xref: /openbmc/linux/arch/riscv/include/asm/pgtable.h (revision 4f89e4b8)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012 Regents of the University of California
4  */
5 
6 #ifndef _ASM_RISCV_PGTABLE_H
7 #define _ASM_RISCV_PGTABLE_H
8 
9 #include <linux/mmzone.h>
10 
11 #include <asm/pgtable-bits.h>
12 
13 #ifndef __ASSEMBLY__
14 
15 /* Page Upper Directory not used in RISC-V */
16 #include <asm-generic/pgtable-nopud.h>
17 #include <asm/page.h>
18 #include <asm/tlbflush.h>
19 #include <linux/mm_types.h>
20 
21 #ifdef CONFIG_64BIT
22 #include <asm/pgtable-64.h>
23 #else
24 #include <asm/pgtable-32.h>
25 #endif /* CONFIG_64BIT */
26 
27 /* Number of entries in the page global directory */
28 #define PTRS_PER_PGD    (PAGE_SIZE / sizeof(pgd_t))
29 /* Number of entries in the page table */
30 #define PTRS_PER_PTE    (PAGE_SIZE / sizeof(pte_t))
31 
32 /* Number of PGD entries that a user-mode program can use */
33 #define USER_PTRS_PER_PGD   (TASK_SIZE / PGDIR_SIZE)
34 #define FIRST_USER_ADDRESS  0
35 
36 /* Page protection bits */
37 #define _PAGE_BASE	(_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_USER)
38 
39 #define PAGE_NONE		__pgprot(_PAGE_PROT_NONE)
40 #define PAGE_READ		__pgprot(_PAGE_BASE | _PAGE_READ)
41 #define PAGE_WRITE		__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_WRITE)
42 #define PAGE_EXEC		__pgprot(_PAGE_BASE | _PAGE_EXEC)
43 #define PAGE_READ_EXEC		__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
44 #define PAGE_WRITE_EXEC		__pgprot(_PAGE_BASE | _PAGE_READ |	\
45 					 _PAGE_EXEC | _PAGE_WRITE)
46 
47 #define PAGE_COPY		PAGE_READ
48 #define PAGE_COPY_EXEC		PAGE_EXEC
49 #define PAGE_COPY_READ_EXEC	PAGE_READ_EXEC
50 #define PAGE_SHARED		PAGE_WRITE
51 #define PAGE_SHARED_EXEC	PAGE_WRITE_EXEC
52 
53 #define _PAGE_KERNEL		(_PAGE_READ \
54 				| _PAGE_WRITE \
55 				| _PAGE_PRESENT \
56 				| _PAGE_ACCESSED \
57 				| _PAGE_DIRTY)
58 
59 #define PAGE_KERNEL		__pgprot(_PAGE_KERNEL)
60 #define PAGE_KERNEL_EXEC	__pgprot(_PAGE_KERNEL | _PAGE_EXEC)
61 
62 #define PAGE_TABLE		__pgprot(_PAGE_TABLE)
63 
64 extern pgd_t swapper_pg_dir[];
65 
66 /* MAP_PRIVATE permissions: xwr (copy-on-write) */
67 #define __P000	PAGE_NONE
68 #define __P001	PAGE_READ
69 #define __P010	PAGE_COPY
70 #define __P011	PAGE_COPY
71 #define __P100	PAGE_EXEC
72 #define __P101	PAGE_READ_EXEC
73 #define __P110	PAGE_COPY_EXEC
74 #define __P111	PAGE_COPY_READ_EXEC
75 
76 /* MAP_SHARED permissions: xwr */
77 #define __S000	PAGE_NONE
78 #define __S001	PAGE_READ
79 #define __S010	PAGE_SHARED
80 #define __S011	PAGE_SHARED
81 #define __S100	PAGE_EXEC
82 #define __S101	PAGE_READ_EXEC
83 #define __S110	PAGE_SHARED_EXEC
84 #define __S111	PAGE_SHARED_EXEC
85 
86 /*
87  * ZERO_PAGE is a global shared page that is always zero,
88  * used for zero-mapped memory areas, etc.
89  */
90 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
91 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
92 
93 static inline int pmd_present(pmd_t pmd)
94 {
95 	return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
96 }
97 
98 static inline int pmd_none(pmd_t pmd)
99 {
100 	return (pmd_val(pmd) == 0);
101 }
102 
103 static inline int pmd_bad(pmd_t pmd)
104 {
105 	return !pmd_present(pmd);
106 }
107 
108 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
109 {
110 	*pmdp = pmd;
111 }
112 
113 static inline void pmd_clear(pmd_t *pmdp)
114 {
115 	set_pmd(pmdp, __pmd(0));
116 }
117 
118 static inline pgd_t pfn_pgd(unsigned long pfn, pgprot_t prot)
119 {
120 	return __pgd((pfn << _PAGE_PFN_SHIFT) | pgprot_val(prot));
121 }
122 
123 static inline unsigned long _pgd_pfn(pgd_t pgd)
124 {
125 	return pgd_val(pgd) >> _PAGE_PFN_SHIFT;
126 }
127 
128 #define pgd_index(addr) (((addr) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
129 
130 /* Locate an entry in the page global directory */
131 static inline pgd_t *pgd_offset(const struct mm_struct *mm, unsigned long addr)
132 {
133 	return mm->pgd + pgd_index(addr);
134 }
135 /* Locate an entry in the kernel page global directory */
136 #define pgd_offset_k(addr)      pgd_offset(&init_mm, (addr))
137 
138 static inline struct page *pmd_page(pmd_t pmd)
139 {
140 	return pfn_to_page(pmd_val(pmd) >> _PAGE_PFN_SHIFT);
141 }
142 
143 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
144 {
145 	return (unsigned long)pfn_to_virt(pmd_val(pmd) >> _PAGE_PFN_SHIFT);
146 }
147 
148 /* Yields the page frame number (PFN) of a page table entry */
149 static inline unsigned long pte_pfn(pte_t pte)
150 {
151 	return (pte_val(pte) >> _PAGE_PFN_SHIFT);
152 }
153 
154 #define pte_page(x)     pfn_to_page(pte_pfn(x))
155 
156 /* Constructs a page table entry */
157 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot)
158 {
159 	return __pte((pfn << _PAGE_PFN_SHIFT) | pgprot_val(prot));
160 }
161 
162 static inline pte_t mk_pte(struct page *page, pgprot_t prot)
163 {
164 	return pfn_pte(page_to_pfn(page), prot);
165 }
166 
167 #define pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
168 
169 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long addr)
170 {
171 	return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(addr);
172 }
173 
174 #define pte_offset_map(dir, addr)	pte_offset_kernel((dir), (addr))
175 #define pte_unmap(pte)			((void)(pte))
176 
177 static inline int pte_present(pte_t pte)
178 {
179 	return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
180 }
181 
182 static inline int pte_none(pte_t pte)
183 {
184 	return (pte_val(pte) == 0);
185 }
186 
187 static inline int pte_write(pte_t pte)
188 {
189 	return pte_val(pte) & _PAGE_WRITE;
190 }
191 
192 static inline int pte_exec(pte_t pte)
193 {
194 	return pte_val(pte) & _PAGE_EXEC;
195 }
196 
197 static inline int pte_huge(pte_t pte)
198 {
199 	return pte_present(pte)
200 		&& (pte_val(pte) & (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC));
201 }
202 
203 static inline int pte_dirty(pte_t pte)
204 {
205 	return pte_val(pte) & _PAGE_DIRTY;
206 }
207 
208 static inline int pte_young(pte_t pte)
209 {
210 	return pte_val(pte) & _PAGE_ACCESSED;
211 }
212 
213 static inline int pte_special(pte_t pte)
214 {
215 	return pte_val(pte) & _PAGE_SPECIAL;
216 }
217 
218 /* static inline pte_t pte_rdprotect(pte_t pte) */
219 
220 static inline pte_t pte_wrprotect(pte_t pte)
221 {
222 	return __pte(pte_val(pte) & ~(_PAGE_WRITE));
223 }
224 
225 /* static inline pte_t pte_mkread(pte_t pte) */
226 
227 static inline pte_t pte_mkwrite(pte_t pte)
228 {
229 	return __pte(pte_val(pte) | _PAGE_WRITE);
230 }
231 
232 /* static inline pte_t pte_mkexec(pte_t pte) */
233 
234 static inline pte_t pte_mkdirty(pte_t pte)
235 {
236 	return __pte(pte_val(pte) | _PAGE_DIRTY);
237 }
238 
239 static inline pte_t pte_mkclean(pte_t pte)
240 {
241 	return __pte(pte_val(pte) & ~(_PAGE_DIRTY));
242 }
243 
244 static inline pte_t pte_mkyoung(pte_t pte)
245 {
246 	return __pte(pte_val(pte) | _PAGE_ACCESSED);
247 }
248 
249 static inline pte_t pte_mkold(pte_t pte)
250 {
251 	return __pte(pte_val(pte) & ~(_PAGE_ACCESSED));
252 }
253 
254 static inline pte_t pte_mkspecial(pte_t pte)
255 {
256 	return __pte(pte_val(pte) | _PAGE_SPECIAL);
257 }
258 
259 static inline pte_t pte_mkhuge(pte_t pte)
260 {
261 	return pte;
262 }
263 
264 /* Modify page protection bits */
265 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
266 {
267 	return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
268 }
269 
270 #define pgd_ERROR(e) \
271 	pr_err("%s:%d: bad pgd " PTE_FMT ".\n", __FILE__, __LINE__, pgd_val(e))
272 
273 
274 /* Commit new configuration to MMU hardware */
275 static inline void update_mmu_cache(struct vm_area_struct *vma,
276 	unsigned long address, pte_t *ptep)
277 {
278 	/*
279 	 * The kernel assumes that TLBs don't cache invalid entries, but
280 	 * in RISC-V, SFENCE.VMA specifies an ordering constraint, not a
281 	 * cache flush; it is necessary even after writing invalid entries.
282 	 * Relying on flush_tlb_fix_spurious_fault would suffice, but
283 	 * the extra traps reduce performance.  So, eagerly SFENCE.VMA.
284 	 */
285 	local_flush_tlb_page(address);
286 }
287 
288 #define __HAVE_ARCH_PTE_SAME
289 static inline int pte_same(pte_t pte_a, pte_t pte_b)
290 {
291 	return pte_val(pte_a) == pte_val(pte_b);
292 }
293 
294 /*
295  * Certain architectures need to do special things when PTEs within
296  * a page table are directly modified.  Thus, the following hook is
297  * made available.
298  */
299 static inline void set_pte(pte_t *ptep, pte_t pteval)
300 {
301 	*ptep = pteval;
302 }
303 
304 void flush_icache_pte(pte_t pte);
305 
306 static inline void set_pte_at(struct mm_struct *mm,
307 	unsigned long addr, pte_t *ptep, pte_t pteval)
308 {
309 	if (pte_present(pteval) && pte_exec(pteval))
310 		flush_icache_pte(pteval);
311 
312 	set_pte(ptep, pteval);
313 }
314 
315 static inline void pte_clear(struct mm_struct *mm,
316 	unsigned long addr, pte_t *ptep)
317 {
318 	set_pte_at(mm, addr, ptep, __pte(0));
319 }
320 
321 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
322 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
323 					unsigned long address, pte_t *ptep,
324 					pte_t entry, int dirty)
325 {
326 	if (!pte_same(*ptep, entry))
327 		set_pte_at(vma->vm_mm, address, ptep, entry);
328 	/*
329 	 * update_mmu_cache will unconditionally execute, handling both
330 	 * the case that the PTE changed and the spurious fault case.
331 	 */
332 	return true;
333 }
334 
335 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
336 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
337 				       unsigned long address, pte_t *ptep)
338 {
339 	return __pte(atomic_long_xchg((atomic_long_t *)ptep, 0));
340 }
341 
342 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
343 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
344 					    unsigned long address,
345 					    pte_t *ptep)
346 {
347 	if (!pte_young(*ptep))
348 		return 0;
349 	return test_and_clear_bit(_PAGE_ACCESSED_OFFSET, &pte_val(*ptep));
350 }
351 
352 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
353 static inline void ptep_set_wrprotect(struct mm_struct *mm,
354 				      unsigned long address, pte_t *ptep)
355 {
356 	atomic_long_and(~(unsigned long)_PAGE_WRITE, (atomic_long_t *)ptep);
357 }
358 
359 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
360 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
361 					 unsigned long address, pte_t *ptep)
362 {
363 	/*
364 	 * This comment is borrowed from x86, but applies equally to RISC-V:
365 	 *
366 	 * Clearing the accessed bit without a TLB flush
367 	 * doesn't cause data corruption. [ It could cause incorrect
368 	 * page aging and the (mistaken) reclaim of hot pages, but the
369 	 * chance of that should be relatively low. ]
370 	 *
371 	 * So as a performance optimization don't flush the TLB when
372 	 * clearing the accessed bit, it will eventually be flushed by
373 	 * a context switch or a VM operation anyway. [ In the rare
374 	 * event of it not getting flushed for a long time the delay
375 	 * shouldn't really matter because there's no real memory
376 	 * pressure for swapout to react to. ]
377 	 */
378 	return ptep_test_and_clear_young(vma, address, ptep);
379 }
380 
381 /*
382  * Encode and decode a swap entry
383  *
384  * Format of swap PTE:
385  *	bit            0:	_PAGE_PRESENT (zero)
386  *	bit            1:	_PAGE_PROT_NONE (zero)
387  *	bits      2 to 6:	swap type
388  *	bits 7 to XLEN-1:	swap offset
389  */
390 #define __SWP_TYPE_SHIFT	2
391 #define __SWP_TYPE_BITS		5
392 #define __SWP_TYPE_MASK		((1UL << __SWP_TYPE_BITS) - 1)
393 #define __SWP_OFFSET_SHIFT	(__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
394 
395 #define MAX_SWAPFILES_CHECK()	\
396 	BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
397 
398 #define __swp_type(x)	(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
399 #define __swp_offset(x)	((x).val >> __SWP_OFFSET_SHIFT)
400 #define __swp_entry(type, offset) ((swp_entry_t) \
401 	{ ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
402 
403 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
404 #define __swp_entry_to_pte(x)	((pte_t) { (x).val })
405 
406 #ifdef CONFIG_FLATMEM
407 #define kern_addr_valid(addr)   (1) /* FIXME */
408 #endif
409 
410 extern void *dtb_early_va;
411 extern void setup_bootmem(void);
412 extern void paging_init(void);
413 
414 static inline void pgtable_cache_init(void)
415 {
416 	/* No page table caches to initialize */
417 }
418 
419 #define VMALLOC_SIZE     (KERN_VIRT_SIZE >> 1)
420 #define VMALLOC_END      (PAGE_OFFSET - 1)
421 #define VMALLOC_START    (PAGE_OFFSET - VMALLOC_SIZE)
422 
423 /*
424  * Task size is 0x4000000000 for RV64 or 0xb800000 for RV32.
425  * Note that PGDIR_SIZE must evenly divide TASK_SIZE.
426  */
427 #ifdef CONFIG_64BIT
428 #define TASK_SIZE (PGDIR_SIZE * PTRS_PER_PGD / 2)
429 #else
430 #define TASK_SIZE VMALLOC_START
431 #endif
432 
433 #include <asm-generic/pgtable.h>
434 
435 #endif /* !__ASSEMBLY__ */
436 
437 #endif /* _ASM_RISCV_PGTABLE_H */
438