1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (C) 2012 Regents of the University of California 4 */ 5 6 #ifndef _ASM_RISCV_PGTABLE_H 7 #define _ASM_RISCV_PGTABLE_H 8 9 #include <linux/mmzone.h> 10 #include <linux/sizes.h> 11 12 #include <asm/pgtable-bits.h> 13 14 #ifndef CONFIG_MMU 15 #define KERNEL_LINK_ADDR PAGE_OFFSET 16 #define KERN_VIRT_SIZE (UL(-1)) 17 #else 18 19 #define ADDRESS_SPACE_END (UL(-1)) 20 21 #ifdef CONFIG_64BIT 22 /* Leave 2GB for kernel and BPF at the end of the address space */ 23 #define KERNEL_LINK_ADDR (ADDRESS_SPACE_END - SZ_2G + 1) 24 #else 25 #define KERNEL_LINK_ADDR PAGE_OFFSET 26 #endif 27 28 /* Number of entries in the page global directory */ 29 #define PTRS_PER_PGD (PAGE_SIZE / sizeof(pgd_t)) 30 /* Number of entries in the page table */ 31 #define PTRS_PER_PTE (PAGE_SIZE / sizeof(pte_t)) 32 33 /* 34 * Half of the kernel address space (1/4 of the entries of the page global 35 * directory) is for the direct mapping. 36 */ 37 #define KERN_VIRT_SIZE ((PTRS_PER_PGD / 2 * PGDIR_SIZE) / 2) 38 39 #define VMALLOC_SIZE (KERN_VIRT_SIZE >> 1) 40 #define VMALLOC_END PAGE_OFFSET 41 #define VMALLOC_START (PAGE_OFFSET - VMALLOC_SIZE) 42 43 #define BPF_JIT_REGION_SIZE (SZ_128M) 44 #ifdef CONFIG_64BIT 45 #define BPF_JIT_REGION_START (BPF_JIT_REGION_END - BPF_JIT_REGION_SIZE) 46 #define BPF_JIT_REGION_END (MODULES_END) 47 #else 48 #define BPF_JIT_REGION_START (PAGE_OFFSET - BPF_JIT_REGION_SIZE) 49 #define BPF_JIT_REGION_END (VMALLOC_END) 50 #endif 51 52 /* Modules always live before the kernel */ 53 #ifdef CONFIG_64BIT 54 /* This is used to define the end of the KASAN shadow region */ 55 #define MODULES_LOWEST_VADDR (KERNEL_LINK_ADDR - SZ_2G) 56 #define MODULES_VADDR (PFN_ALIGN((unsigned long)&_end) - SZ_2G) 57 #define MODULES_END (PFN_ALIGN((unsigned long)&_start)) 58 #endif 59 60 /* 61 * Roughly size the vmemmap space to be large enough to fit enough 62 * struct pages to map half the virtual address space. Then 63 * position vmemmap directly below the VMALLOC region. 64 */ 65 #ifdef CONFIG_64BIT 66 #define VA_BITS (pgtable_l5_enabled ? \ 67 57 : (pgtable_l4_enabled ? 48 : 39)) 68 #else 69 #define VA_BITS 32 70 #endif 71 72 #define VMEMMAP_SHIFT \ 73 (VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT) 74 #define VMEMMAP_SIZE BIT(VMEMMAP_SHIFT) 75 #define VMEMMAP_END VMALLOC_START 76 #define VMEMMAP_START (VMALLOC_START - VMEMMAP_SIZE) 77 78 /* 79 * Define vmemmap for pfn_to_page & page_to_pfn calls. Needed if kernel 80 * is configured with CONFIG_SPARSEMEM_VMEMMAP enabled. 81 */ 82 #define vmemmap ((struct page *)VMEMMAP_START) 83 84 #define PCI_IO_SIZE SZ_16M 85 #define PCI_IO_END VMEMMAP_START 86 #define PCI_IO_START (PCI_IO_END - PCI_IO_SIZE) 87 88 #define FIXADDR_TOP PCI_IO_START 89 #ifdef CONFIG_64BIT 90 #define MAX_FDT_SIZE PMD_SIZE 91 #define FIX_FDT_SIZE (MAX_FDT_SIZE + SZ_2M) 92 #define FIXADDR_SIZE (PMD_SIZE + FIX_FDT_SIZE) 93 #else 94 #define MAX_FDT_SIZE PGDIR_SIZE 95 #define FIX_FDT_SIZE MAX_FDT_SIZE 96 #define FIXADDR_SIZE (PGDIR_SIZE + FIX_FDT_SIZE) 97 #endif 98 #define FIXADDR_START (FIXADDR_TOP - FIXADDR_SIZE) 99 100 #endif 101 102 #ifdef CONFIG_XIP_KERNEL 103 #define XIP_OFFSET SZ_32M 104 #define XIP_OFFSET_MASK (SZ_32M - 1) 105 #else 106 #define XIP_OFFSET 0 107 #endif 108 109 #ifndef __ASSEMBLY__ 110 111 #include <asm/page.h> 112 #include <asm/tlbflush.h> 113 #include <linux/mm_types.h> 114 115 #define __page_val_to_pfn(_val) (((_val) & _PAGE_PFN_MASK) >> _PAGE_PFN_SHIFT) 116 117 #ifdef CONFIG_64BIT 118 #include <asm/pgtable-64.h> 119 #else 120 #include <asm/pgtable-32.h> 121 #endif /* CONFIG_64BIT */ 122 123 #include <linux/page_table_check.h> 124 125 #ifdef CONFIG_XIP_KERNEL 126 #define XIP_FIXUP(addr) ({ \ 127 uintptr_t __a = (uintptr_t)(addr); \ 128 (__a >= CONFIG_XIP_PHYS_ADDR && \ 129 __a < CONFIG_XIP_PHYS_ADDR + XIP_OFFSET * 2) ? \ 130 __a - CONFIG_XIP_PHYS_ADDR + CONFIG_PHYS_RAM_BASE - XIP_OFFSET :\ 131 __a; \ 132 }) 133 #else 134 #define XIP_FIXUP(addr) (addr) 135 #endif /* CONFIG_XIP_KERNEL */ 136 137 struct pt_alloc_ops { 138 pte_t *(*get_pte_virt)(phys_addr_t pa); 139 phys_addr_t (*alloc_pte)(uintptr_t va); 140 #ifndef __PAGETABLE_PMD_FOLDED 141 pmd_t *(*get_pmd_virt)(phys_addr_t pa); 142 phys_addr_t (*alloc_pmd)(uintptr_t va); 143 pud_t *(*get_pud_virt)(phys_addr_t pa); 144 phys_addr_t (*alloc_pud)(uintptr_t va); 145 p4d_t *(*get_p4d_virt)(phys_addr_t pa); 146 phys_addr_t (*alloc_p4d)(uintptr_t va); 147 #endif 148 }; 149 150 extern struct pt_alloc_ops pt_ops __initdata; 151 152 #ifdef CONFIG_MMU 153 /* Number of PGD entries that a user-mode program can use */ 154 #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE) 155 156 /* Page protection bits */ 157 #define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_USER) 158 159 #define PAGE_NONE __pgprot(_PAGE_PROT_NONE | _PAGE_READ) 160 #define PAGE_READ __pgprot(_PAGE_BASE | _PAGE_READ) 161 #define PAGE_WRITE __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_WRITE) 162 #define PAGE_EXEC __pgprot(_PAGE_BASE | _PAGE_EXEC) 163 #define PAGE_READ_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC) 164 #define PAGE_WRITE_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | \ 165 _PAGE_EXEC | _PAGE_WRITE) 166 167 #define PAGE_COPY PAGE_READ 168 #define PAGE_COPY_EXEC PAGE_READ_EXEC 169 #define PAGE_SHARED PAGE_WRITE 170 #define PAGE_SHARED_EXEC PAGE_WRITE_EXEC 171 172 #define _PAGE_KERNEL (_PAGE_READ \ 173 | _PAGE_WRITE \ 174 | _PAGE_PRESENT \ 175 | _PAGE_ACCESSED \ 176 | _PAGE_DIRTY \ 177 | _PAGE_GLOBAL) 178 179 #define PAGE_KERNEL __pgprot(_PAGE_KERNEL) 180 #define PAGE_KERNEL_READ __pgprot(_PAGE_KERNEL & ~_PAGE_WRITE) 181 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL | _PAGE_EXEC) 182 #define PAGE_KERNEL_READ_EXEC __pgprot((_PAGE_KERNEL & ~_PAGE_WRITE) \ 183 | _PAGE_EXEC) 184 185 #define PAGE_TABLE __pgprot(_PAGE_TABLE) 186 187 #define _PAGE_IOREMAP ((_PAGE_KERNEL & ~_PAGE_MTMASK) | _PAGE_IO) 188 #define PAGE_KERNEL_IO __pgprot(_PAGE_IOREMAP) 189 190 extern pgd_t swapper_pg_dir[]; 191 extern pgd_t trampoline_pg_dir[]; 192 extern pgd_t early_pg_dir[]; 193 194 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 195 static inline int pmd_present(pmd_t pmd) 196 { 197 /* 198 * Checking for _PAGE_LEAF is needed too because: 199 * When splitting a THP, split_huge_page() will temporarily clear 200 * the present bit, in this situation, pmd_present() and 201 * pmd_trans_huge() still needs to return true. 202 */ 203 return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE | _PAGE_LEAF)); 204 } 205 #else 206 static inline int pmd_present(pmd_t pmd) 207 { 208 return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE)); 209 } 210 #endif 211 212 static inline int pmd_none(pmd_t pmd) 213 { 214 return (pmd_val(pmd) == 0); 215 } 216 217 static inline int pmd_bad(pmd_t pmd) 218 { 219 return !pmd_present(pmd) || (pmd_val(pmd) & _PAGE_LEAF); 220 } 221 222 #define pmd_leaf pmd_leaf 223 static inline int pmd_leaf(pmd_t pmd) 224 { 225 return pmd_present(pmd) && (pmd_val(pmd) & _PAGE_LEAF); 226 } 227 228 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd) 229 { 230 *pmdp = pmd; 231 } 232 233 static inline void pmd_clear(pmd_t *pmdp) 234 { 235 set_pmd(pmdp, __pmd(0)); 236 } 237 238 static inline pgd_t pfn_pgd(unsigned long pfn, pgprot_t prot) 239 { 240 unsigned long prot_val = pgprot_val(prot); 241 242 ALT_THEAD_PMA(prot_val); 243 244 return __pgd((pfn << _PAGE_PFN_SHIFT) | prot_val); 245 } 246 247 static inline unsigned long _pgd_pfn(pgd_t pgd) 248 { 249 return __page_val_to_pfn(pgd_val(pgd)); 250 } 251 252 static inline struct page *pmd_page(pmd_t pmd) 253 { 254 return pfn_to_page(__page_val_to_pfn(pmd_val(pmd))); 255 } 256 257 static inline unsigned long pmd_page_vaddr(pmd_t pmd) 258 { 259 return (unsigned long)pfn_to_virt(__page_val_to_pfn(pmd_val(pmd))); 260 } 261 262 static inline pte_t pmd_pte(pmd_t pmd) 263 { 264 return __pte(pmd_val(pmd)); 265 } 266 267 static inline pte_t pud_pte(pud_t pud) 268 { 269 return __pte(pud_val(pud)); 270 } 271 272 #ifdef CONFIG_RISCV_ISA_SVNAPOT 273 274 static __always_inline bool has_svnapot(void) 275 { 276 return riscv_has_extension_likely(RISCV_ISA_EXT_SVNAPOT); 277 } 278 279 static inline unsigned long pte_napot(pte_t pte) 280 { 281 return pte_val(pte) & _PAGE_NAPOT; 282 } 283 284 static inline pte_t pte_mknapot(pte_t pte, unsigned int order) 285 { 286 int pos = order - 1 + _PAGE_PFN_SHIFT; 287 unsigned long napot_bit = BIT(pos); 288 unsigned long napot_mask = ~GENMASK(pos, _PAGE_PFN_SHIFT); 289 290 return __pte((pte_val(pte) & napot_mask) | napot_bit | _PAGE_NAPOT); 291 } 292 293 #else 294 295 static __always_inline bool has_svnapot(void) { return false; } 296 297 static inline unsigned long pte_napot(pte_t pte) 298 { 299 return 0; 300 } 301 302 #endif /* CONFIG_RISCV_ISA_SVNAPOT */ 303 304 /* Yields the page frame number (PFN) of a page table entry */ 305 static inline unsigned long pte_pfn(pte_t pte) 306 { 307 unsigned long res = __page_val_to_pfn(pte_val(pte)); 308 309 if (has_svnapot() && pte_napot(pte)) 310 res = res & (res - 1UL); 311 312 return res; 313 } 314 315 #define pte_page(x) pfn_to_page(pte_pfn(x)) 316 317 /* Constructs a page table entry */ 318 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot) 319 { 320 unsigned long prot_val = pgprot_val(prot); 321 322 ALT_THEAD_PMA(prot_val); 323 324 return __pte((pfn << _PAGE_PFN_SHIFT) | prot_val); 325 } 326 327 #define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot) 328 329 static inline int pte_present(pte_t pte) 330 { 331 return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE)); 332 } 333 334 static inline int pte_none(pte_t pte) 335 { 336 return (pte_val(pte) == 0); 337 } 338 339 static inline int pte_write(pte_t pte) 340 { 341 return pte_val(pte) & _PAGE_WRITE; 342 } 343 344 static inline int pte_exec(pte_t pte) 345 { 346 return pte_val(pte) & _PAGE_EXEC; 347 } 348 349 static inline int pte_user(pte_t pte) 350 { 351 return pte_val(pte) & _PAGE_USER; 352 } 353 354 static inline int pte_huge(pte_t pte) 355 { 356 return pte_present(pte) && (pte_val(pte) & _PAGE_LEAF); 357 } 358 359 static inline int pte_dirty(pte_t pte) 360 { 361 return pte_val(pte) & _PAGE_DIRTY; 362 } 363 364 static inline int pte_young(pte_t pte) 365 { 366 return pte_val(pte) & _PAGE_ACCESSED; 367 } 368 369 static inline int pte_special(pte_t pte) 370 { 371 return pte_val(pte) & _PAGE_SPECIAL; 372 } 373 374 /* static inline pte_t pte_rdprotect(pte_t pte) */ 375 376 static inline pte_t pte_wrprotect(pte_t pte) 377 { 378 return __pte(pte_val(pte) & ~(_PAGE_WRITE)); 379 } 380 381 /* static inline pte_t pte_mkread(pte_t pte) */ 382 383 static inline pte_t pte_mkwrite(pte_t pte) 384 { 385 return __pte(pte_val(pte) | _PAGE_WRITE); 386 } 387 388 /* static inline pte_t pte_mkexec(pte_t pte) */ 389 390 static inline pte_t pte_mkdirty(pte_t pte) 391 { 392 return __pte(pte_val(pte) | _PAGE_DIRTY); 393 } 394 395 static inline pte_t pte_mkclean(pte_t pte) 396 { 397 return __pte(pte_val(pte) & ~(_PAGE_DIRTY)); 398 } 399 400 static inline pte_t pte_mkyoung(pte_t pte) 401 { 402 return __pte(pte_val(pte) | _PAGE_ACCESSED); 403 } 404 405 static inline pte_t pte_mkold(pte_t pte) 406 { 407 return __pte(pte_val(pte) & ~(_PAGE_ACCESSED)); 408 } 409 410 static inline pte_t pte_mkspecial(pte_t pte) 411 { 412 return __pte(pte_val(pte) | _PAGE_SPECIAL); 413 } 414 415 static inline pte_t pte_mkhuge(pte_t pte) 416 { 417 return pte; 418 } 419 420 #ifdef CONFIG_NUMA_BALANCING 421 /* 422 * See the comment in include/asm-generic/pgtable.h 423 */ 424 static inline int pte_protnone(pte_t pte) 425 { 426 return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE)) == _PAGE_PROT_NONE; 427 } 428 429 static inline int pmd_protnone(pmd_t pmd) 430 { 431 return pte_protnone(pmd_pte(pmd)); 432 } 433 #endif 434 435 /* Modify page protection bits */ 436 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 437 { 438 unsigned long newprot_val = pgprot_val(newprot); 439 440 ALT_THEAD_PMA(newprot_val); 441 442 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | newprot_val); 443 } 444 445 #define pgd_ERROR(e) \ 446 pr_err("%s:%d: bad pgd " PTE_FMT ".\n", __FILE__, __LINE__, pgd_val(e)) 447 448 449 /* Commit new configuration to MMU hardware */ 450 static inline void update_mmu_cache(struct vm_area_struct *vma, 451 unsigned long address, pte_t *ptep) 452 { 453 /* 454 * The kernel assumes that TLBs don't cache invalid entries, but 455 * in RISC-V, SFENCE.VMA specifies an ordering constraint, not a 456 * cache flush; it is necessary even after writing invalid entries. 457 * Relying on flush_tlb_fix_spurious_fault would suffice, but 458 * the extra traps reduce performance. So, eagerly SFENCE.VMA. 459 */ 460 local_flush_tlb_page(address); 461 } 462 463 #define __HAVE_ARCH_UPDATE_MMU_TLB 464 #define update_mmu_tlb update_mmu_cache 465 466 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma, 467 unsigned long address, pmd_t *pmdp) 468 { 469 pte_t *ptep = (pte_t *)pmdp; 470 471 update_mmu_cache(vma, address, ptep); 472 } 473 474 #define __HAVE_ARCH_PTE_SAME 475 static inline int pte_same(pte_t pte_a, pte_t pte_b) 476 { 477 return pte_val(pte_a) == pte_val(pte_b); 478 } 479 480 /* 481 * Certain architectures need to do special things when PTEs within 482 * a page table are directly modified. Thus, the following hook is 483 * made available. 484 */ 485 static inline void set_pte(pte_t *ptep, pte_t pteval) 486 { 487 *ptep = pteval; 488 } 489 490 void flush_icache_pte(pte_t pte); 491 492 static inline void __set_pte_at(struct mm_struct *mm, 493 unsigned long addr, pte_t *ptep, pte_t pteval) 494 { 495 if (pte_present(pteval) && pte_exec(pteval)) 496 flush_icache_pte(pteval); 497 498 set_pte(ptep, pteval); 499 } 500 501 static inline void set_pte_at(struct mm_struct *mm, 502 unsigned long addr, pte_t *ptep, pte_t pteval) 503 { 504 page_table_check_pte_set(mm, addr, ptep, pteval); 505 __set_pte_at(mm, addr, ptep, pteval); 506 } 507 508 static inline void pte_clear(struct mm_struct *mm, 509 unsigned long addr, pte_t *ptep) 510 { 511 __set_pte_at(mm, addr, ptep, __pte(0)); 512 } 513 514 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 515 static inline int ptep_set_access_flags(struct vm_area_struct *vma, 516 unsigned long address, pte_t *ptep, 517 pte_t entry, int dirty) 518 { 519 if (!pte_same(*ptep, entry)) 520 set_pte_at(vma->vm_mm, address, ptep, entry); 521 /* 522 * update_mmu_cache will unconditionally execute, handling both 523 * the case that the PTE changed and the spurious fault case. 524 */ 525 return true; 526 } 527 528 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR 529 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 530 unsigned long address, pte_t *ptep) 531 { 532 pte_t pte = __pte(atomic_long_xchg((atomic_long_t *)ptep, 0)); 533 534 page_table_check_pte_clear(mm, address, pte); 535 536 return pte; 537 } 538 539 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 540 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 541 unsigned long address, 542 pte_t *ptep) 543 { 544 if (!pte_young(*ptep)) 545 return 0; 546 return test_and_clear_bit(_PAGE_ACCESSED_OFFSET, &pte_val(*ptep)); 547 } 548 549 #define __HAVE_ARCH_PTEP_SET_WRPROTECT 550 static inline void ptep_set_wrprotect(struct mm_struct *mm, 551 unsigned long address, pte_t *ptep) 552 { 553 atomic_long_and(~(unsigned long)_PAGE_WRITE, (atomic_long_t *)ptep); 554 } 555 556 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 557 static inline int ptep_clear_flush_young(struct vm_area_struct *vma, 558 unsigned long address, pte_t *ptep) 559 { 560 /* 561 * This comment is borrowed from x86, but applies equally to RISC-V: 562 * 563 * Clearing the accessed bit without a TLB flush 564 * doesn't cause data corruption. [ It could cause incorrect 565 * page aging and the (mistaken) reclaim of hot pages, but the 566 * chance of that should be relatively low. ] 567 * 568 * So as a performance optimization don't flush the TLB when 569 * clearing the accessed bit, it will eventually be flushed by 570 * a context switch or a VM operation anyway. [ In the rare 571 * event of it not getting flushed for a long time the delay 572 * shouldn't really matter because there's no real memory 573 * pressure for swapout to react to. ] 574 */ 575 return ptep_test_and_clear_young(vma, address, ptep); 576 } 577 578 #define pgprot_noncached pgprot_noncached 579 static inline pgprot_t pgprot_noncached(pgprot_t _prot) 580 { 581 unsigned long prot = pgprot_val(_prot); 582 583 prot &= ~_PAGE_MTMASK; 584 prot |= _PAGE_IO; 585 586 return __pgprot(prot); 587 } 588 589 #define pgprot_writecombine pgprot_writecombine 590 static inline pgprot_t pgprot_writecombine(pgprot_t _prot) 591 { 592 unsigned long prot = pgprot_val(_prot); 593 594 prot &= ~_PAGE_MTMASK; 595 prot |= _PAGE_NOCACHE; 596 597 return __pgprot(prot); 598 } 599 600 /* 601 * THP functions 602 */ 603 static inline pmd_t pte_pmd(pte_t pte) 604 { 605 return __pmd(pte_val(pte)); 606 } 607 608 static inline pmd_t pmd_mkhuge(pmd_t pmd) 609 { 610 return pmd; 611 } 612 613 static inline pmd_t pmd_mkinvalid(pmd_t pmd) 614 { 615 return __pmd(pmd_val(pmd) & ~(_PAGE_PRESENT|_PAGE_PROT_NONE)); 616 } 617 618 #define __pmd_to_phys(pmd) (__page_val_to_pfn(pmd_val(pmd)) << PAGE_SHIFT) 619 620 static inline unsigned long pmd_pfn(pmd_t pmd) 621 { 622 return ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT); 623 } 624 625 #define __pud_to_phys(pud) (__page_val_to_pfn(pud_val(pud)) << PAGE_SHIFT) 626 627 static inline unsigned long pud_pfn(pud_t pud) 628 { 629 return ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT); 630 } 631 632 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 633 { 634 return pte_pmd(pte_modify(pmd_pte(pmd), newprot)); 635 } 636 637 #define pmd_write pmd_write 638 static inline int pmd_write(pmd_t pmd) 639 { 640 return pte_write(pmd_pte(pmd)); 641 } 642 643 static inline int pmd_dirty(pmd_t pmd) 644 { 645 return pte_dirty(pmd_pte(pmd)); 646 } 647 648 #define pmd_young pmd_young 649 static inline int pmd_young(pmd_t pmd) 650 { 651 return pte_young(pmd_pte(pmd)); 652 } 653 654 static inline int pmd_user(pmd_t pmd) 655 { 656 return pte_user(pmd_pte(pmd)); 657 } 658 659 static inline pmd_t pmd_mkold(pmd_t pmd) 660 { 661 return pte_pmd(pte_mkold(pmd_pte(pmd))); 662 } 663 664 static inline pmd_t pmd_mkyoung(pmd_t pmd) 665 { 666 return pte_pmd(pte_mkyoung(pmd_pte(pmd))); 667 } 668 669 static inline pmd_t pmd_mkwrite(pmd_t pmd) 670 { 671 return pte_pmd(pte_mkwrite(pmd_pte(pmd))); 672 } 673 674 static inline pmd_t pmd_wrprotect(pmd_t pmd) 675 { 676 return pte_pmd(pte_wrprotect(pmd_pte(pmd))); 677 } 678 679 static inline pmd_t pmd_mkclean(pmd_t pmd) 680 { 681 return pte_pmd(pte_mkclean(pmd_pte(pmd))); 682 } 683 684 static inline pmd_t pmd_mkdirty(pmd_t pmd) 685 { 686 return pte_pmd(pte_mkdirty(pmd_pte(pmd))); 687 } 688 689 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr, 690 pmd_t *pmdp, pmd_t pmd) 691 { 692 page_table_check_pmd_set(mm, addr, pmdp, pmd); 693 return __set_pte_at(mm, addr, (pte_t *)pmdp, pmd_pte(pmd)); 694 } 695 696 static inline void set_pud_at(struct mm_struct *mm, unsigned long addr, 697 pud_t *pudp, pud_t pud) 698 { 699 page_table_check_pud_set(mm, addr, pudp, pud); 700 return __set_pte_at(mm, addr, (pte_t *)pudp, pud_pte(pud)); 701 } 702 703 #ifdef CONFIG_PAGE_TABLE_CHECK 704 static inline bool pte_user_accessible_page(pte_t pte) 705 { 706 return pte_present(pte) && pte_user(pte); 707 } 708 709 static inline bool pmd_user_accessible_page(pmd_t pmd) 710 { 711 return pmd_leaf(pmd) && pmd_user(pmd); 712 } 713 714 static inline bool pud_user_accessible_page(pud_t pud) 715 { 716 return pud_leaf(pud) && pud_user(pud); 717 } 718 #endif 719 720 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 721 static inline int pmd_trans_huge(pmd_t pmd) 722 { 723 return pmd_leaf(pmd); 724 } 725 726 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 727 static inline int pmdp_set_access_flags(struct vm_area_struct *vma, 728 unsigned long address, pmd_t *pmdp, 729 pmd_t entry, int dirty) 730 { 731 return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty); 732 } 733 734 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 735 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 736 unsigned long address, pmd_t *pmdp) 737 { 738 return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp); 739 } 740 741 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 742 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 743 unsigned long address, pmd_t *pmdp) 744 { 745 pmd_t pmd = __pmd(atomic_long_xchg((atomic_long_t *)pmdp, 0)); 746 747 page_table_check_pmd_clear(mm, address, pmd); 748 749 return pmd; 750 } 751 752 #define __HAVE_ARCH_PMDP_SET_WRPROTECT 753 static inline void pmdp_set_wrprotect(struct mm_struct *mm, 754 unsigned long address, pmd_t *pmdp) 755 { 756 ptep_set_wrprotect(mm, address, (pte_t *)pmdp); 757 } 758 759 #define pmdp_establish pmdp_establish 760 static inline pmd_t pmdp_establish(struct vm_area_struct *vma, 761 unsigned long address, pmd_t *pmdp, pmd_t pmd) 762 { 763 page_table_check_pmd_set(vma->vm_mm, address, pmdp, pmd); 764 return __pmd(atomic_long_xchg((atomic_long_t *)pmdp, pmd_val(pmd))); 765 } 766 767 #define pmdp_collapse_flush pmdp_collapse_flush 768 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 769 unsigned long address, pmd_t *pmdp); 770 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 771 772 /* 773 * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that 774 * are !pte_none() && !pte_present(). 775 * 776 * Format of swap PTE: 777 * bit 0: _PAGE_PRESENT (zero) 778 * bit 1 to 3: _PAGE_LEAF (zero) 779 * bit 5: _PAGE_PROT_NONE (zero) 780 * bit 6: exclusive marker 781 * bits 7 to 11: swap type 782 * bits 11 to XLEN-1: swap offset 783 */ 784 #define __SWP_TYPE_SHIFT 7 785 #define __SWP_TYPE_BITS 5 786 #define __SWP_TYPE_MASK ((1UL << __SWP_TYPE_BITS) - 1) 787 #define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT) 788 789 #define MAX_SWAPFILES_CHECK() \ 790 BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS) 791 792 #define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK) 793 #define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT) 794 #define __swp_entry(type, offset) ((swp_entry_t) \ 795 { (((type) & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT) | \ 796 ((offset) << __SWP_OFFSET_SHIFT) }) 797 798 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 799 #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 800 801 static inline int pte_swp_exclusive(pte_t pte) 802 { 803 return pte_val(pte) & _PAGE_SWP_EXCLUSIVE; 804 } 805 806 static inline pte_t pte_swp_mkexclusive(pte_t pte) 807 { 808 return __pte(pte_val(pte) | _PAGE_SWP_EXCLUSIVE); 809 } 810 811 static inline pte_t pte_swp_clear_exclusive(pte_t pte) 812 { 813 return __pte(pte_val(pte) & ~_PAGE_SWP_EXCLUSIVE); 814 } 815 816 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 817 #define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) }) 818 #define __swp_entry_to_pmd(swp) __pmd((swp).val) 819 #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */ 820 821 /* 822 * In the RV64 Linux scheme, we give the user half of the virtual-address space 823 * and give the kernel the other (upper) half. 824 */ 825 #ifdef CONFIG_64BIT 826 #define KERN_VIRT_START (-(BIT(VA_BITS)) + TASK_SIZE) 827 #else 828 #define KERN_VIRT_START FIXADDR_START 829 #endif 830 831 /* 832 * Task size is 0x4000000000 for RV64 or 0x9fc00000 for RV32. 833 * Note that PGDIR_SIZE must evenly divide TASK_SIZE. 834 * Task size is: 835 * - 0x9fc00000 (~2.5GB) for RV32. 836 * - 0x4000000000 ( 256GB) for RV64 using SV39 mmu 837 * - 0x800000000000 ( 128TB) for RV64 using SV48 mmu 838 * 839 * Note that PGDIR_SIZE must evenly divide TASK_SIZE since "RISC-V 840 * Instruction Set Manual Volume II: Privileged Architecture" states that 841 * "load and store effective addresses, which are 64bits, must have bits 842 * 63–48 all equal to bit 47, or else a page-fault exception will occur." 843 */ 844 #ifdef CONFIG_64BIT 845 #define TASK_SIZE_64 (PGDIR_SIZE * PTRS_PER_PGD / 2) 846 #define TASK_SIZE_MIN (PGDIR_SIZE_L3 * PTRS_PER_PGD / 2) 847 848 #ifdef CONFIG_COMPAT 849 #define TASK_SIZE_32 (_AC(0x80000000, UL) - PAGE_SIZE) 850 #define TASK_SIZE (test_thread_flag(TIF_32BIT) ? \ 851 TASK_SIZE_32 : TASK_SIZE_64) 852 #else 853 #define TASK_SIZE TASK_SIZE_64 854 #endif 855 856 #else 857 #define TASK_SIZE FIXADDR_START 858 #define TASK_SIZE_MIN TASK_SIZE 859 #endif 860 861 #else /* CONFIG_MMU */ 862 863 #define PAGE_SHARED __pgprot(0) 864 #define PAGE_KERNEL __pgprot(0) 865 #define swapper_pg_dir NULL 866 #define TASK_SIZE 0xffffffffUL 867 #define VMALLOC_START 0 868 #define VMALLOC_END TASK_SIZE 869 870 #endif /* !CONFIG_MMU */ 871 872 extern char _start[]; 873 extern void *_dtb_early_va; 874 extern uintptr_t _dtb_early_pa; 875 #if defined(CONFIG_XIP_KERNEL) && defined(CONFIG_MMU) 876 #define dtb_early_va (*(void **)XIP_FIXUP(&_dtb_early_va)) 877 #define dtb_early_pa (*(uintptr_t *)XIP_FIXUP(&_dtb_early_pa)) 878 #else 879 #define dtb_early_va _dtb_early_va 880 #define dtb_early_pa _dtb_early_pa 881 #endif /* CONFIG_XIP_KERNEL */ 882 extern u64 satp_mode; 883 extern bool pgtable_l4_enabled; 884 885 void paging_init(void); 886 void misc_mem_init(void); 887 888 /* 889 * ZERO_PAGE is a global shared page that is always zero, 890 * used for zero-mapped memory areas, etc. 891 */ 892 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]; 893 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 894 895 #endif /* !__ASSEMBLY__ */ 896 897 #endif /* _ASM_RISCV_PGTABLE_H */ 898