1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (C) 2012 Regents of the University of California 4 */ 5 6 #ifndef _ASM_RISCV_PGTABLE_H 7 #define _ASM_RISCV_PGTABLE_H 8 9 #include <linux/mmzone.h> 10 #include <linux/sizes.h> 11 12 #include <asm/pgtable-bits.h> 13 14 #ifndef __ASSEMBLY__ 15 16 /* Page Upper Directory not used in RISC-V */ 17 #include <asm-generic/pgtable-nopud.h> 18 #include <asm/page.h> 19 #include <asm/tlbflush.h> 20 #include <linux/mm_types.h> 21 22 #ifdef CONFIG_MMU 23 24 #define VMALLOC_SIZE (KERN_VIRT_SIZE >> 1) 25 #define VMALLOC_END (PAGE_OFFSET - 1) 26 #define VMALLOC_START (PAGE_OFFSET - VMALLOC_SIZE) 27 28 #define BPF_JIT_REGION_SIZE (SZ_128M) 29 #define BPF_JIT_REGION_START (PAGE_OFFSET - BPF_JIT_REGION_SIZE) 30 #define BPF_JIT_REGION_END (VMALLOC_END) 31 32 /* 33 * Roughly size the vmemmap space to be large enough to fit enough 34 * struct pages to map half the virtual address space. Then 35 * position vmemmap directly below the VMALLOC region. 36 */ 37 #define VMEMMAP_SHIFT \ 38 (CONFIG_VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT) 39 #define VMEMMAP_SIZE BIT(VMEMMAP_SHIFT) 40 #define VMEMMAP_END (VMALLOC_START - 1) 41 #define VMEMMAP_START (VMALLOC_START - VMEMMAP_SIZE) 42 43 /* 44 * Define vmemmap for pfn_to_page & page_to_pfn calls. Needed if kernel 45 * is configured with CONFIG_SPARSEMEM_VMEMMAP enabled. 46 */ 47 #define vmemmap ((struct page *)VMEMMAP_START) 48 49 #define PCI_IO_SIZE SZ_16M 50 #define PCI_IO_END VMEMMAP_START 51 #define PCI_IO_START (PCI_IO_END - PCI_IO_SIZE) 52 53 #define FIXADDR_TOP PCI_IO_START 54 #ifdef CONFIG_64BIT 55 #define FIXADDR_SIZE PMD_SIZE 56 #else 57 #define FIXADDR_SIZE PGDIR_SIZE 58 #endif 59 #define FIXADDR_START (FIXADDR_TOP - FIXADDR_SIZE) 60 61 #endif 62 63 #ifdef CONFIG_64BIT 64 #include <asm/pgtable-64.h> 65 #else 66 #include <asm/pgtable-32.h> 67 #endif /* CONFIG_64BIT */ 68 69 #ifdef CONFIG_MMU 70 /* Number of entries in the page global directory */ 71 #define PTRS_PER_PGD (PAGE_SIZE / sizeof(pgd_t)) 72 /* Number of entries in the page table */ 73 #define PTRS_PER_PTE (PAGE_SIZE / sizeof(pte_t)) 74 75 /* Number of PGD entries that a user-mode program can use */ 76 #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE) 77 78 /* Page protection bits */ 79 #define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_USER) 80 81 #define PAGE_NONE __pgprot(_PAGE_PROT_NONE) 82 #define PAGE_READ __pgprot(_PAGE_BASE | _PAGE_READ) 83 #define PAGE_WRITE __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_WRITE) 84 #define PAGE_EXEC __pgprot(_PAGE_BASE | _PAGE_EXEC) 85 #define PAGE_READ_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC) 86 #define PAGE_WRITE_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | \ 87 _PAGE_EXEC | _PAGE_WRITE) 88 89 #define PAGE_COPY PAGE_READ 90 #define PAGE_COPY_EXEC PAGE_EXEC 91 #define PAGE_COPY_READ_EXEC PAGE_READ_EXEC 92 #define PAGE_SHARED PAGE_WRITE 93 #define PAGE_SHARED_EXEC PAGE_WRITE_EXEC 94 95 #define _PAGE_KERNEL (_PAGE_READ \ 96 | _PAGE_WRITE \ 97 | _PAGE_PRESENT \ 98 | _PAGE_ACCESSED \ 99 | _PAGE_DIRTY) 100 101 #define PAGE_KERNEL __pgprot(_PAGE_KERNEL) 102 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL | _PAGE_EXEC) 103 104 #define PAGE_TABLE __pgprot(_PAGE_TABLE) 105 106 /* 107 * The RISC-V ISA doesn't yet specify how to query or modify PMAs, so we can't 108 * change the properties of memory regions. 109 */ 110 #define _PAGE_IOREMAP _PAGE_KERNEL 111 112 extern pgd_t swapper_pg_dir[]; 113 114 /* MAP_PRIVATE permissions: xwr (copy-on-write) */ 115 #define __P000 PAGE_NONE 116 #define __P001 PAGE_READ 117 #define __P010 PAGE_COPY 118 #define __P011 PAGE_COPY 119 #define __P100 PAGE_EXEC 120 #define __P101 PAGE_READ_EXEC 121 #define __P110 PAGE_COPY_EXEC 122 #define __P111 PAGE_COPY_READ_EXEC 123 124 /* MAP_SHARED permissions: xwr */ 125 #define __S000 PAGE_NONE 126 #define __S001 PAGE_READ 127 #define __S010 PAGE_SHARED 128 #define __S011 PAGE_SHARED 129 #define __S100 PAGE_EXEC 130 #define __S101 PAGE_READ_EXEC 131 #define __S110 PAGE_SHARED_EXEC 132 #define __S111 PAGE_SHARED_EXEC 133 134 static inline int pmd_present(pmd_t pmd) 135 { 136 return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE)); 137 } 138 139 static inline int pmd_none(pmd_t pmd) 140 { 141 return (pmd_val(pmd) == 0); 142 } 143 144 static inline int pmd_bad(pmd_t pmd) 145 { 146 return !pmd_present(pmd); 147 } 148 149 #define pmd_leaf pmd_leaf 150 static inline int pmd_leaf(pmd_t pmd) 151 { 152 return pmd_present(pmd) && 153 (pmd_val(pmd) & (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)); 154 } 155 156 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd) 157 { 158 *pmdp = pmd; 159 } 160 161 static inline void pmd_clear(pmd_t *pmdp) 162 { 163 set_pmd(pmdp, __pmd(0)); 164 } 165 166 static inline pgd_t pfn_pgd(unsigned long pfn, pgprot_t prot) 167 { 168 return __pgd((pfn << _PAGE_PFN_SHIFT) | pgprot_val(prot)); 169 } 170 171 static inline unsigned long _pgd_pfn(pgd_t pgd) 172 { 173 return pgd_val(pgd) >> _PAGE_PFN_SHIFT; 174 } 175 176 #define pgd_index(addr) (((addr) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) 177 178 /* Locate an entry in the page global directory */ 179 static inline pgd_t *pgd_offset(const struct mm_struct *mm, unsigned long addr) 180 { 181 return mm->pgd + pgd_index(addr); 182 } 183 /* Locate an entry in the kernel page global directory */ 184 #define pgd_offset_k(addr) pgd_offset(&init_mm, (addr)) 185 186 static inline struct page *pmd_page(pmd_t pmd) 187 { 188 return pfn_to_page(pmd_val(pmd) >> _PAGE_PFN_SHIFT); 189 } 190 191 static inline unsigned long pmd_page_vaddr(pmd_t pmd) 192 { 193 return (unsigned long)pfn_to_virt(pmd_val(pmd) >> _PAGE_PFN_SHIFT); 194 } 195 196 /* Yields the page frame number (PFN) of a page table entry */ 197 static inline unsigned long pte_pfn(pte_t pte) 198 { 199 return (pte_val(pte) >> _PAGE_PFN_SHIFT); 200 } 201 202 #define pte_page(x) pfn_to_page(pte_pfn(x)) 203 204 /* Constructs a page table entry */ 205 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot) 206 { 207 return __pte((pfn << _PAGE_PFN_SHIFT) | pgprot_val(prot)); 208 } 209 210 #define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot) 211 212 #define pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) 213 214 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long addr) 215 { 216 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(addr); 217 } 218 219 #define pte_offset_map(dir, addr) pte_offset_kernel((dir), (addr)) 220 #define pte_unmap(pte) ((void)(pte)) 221 222 static inline int pte_present(pte_t pte) 223 { 224 return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE)); 225 } 226 227 static inline int pte_none(pte_t pte) 228 { 229 return (pte_val(pte) == 0); 230 } 231 232 static inline int pte_write(pte_t pte) 233 { 234 return pte_val(pte) & _PAGE_WRITE; 235 } 236 237 static inline int pte_exec(pte_t pte) 238 { 239 return pte_val(pte) & _PAGE_EXEC; 240 } 241 242 static inline int pte_huge(pte_t pte) 243 { 244 return pte_present(pte) 245 && (pte_val(pte) & (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)); 246 } 247 248 static inline int pte_dirty(pte_t pte) 249 { 250 return pte_val(pte) & _PAGE_DIRTY; 251 } 252 253 static inline int pte_young(pte_t pte) 254 { 255 return pte_val(pte) & _PAGE_ACCESSED; 256 } 257 258 static inline int pte_special(pte_t pte) 259 { 260 return pte_val(pte) & _PAGE_SPECIAL; 261 } 262 263 /* static inline pte_t pte_rdprotect(pte_t pte) */ 264 265 static inline pte_t pte_wrprotect(pte_t pte) 266 { 267 return __pte(pte_val(pte) & ~(_PAGE_WRITE)); 268 } 269 270 /* static inline pte_t pte_mkread(pte_t pte) */ 271 272 static inline pte_t pte_mkwrite(pte_t pte) 273 { 274 return __pte(pte_val(pte) | _PAGE_WRITE); 275 } 276 277 /* static inline pte_t pte_mkexec(pte_t pte) */ 278 279 static inline pte_t pte_mkdirty(pte_t pte) 280 { 281 return __pte(pte_val(pte) | _PAGE_DIRTY); 282 } 283 284 static inline pte_t pte_mkclean(pte_t pte) 285 { 286 return __pte(pte_val(pte) & ~(_PAGE_DIRTY)); 287 } 288 289 static inline pte_t pte_mkyoung(pte_t pte) 290 { 291 return __pte(pte_val(pte) | _PAGE_ACCESSED); 292 } 293 294 static inline pte_t pte_mkold(pte_t pte) 295 { 296 return __pte(pte_val(pte) & ~(_PAGE_ACCESSED)); 297 } 298 299 static inline pte_t pte_mkspecial(pte_t pte) 300 { 301 return __pte(pte_val(pte) | _PAGE_SPECIAL); 302 } 303 304 static inline pte_t pte_mkhuge(pte_t pte) 305 { 306 return pte; 307 } 308 309 /* Modify page protection bits */ 310 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 311 { 312 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)); 313 } 314 315 #define pgd_ERROR(e) \ 316 pr_err("%s:%d: bad pgd " PTE_FMT ".\n", __FILE__, __LINE__, pgd_val(e)) 317 318 319 /* Commit new configuration to MMU hardware */ 320 static inline void update_mmu_cache(struct vm_area_struct *vma, 321 unsigned long address, pte_t *ptep) 322 { 323 /* 324 * The kernel assumes that TLBs don't cache invalid entries, but 325 * in RISC-V, SFENCE.VMA specifies an ordering constraint, not a 326 * cache flush; it is necessary even after writing invalid entries. 327 * Relying on flush_tlb_fix_spurious_fault would suffice, but 328 * the extra traps reduce performance. So, eagerly SFENCE.VMA. 329 */ 330 local_flush_tlb_page(address); 331 } 332 333 #define __HAVE_ARCH_PTE_SAME 334 static inline int pte_same(pte_t pte_a, pte_t pte_b) 335 { 336 return pte_val(pte_a) == pte_val(pte_b); 337 } 338 339 /* 340 * Certain architectures need to do special things when PTEs within 341 * a page table are directly modified. Thus, the following hook is 342 * made available. 343 */ 344 static inline void set_pte(pte_t *ptep, pte_t pteval) 345 { 346 *ptep = pteval; 347 } 348 349 void flush_icache_pte(pte_t pte); 350 351 static inline void set_pte_at(struct mm_struct *mm, 352 unsigned long addr, pte_t *ptep, pte_t pteval) 353 { 354 if (pte_present(pteval) && pte_exec(pteval)) 355 flush_icache_pte(pteval); 356 357 set_pte(ptep, pteval); 358 } 359 360 static inline void pte_clear(struct mm_struct *mm, 361 unsigned long addr, pte_t *ptep) 362 { 363 set_pte_at(mm, addr, ptep, __pte(0)); 364 } 365 366 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 367 static inline int ptep_set_access_flags(struct vm_area_struct *vma, 368 unsigned long address, pte_t *ptep, 369 pte_t entry, int dirty) 370 { 371 if (!pte_same(*ptep, entry)) 372 set_pte_at(vma->vm_mm, address, ptep, entry); 373 /* 374 * update_mmu_cache will unconditionally execute, handling both 375 * the case that the PTE changed and the spurious fault case. 376 */ 377 return true; 378 } 379 380 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR 381 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 382 unsigned long address, pte_t *ptep) 383 { 384 return __pte(atomic_long_xchg((atomic_long_t *)ptep, 0)); 385 } 386 387 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 388 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 389 unsigned long address, 390 pte_t *ptep) 391 { 392 if (!pte_young(*ptep)) 393 return 0; 394 return test_and_clear_bit(_PAGE_ACCESSED_OFFSET, &pte_val(*ptep)); 395 } 396 397 #define __HAVE_ARCH_PTEP_SET_WRPROTECT 398 static inline void ptep_set_wrprotect(struct mm_struct *mm, 399 unsigned long address, pte_t *ptep) 400 { 401 atomic_long_and(~(unsigned long)_PAGE_WRITE, (atomic_long_t *)ptep); 402 } 403 404 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 405 static inline int ptep_clear_flush_young(struct vm_area_struct *vma, 406 unsigned long address, pte_t *ptep) 407 { 408 /* 409 * This comment is borrowed from x86, but applies equally to RISC-V: 410 * 411 * Clearing the accessed bit without a TLB flush 412 * doesn't cause data corruption. [ It could cause incorrect 413 * page aging and the (mistaken) reclaim of hot pages, but the 414 * chance of that should be relatively low. ] 415 * 416 * So as a performance optimization don't flush the TLB when 417 * clearing the accessed bit, it will eventually be flushed by 418 * a context switch or a VM operation anyway. [ In the rare 419 * event of it not getting flushed for a long time the delay 420 * shouldn't really matter because there's no real memory 421 * pressure for swapout to react to. ] 422 */ 423 return ptep_test_and_clear_young(vma, address, ptep); 424 } 425 426 /* 427 * Encode and decode a swap entry 428 * 429 * Format of swap PTE: 430 * bit 0: _PAGE_PRESENT (zero) 431 * bit 1: _PAGE_PROT_NONE (zero) 432 * bits 2 to 6: swap type 433 * bits 7 to XLEN-1: swap offset 434 */ 435 #define __SWP_TYPE_SHIFT 2 436 #define __SWP_TYPE_BITS 5 437 #define __SWP_TYPE_MASK ((1UL << __SWP_TYPE_BITS) - 1) 438 #define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT) 439 440 #define MAX_SWAPFILES_CHECK() \ 441 BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS) 442 443 #define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK) 444 #define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT) 445 #define __swp_entry(type, offset) ((swp_entry_t) \ 446 { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) }) 447 448 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 449 #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 450 451 /* 452 * In the RV64 Linux scheme, we give the user half of the virtual-address space 453 * and give the kernel the other (upper) half. 454 */ 455 #ifdef CONFIG_64BIT 456 #define KERN_VIRT_START (-(BIT(CONFIG_VA_BITS)) + TASK_SIZE) 457 #else 458 #define KERN_VIRT_START FIXADDR_START 459 #endif 460 461 /* 462 * Task size is 0x4000000000 for RV64 or 0x9fc00000 for RV32. 463 * Note that PGDIR_SIZE must evenly divide TASK_SIZE. 464 */ 465 #ifdef CONFIG_64BIT 466 #define TASK_SIZE (PGDIR_SIZE * PTRS_PER_PGD / 2) 467 #else 468 #define TASK_SIZE FIXADDR_START 469 #endif 470 471 #else /* CONFIG_MMU */ 472 473 #define PAGE_SHARED __pgprot(0) 474 #define PAGE_KERNEL __pgprot(0) 475 #define swapper_pg_dir NULL 476 #define TASK_SIZE 0xffffffffUL 477 #define VMALLOC_START 0 478 #define VMALLOC_END TASK_SIZE 479 480 static inline void __kernel_map_pages(struct page *page, int numpages, int enable) {} 481 482 #endif /* !CONFIG_MMU */ 483 484 #define kern_addr_valid(addr) (1) /* FIXME */ 485 486 extern void *dtb_early_va; 487 void setup_bootmem(void); 488 void paging_init(void); 489 490 #define FIRST_USER_ADDRESS 0 491 492 /* 493 * ZERO_PAGE is a global shared page that is always zero, 494 * used for zero-mapped memory areas, etc. 495 */ 496 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]; 497 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 498 499 #include <asm-generic/pgtable.h> 500 501 #endif /* !__ASSEMBLY__ */ 502 503 #endif /* _ASM_RISCV_PGTABLE_H */ 504