm,
305 	unsigned long addr, pte_t *ptep)
306 {
307 	set_pte_at(mm, addr, ptep, __pte(0));
308 }
309 
310 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
311 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
312 					unsigned long address, pte_t *ptep,
313 					pte_t entry, int dirty)
314 {
315 	if (!pte_same(*ptep, entry))
316 		set_pte_at(vma->vm_mm, address, ptep, entry);
317 	/*
318 	 * update_mmu_cache will unconditionally execute, handling both
319 	 * the case that the PTE changed and the spurious fault case.
320 	 */
321 	return true;
322 }
323 
324 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
325 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
326 				       unsigned long address, pte_t *ptep)
327 {
328 	return __pte(atomic_long_xchg((atomic_long_t *)ptep, 0));
329 }
330 
331 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
332 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
333 					    unsigned long address,
334 					    pte_t *ptep)
335 {
336 	if (!pte_young(*ptep))
337 		return 0;
338 	return test_and_clear_bit(_PAGE_ACCESSED_OFFSET, &pte_val(*ptep));
339 }
340 
341 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
342 static inline void ptep_set_wrprotect(struct mm_struct *mm,
343 				      unsigned long address, pte_t *ptep)
344 {
345 	atomic_long_and(~(unsigned long)_PAGE_WRITE, (atomic_long_t *)ptep);
346 }
347 
348 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
349 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
350 					 unsigned long address, pte_t *ptep)
351 {
352 	/*
353 	 * This comment is borrowed from x86, but applies equally to RISC-V:
354 	 *
355 	 * Clearing the accessed bit without a TLB flush
356 	 * doesn't cause data corruption. [ It could cause incorrect
357 	 * page aging and the (mistaken) reclaim of hot pages, but the
358 	 * chance of that should be relatively low. ]
359 	 *
360 	 * So as a performance optimization don't flush the TLB when
361 	 * clearing the accessed bit, it will eventually be flushed by
362 	 * a context switch or a VM operation anyway. [ In the rare
363 	 * event of it not getting flushed for a long time the delay
364 	 * shouldn't really matter because there's no real memory
365 	 * pressure for swapout to react to. ]
366 	 */
367 	return ptep_test_and_clear_young(vma, address, ptep);
368 }
369 
370 /*
371  * Encode and decode a swap entry
372  *
373  * Format of swap PTE:
374  *	bit            0:	_PAGE_PRESENT (zero)
375  *	bit            1:	_PAGE_PROT_NONE (zero)
376  *	bits      2 to 6:	swap type
377  *	bits 7 to XLEN-1:	swap offset
378  */
379 #define __SWP_TYPE_SHIFT	2
380 #define __SWP_TYPE_BITS		5
381 #define __SWP_TYPE_MASK		((1UL << __SWP_TYPE_BITS) - 1)
382 #define __SWP_OFFSET_SHIFT	(__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
383 
384 #define MAX_SWAPFILES_CHECK()	\
385 	BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
386 
387 #define __swp_type(x)	(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
388 #define __swp_offset(x)	((x).val >> __SWP_OFFSET_SHIFT)
389 #define __swp_entry(type, offset) ((swp_entry_t) \
390 	{ ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
391 
392 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
393 #define __swp_entry_to_pte(x)	((pte_t) { (x).val })
394 
395 #ifdef CONFIG_FLATMEM
396 #define kern_addr_valid(addr)   (1) /* FIXME */
397 #endif
398 
399 extern void setup_bootmem(void);
400 extern void paging_init(void);
401 
402 static inline void pgtable_cache_init(void)
403 {
404 	/* No page table caches to initialize */
405 }
406 
407 #define VMALLOC_SIZE     (KERN_VIRT_SIZE >> 1)
408 #define VMALLOC_END      (PAGE_OFFSET - 1)
409 #define VMALLOC_START    (PAGE_OFFSET - VMALLOC_SIZE)
410 
411 /*
412  * Task size is 0x40000000000 for RV64 or 0xb800000 for RV32.
413  * Note that PGDIR_SIZE must evenly divide TASK_SIZE.
414  */
415 #ifdef CONFIG_64BIT
416 #define TASK_SIZE (PGDIR_SIZE * PTRS_PER_PGD / 2)
417 #else
418 #define TASK_SIZE VMALLOC_START
419 #endif
420 
421 #include <asm-generic/pgtable.h>
422 
423 #endif /* !__ASSEMBLY__ */
424 
425 #endif /* _ASM_RISCV_PGTABLE_H */
426