1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (C) 2012 Regents of the University of California 4 */ 5 6 #ifndef _ASM_RISCV_PGTABLE_H 7 #define _ASM_RISCV_PGTABLE_H 8 9 #include <linux/mmzone.h> 10 #include <linux/sizes.h> 11 12 #include <asm/pgtable-bits.h> 13 14 #ifndef CONFIG_MMU 15 #define KERNEL_LINK_ADDR PAGE_OFFSET 16 #define KERN_VIRT_SIZE (UL(-1)) 17 #else 18 19 #define ADDRESS_SPACE_END (UL(-1)) 20 21 #ifdef CONFIG_64BIT 22 /* Leave 2GB for kernel and BPF at the end of the address space */ 23 #define KERNEL_LINK_ADDR (ADDRESS_SPACE_END - SZ_2G + 1) 24 #else 25 #define KERNEL_LINK_ADDR PAGE_OFFSET 26 #endif 27 28 /* Number of entries in the page global directory */ 29 #define PTRS_PER_PGD (PAGE_SIZE / sizeof(pgd_t)) 30 /* Number of entries in the page table */ 31 #define PTRS_PER_PTE (PAGE_SIZE / sizeof(pte_t)) 32 33 /* 34 * Half of the kernel address space (half of the entries of the page global 35 * directory) is for the direct mapping. 36 */ 37 #define KERN_VIRT_SIZE ((PTRS_PER_PGD / 2 * PGDIR_SIZE) / 2) 38 39 #define VMALLOC_SIZE (KERN_VIRT_SIZE >> 1) 40 #define VMALLOC_END PAGE_OFFSET 41 #define VMALLOC_START (PAGE_OFFSET - VMALLOC_SIZE) 42 43 #define BPF_JIT_REGION_SIZE (SZ_128M) 44 #ifdef CONFIG_64BIT 45 #define BPF_JIT_REGION_START (BPF_JIT_REGION_END - BPF_JIT_REGION_SIZE) 46 #define BPF_JIT_REGION_END (MODULES_END) 47 #else 48 #define BPF_JIT_REGION_START (PAGE_OFFSET - BPF_JIT_REGION_SIZE) 49 #define BPF_JIT_REGION_END (VMALLOC_END) 50 #endif 51 52 /* Modules always live before the kernel */ 53 #ifdef CONFIG_64BIT 54 /* This is used to define the end of the KASAN shadow region */ 55 #define MODULES_LOWEST_VADDR (KERNEL_LINK_ADDR - SZ_2G) 56 #define MODULES_VADDR (PFN_ALIGN((unsigned long)&_end) - SZ_2G) 57 #define MODULES_END (PFN_ALIGN((unsigned long)&_start)) 58 #endif 59 60 /* 61 * Roughly size the vmemmap space to be large enough to fit enough 62 * struct pages to map half the virtual address space. Then 63 * position vmemmap directly below the VMALLOC region. 64 */ 65 #ifdef CONFIG_64BIT 66 #define VA_BITS (pgtable_l5_enabled ? \ 67 57 : (pgtable_l4_enabled ? 48 : 39)) 68 #else 69 #define VA_BITS 32 70 #endif 71 72 #define VMEMMAP_SHIFT \ 73 (VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT) 74 #define VMEMMAP_SIZE BIT(VMEMMAP_SHIFT) 75 #define VMEMMAP_END VMALLOC_START 76 #define VMEMMAP_START (VMALLOC_START - VMEMMAP_SIZE) 77 78 /* 79 * Define vmemmap for pfn_to_page & page_to_pfn calls. Needed if kernel 80 * is configured with CONFIG_SPARSEMEM_VMEMMAP enabled. 81 */ 82 #define vmemmap ((struct page *)VMEMMAP_START) 83 84 #define PCI_IO_SIZE SZ_16M 85 #define PCI_IO_END VMEMMAP_START 86 #define PCI_IO_START (PCI_IO_END - PCI_IO_SIZE) 87 88 #define FIXADDR_TOP PCI_IO_START 89 #ifdef CONFIG_64BIT 90 #define FIXADDR_SIZE PMD_SIZE 91 #else 92 #define FIXADDR_SIZE PGDIR_SIZE 93 #endif 94 #define FIXADDR_START (FIXADDR_TOP - FIXADDR_SIZE) 95 96 #endif 97 98 #ifdef CONFIG_XIP_KERNEL 99 #define XIP_OFFSET SZ_32M 100 #define XIP_OFFSET_MASK (SZ_32M - 1) 101 #else 102 #define XIP_OFFSET 0 103 #endif 104 105 #ifndef __ASSEMBLY__ 106 107 #include <asm/page.h> 108 #include <asm/tlbflush.h> 109 #include <linux/mm_types.h> 110 111 #define __page_val_to_pfn(_val) (((_val) & _PAGE_PFN_MASK) >> _PAGE_PFN_SHIFT) 112 113 #ifdef CONFIG_64BIT 114 #include <asm/pgtable-64.h> 115 #else 116 #include <asm/pgtable-32.h> 117 #endif /* CONFIG_64BIT */ 118 119 #include <linux/page_table_check.h> 120 121 #ifdef CONFIG_XIP_KERNEL 122 #define XIP_FIXUP(addr) ({ \ 123 uintptr_t __a = (uintptr_t)(addr); \ 124 (__a >= CONFIG_XIP_PHYS_ADDR && \ 125 __a < CONFIG_XIP_PHYS_ADDR + XIP_OFFSET * 2) ? \ 126 __a - CONFIG_XIP_PHYS_ADDR + CONFIG_PHYS_RAM_BASE - XIP_OFFSET :\ 127 __a; \ 128 }) 129 #else 130 #define XIP_FIXUP(addr) (addr) 131 #endif /* CONFIG_XIP_KERNEL */ 132 133 struct pt_alloc_ops { 134 pte_t *(*get_pte_virt)(phys_addr_t pa); 135 phys_addr_t (*alloc_pte)(uintptr_t va); 136 #ifndef __PAGETABLE_PMD_FOLDED 137 pmd_t *(*get_pmd_virt)(phys_addr_t pa); 138 phys_addr_t (*alloc_pmd)(uintptr_t va); 139 pud_t *(*get_pud_virt)(phys_addr_t pa); 140 phys_addr_t (*alloc_pud)(uintptr_t va); 141 p4d_t *(*get_p4d_virt)(phys_addr_t pa); 142 phys_addr_t (*alloc_p4d)(uintptr_t va); 143 #endif 144 }; 145 146 extern struct pt_alloc_ops pt_ops __initdata; 147 148 #ifdef CONFIG_MMU 149 /* Number of PGD entries that a user-mode program can use */ 150 #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE) 151 152 /* Page protection bits */ 153 #define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_USER) 154 155 #define PAGE_NONE __pgprot(_PAGE_PROT_NONE | _PAGE_READ) 156 #define PAGE_READ __pgprot(_PAGE_BASE | _PAGE_READ) 157 #define PAGE_WRITE __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_WRITE) 158 #define PAGE_EXEC __pgprot(_PAGE_BASE | _PAGE_EXEC) 159 #define PAGE_READ_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC) 160 #define PAGE_WRITE_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | \ 161 _PAGE_EXEC | _PAGE_WRITE) 162 163 #define PAGE_COPY PAGE_READ 164 #define PAGE_COPY_EXEC PAGE_EXEC 165 #define PAGE_COPY_READ_EXEC PAGE_READ_EXEC 166 #define PAGE_SHARED PAGE_WRITE 167 #define PAGE_SHARED_EXEC PAGE_WRITE_EXEC 168 169 #define _PAGE_KERNEL (_PAGE_READ \ 170 | _PAGE_WRITE \ 171 | _PAGE_PRESENT \ 172 | _PAGE_ACCESSED \ 173 | _PAGE_DIRTY \ 174 | _PAGE_GLOBAL) 175 176 #define PAGE_KERNEL __pgprot(_PAGE_KERNEL) 177 #define PAGE_KERNEL_READ __pgprot(_PAGE_KERNEL & ~_PAGE_WRITE) 178 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL | _PAGE_EXEC) 179 #define PAGE_KERNEL_READ_EXEC __pgprot((_PAGE_KERNEL & ~_PAGE_WRITE) \ 180 | _PAGE_EXEC) 181 182 #define PAGE_TABLE __pgprot(_PAGE_TABLE) 183 184 #define _PAGE_IOREMAP ((_PAGE_KERNEL & ~_PAGE_MTMASK) | _PAGE_IO) 185 #define PAGE_KERNEL_IO __pgprot(_PAGE_IOREMAP) 186 187 extern pgd_t swapper_pg_dir[]; 188 189 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 190 static inline int pmd_present(pmd_t pmd) 191 { 192 /* 193 * Checking for _PAGE_LEAF is needed too because: 194 * When splitting a THP, split_huge_page() will temporarily clear 195 * the present bit, in this situation, pmd_present() and 196 * pmd_trans_huge() still needs to return true. 197 */ 198 return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE | _PAGE_LEAF)); 199 } 200 #else 201 static inline int pmd_present(pmd_t pmd) 202 { 203 return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE)); 204 } 205 #endif 206 207 static inline int pmd_none(pmd_t pmd) 208 { 209 return (pmd_val(pmd) == 0); 210 } 211 212 static inline int pmd_bad(pmd_t pmd) 213 { 214 return !pmd_present(pmd) || (pmd_val(pmd) & _PAGE_LEAF); 215 } 216 217 #define pmd_leaf pmd_leaf 218 static inline int pmd_leaf(pmd_t pmd) 219 { 220 return pmd_present(pmd) && (pmd_val(pmd) & _PAGE_LEAF); 221 } 222 223 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd) 224 { 225 *pmdp = pmd; 226 } 227 228 static inline void pmd_clear(pmd_t *pmdp) 229 { 230 set_pmd(pmdp, __pmd(0)); 231 } 232 233 static inline pgd_t pfn_pgd(unsigned long pfn, pgprot_t prot) 234 { 235 unsigned long prot_val = pgprot_val(prot); 236 237 ALT_THEAD_PMA(prot_val); 238 239 return __pgd((pfn << _PAGE_PFN_SHIFT) | prot_val); 240 } 241 242 static inline unsigned long _pgd_pfn(pgd_t pgd) 243 { 244 return __page_val_to_pfn(pgd_val(pgd)); 245 } 246 247 static inline struct page *pmd_page(pmd_t pmd) 248 { 249 return pfn_to_page(__page_val_to_pfn(pmd_val(pmd))); 250 } 251 252 static inline unsigned long pmd_page_vaddr(pmd_t pmd) 253 { 254 return (unsigned long)pfn_to_virt(__page_val_to_pfn(pmd_val(pmd))); 255 } 256 257 static inline pte_t pmd_pte(pmd_t pmd) 258 { 259 return __pte(pmd_val(pmd)); 260 } 261 262 static inline pte_t pud_pte(pud_t pud) 263 { 264 return __pte(pud_val(pud)); 265 } 266 267 /* Yields the page frame number (PFN) of a page table entry */ 268 static inline unsigned long pte_pfn(pte_t pte) 269 { 270 return __page_val_to_pfn(pte_val(pte)); 271 } 272 273 #define pte_page(x) pfn_to_page(pte_pfn(x)) 274 275 /* Constructs a page table entry */ 276 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot) 277 { 278 unsigned long prot_val = pgprot_val(prot); 279 280 ALT_THEAD_PMA(prot_val); 281 282 return __pte((pfn << _PAGE_PFN_SHIFT) | prot_val); 283 } 284 285 #define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot) 286 287 static inline int pte_present(pte_t pte) 288 { 289 return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE)); 290 } 291 292 static inline int pte_none(pte_t pte) 293 { 294 return (pte_val(pte) == 0); 295 } 296 297 static inline int pte_write(pte_t pte) 298 { 299 return pte_val(pte) & _PAGE_WRITE; 300 } 301 302 static inline int pte_exec(pte_t pte) 303 { 304 return pte_val(pte) & _PAGE_EXEC; 305 } 306 307 static inline int pte_user(pte_t pte) 308 { 309 return pte_val(pte) & _PAGE_USER; 310 } 311 312 static inline int pte_huge(pte_t pte) 313 { 314 return pte_present(pte) && (pte_val(pte) & _PAGE_LEAF); 315 } 316 317 static inline int pte_dirty(pte_t pte) 318 { 319 return pte_val(pte) & _PAGE_DIRTY; 320 } 321 322 static inline int pte_young(pte_t pte) 323 { 324 return pte_val(pte) & _PAGE_ACCESSED; 325 } 326 327 static inline int pte_special(pte_t pte) 328 { 329 return pte_val(pte) & _PAGE_SPECIAL; 330 } 331 332 /* static inline pte_t pte_rdprotect(pte_t pte) */ 333 334 static inline pte_t pte_wrprotect(pte_t pte) 335 { 336 return __pte(pte_val(pte) & ~(_PAGE_WRITE)); 337 } 338 339 /* static inline pte_t pte_mkread(pte_t pte) */ 340 341 static inline pte_t pte_mkwrite(pte_t pte) 342 { 343 return __pte(pte_val(pte) | _PAGE_WRITE); 344 } 345 346 /* static inline pte_t pte_mkexec(pte_t pte) */ 347 348 static inline pte_t pte_mkdirty(pte_t pte) 349 { 350 return __pte(pte_val(pte) | _PAGE_DIRTY); 351 } 352 353 static inline pte_t pte_mkclean(pte_t pte) 354 { 355 return __pte(pte_val(pte) & ~(_PAGE_DIRTY)); 356 } 357 358 static inline pte_t pte_mkyoung(pte_t pte) 359 { 360 return __pte(pte_val(pte) | _PAGE_ACCESSED); 361 } 362 363 static inline pte_t pte_mkold(pte_t pte) 364 { 365 return __pte(pte_val(pte) & ~(_PAGE_ACCESSED)); 366 } 367 368 static inline pte_t pte_mkspecial(pte_t pte) 369 { 370 return __pte(pte_val(pte) | _PAGE_SPECIAL); 371 } 372 373 static inline pte_t pte_mkhuge(pte_t pte) 374 { 375 return pte; 376 } 377 378 #ifdef CONFIG_NUMA_BALANCING 379 /* 380 * See the comment in include/asm-generic/pgtable.h 381 */ 382 static inline int pte_protnone(pte_t pte) 383 { 384 return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE)) == _PAGE_PROT_NONE; 385 } 386 387 static inline int pmd_protnone(pmd_t pmd) 388 { 389 return pte_protnone(pmd_pte(pmd)); 390 } 391 #endif 392 393 /* Modify page protection bits */ 394 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 395 { 396 unsigned long newprot_val = pgprot_val(newprot); 397 398 ALT_THEAD_PMA(newprot_val); 399 400 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | newprot_val); 401 } 402 403 #define pgd_ERROR(e) \ 404 pr_err("%s:%d: bad pgd " PTE_FMT ".\n", __FILE__, __LINE__, pgd_val(e)) 405 406 407 /* Commit new configuration to MMU hardware */ 408 static inline void update_mmu_cache(struct vm_area_struct *vma, 409 unsigned long address, pte_t *ptep) 410 { 411 /* 412 * The kernel assumes that TLBs don't cache invalid entries, but 413 * in RISC-V, SFENCE.VMA specifies an ordering constraint, not a 414 * cache flush; it is necessary even after writing invalid entries. 415 * Relying on flush_tlb_fix_spurious_fault would suffice, but 416 * the extra traps reduce performance. So, eagerly SFENCE.VMA. 417 */ 418 local_flush_tlb_page(address); 419 } 420 421 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma, 422 unsigned long address, pmd_t *pmdp) 423 { 424 pte_t *ptep = (pte_t *)pmdp; 425 426 update_mmu_cache(vma, address, ptep); 427 } 428 429 #define __HAVE_ARCH_PTE_SAME 430 static inline int pte_same(pte_t pte_a, pte_t pte_b) 431 { 432 return pte_val(pte_a) == pte_val(pte_b); 433 } 434 435 /* 436 * Certain architectures need to do special things when PTEs within 437 * a page table are directly modified. Thus, the following hook is 438 * made available. 439 */ 440 static inline void set_pte(pte_t *ptep, pte_t pteval) 441 { 442 *ptep = pteval; 443 } 444 445 void flush_icache_pte(pte_t pte); 446 447 static inline void __set_pte_at(struct mm_struct *mm, 448 unsigned long addr, pte_t *ptep, pte_t pteval) 449 { 450 if (pte_present(pteval) && pte_exec(pteval)) 451 flush_icache_pte(pteval); 452 453 set_pte(ptep, pteval); 454 } 455 456 static inline void set_pte_at(struct mm_struct *mm, 457 unsigned long addr, pte_t *ptep, pte_t pteval) 458 { 459 page_table_check_pte_set(mm, addr, ptep, pteval); 460 __set_pte_at(mm, addr, ptep, pteval); 461 } 462 463 static inline void pte_clear(struct mm_struct *mm, 464 unsigned long addr, pte_t *ptep) 465 { 466 __set_pte_at(mm, addr, ptep, __pte(0)); 467 } 468 469 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 470 static inline int ptep_set_access_flags(struct vm_area_struct *vma, 471 unsigned long address, pte_t *ptep, 472 pte_t entry, int dirty) 473 { 474 if (!pte_same(*ptep, entry)) 475 set_pte_at(vma->vm_mm, address, ptep, entry); 476 /* 477 * update_mmu_cache will unconditionally execute, handling both 478 * the case that the PTE changed and the spurious fault case. 479 */ 480 return true; 481 } 482 483 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR 484 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 485 unsigned long address, pte_t *ptep) 486 { 487 pte_t pte = __pte(atomic_long_xchg((atomic_long_t *)ptep, 0)); 488 489 page_table_check_pte_clear(mm, address, pte); 490 491 return pte; 492 } 493 494 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 495 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 496 unsigned long address, 497 pte_t *ptep) 498 { 499 if (!pte_young(*ptep)) 500 return 0; 501 return test_and_clear_bit(_PAGE_ACCESSED_OFFSET, &pte_val(*ptep)); 502 } 503 504 #define __HAVE_ARCH_PTEP_SET_WRPROTECT 505 static inline void ptep_set_wrprotect(struct mm_struct *mm, 506 unsigned long address, pte_t *ptep) 507 { 508 atomic_long_and(~(unsigned long)_PAGE_WRITE, (atomic_long_t *)ptep); 509 } 510 511 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 512 static inline int ptep_clear_flush_young(struct vm_area_struct *vma, 513 unsigned long address, pte_t *ptep) 514 { 515 /* 516 * This comment is borrowed from x86, but applies equally to RISC-V: 517 * 518 * Clearing the accessed bit without a TLB flush 519 * doesn't cause data corruption. [ It could cause incorrect 520 * page aging and the (mistaken) reclaim of hot pages, but the 521 * chance of that should be relatively low. ] 522 * 523 * So as a performance optimization don't flush the TLB when 524 * clearing the accessed bit, it will eventually be flushed by 525 * a context switch or a VM operation anyway. [ In the rare 526 * event of it not getting flushed for a long time the delay 527 * shouldn't really matter because there's no real memory 528 * pressure for swapout to react to. ] 529 */ 530 return ptep_test_and_clear_young(vma, address, ptep); 531 } 532 533 #define pgprot_noncached pgprot_noncached 534 static inline pgprot_t pgprot_noncached(pgprot_t _prot) 535 { 536 unsigned long prot = pgprot_val(_prot); 537 538 prot &= ~_PAGE_MTMASK; 539 prot |= _PAGE_IO; 540 541 return __pgprot(prot); 542 } 543 544 #define pgprot_writecombine pgprot_writecombine 545 static inline pgprot_t pgprot_writecombine(pgprot_t _prot) 546 { 547 unsigned long prot = pgprot_val(_prot); 548 549 prot &= ~_PAGE_MTMASK; 550 prot |= _PAGE_NOCACHE; 551 552 return __pgprot(prot); 553 } 554 555 /* 556 * THP functions 557 */ 558 static inline pmd_t pte_pmd(pte_t pte) 559 { 560 return __pmd(pte_val(pte)); 561 } 562 563 static inline pmd_t pmd_mkhuge(pmd_t pmd) 564 { 565 return pmd; 566 } 567 568 static inline pmd_t pmd_mkinvalid(pmd_t pmd) 569 { 570 return __pmd(pmd_val(pmd) & ~(_PAGE_PRESENT|_PAGE_PROT_NONE)); 571 } 572 573 #define __pmd_to_phys(pmd) (__page_val_to_pfn(pmd_val(pmd)) << PAGE_SHIFT) 574 575 static inline unsigned long pmd_pfn(pmd_t pmd) 576 { 577 return ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT); 578 } 579 580 #define __pud_to_phys(pud) (__page_val_to_pfn(pud_val(pud)) << PAGE_SHIFT) 581 582 static inline unsigned long pud_pfn(pud_t pud) 583 { 584 return ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT); 585 } 586 587 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 588 { 589 return pte_pmd(pte_modify(pmd_pte(pmd), newprot)); 590 } 591 592 #define pmd_write pmd_write 593 static inline int pmd_write(pmd_t pmd) 594 { 595 return pte_write(pmd_pte(pmd)); 596 } 597 598 static inline int pmd_dirty(pmd_t pmd) 599 { 600 return pte_dirty(pmd_pte(pmd)); 601 } 602 603 #define pmd_young pmd_young 604 static inline int pmd_young(pmd_t pmd) 605 { 606 return pte_young(pmd_pte(pmd)); 607 } 608 609 static inline int pmd_user(pmd_t pmd) 610 { 611 return pte_user(pmd_pte(pmd)); 612 } 613 614 static inline pmd_t pmd_mkold(pmd_t pmd) 615 { 616 return pte_pmd(pte_mkold(pmd_pte(pmd))); 617 } 618 619 static inline pmd_t pmd_mkyoung(pmd_t pmd) 620 { 621 return pte_pmd(pte_mkyoung(pmd_pte(pmd))); 622 } 623 624 static inline pmd_t pmd_mkwrite(pmd_t pmd) 625 { 626 return pte_pmd(pte_mkwrite(pmd_pte(pmd))); 627 } 628 629 static inline pmd_t pmd_wrprotect(pmd_t pmd) 630 { 631 return pte_pmd(pte_wrprotect(pmd_pte(pmd))); 632 } 633 634 static inline pmd_t pmd_mkclean(pmd_t pmd) 635 { 636 return pte_pmd(pte_mkclean(pmd_pte(pmd))); 637 } 638 639 static inline pmd_t pmd_mkdirty(pmd_t pmd) 640 { 641 return pte_pmd(pte_mkdirty(pmd_pte(pmd))); 642 } 643 644 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr, 645 pmd_t *pmdp, pmd_t pmd) 646 { 647 page_table_check_pmd_set(mm, addr, pmdp, pmd); 648 return __set_pte_at(mm, addr, (pte_t *)pmdp, pmd_pte(pmd)); 649 } 650 651 static inline void set_pud_at(struct mm_struct *mm, unsigned long addr, 652 pud_t *pudp, pud_t pud) 653 { 654 page_table_check_pud_set(mm, addr, pudp, pud); 655 return __set_pte_at(mm, addr, (pte_t *)pudp, pud_pte(pud)); 656 } 657 658 #ifdef CONFIG_PAGE_TABLE_CHECK 659 static inline bool pte_user_accessible_page(pte_t pte) 660 { 661 return pte_present(pte) && pte_user(pte); 662 } 663 664 static inline bool pmd_user_accessible_page(pmd_t pmd) 665 { 666 return pmd_leaf(pmd) && pmd_user(pmd); 667 } 668 669 static inline bool pud_user_accessible_page(pud_t pud) 670 { 671 return pud_leaf(pud) && pud_user(pud); 672 } 673 #endif 674 675 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 676 static inline int pmd_trans_huge(pmd_t pmd) 677 { 678 return pmd_leaf(pmd); 679 } 680 681 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 682 static inline int pmdp_set_access_flags(struct vm_area_struct *vma, 683 unsigned long address, pmd_t *pmdp, 684 pmd_t entry, int dirty) 685 { 686 return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty); 687 } 688 689 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 690 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 691 unsigned long address, pmd_t *pmdp) 692 { 693 return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp); 694 } 695 696 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 697 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 698 unsigned long address, pmd_t *pmdp) 699 { 700 pmd_t pmd = __pmd(atomic_long_xchg((atomic_long_t *)pmdp, 0)); 701 702 page_table_check_pmd_clear(mm, address, pmd); 703 704 return pmd; 705 } 706 707 #define __HAVE_ARCH_PMDP_SET_WRPROTECT 708 static inline void pmdp_set_wrprotect(struct mm_struct *mm, 709 unsigned long address, pmd_t *pmdp) 710 { 711 ptep_set_wrprotect(mm, address, (pte_t *)pmdp); 712 } 713 714 #define pmdp_establish pmdp_establish 715 static inline pmd_t pmdp_establish(struct vm_area_struct *vma, 716 unsigned long address, pmd_t *pmdp, pmd_t pmd) 717 { 718 page_table_check_pmd_set(vma->vm_mm, address, pmdp, pmd); 719 return __pmd(atomic_long_xchg((atomic_long_t *)pmdp, pmd_val(pmd))); 720 } 721 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 722 723 /* 724 * Encode and decode a swap entry 725 * 726 * Format of swap PTE: 727 * bit 0: _PAGE_PRESENT (zero) 728 * bit 1 to 3: _PAGE_LEAF (zero) 729 * bit 5: _PAGE_PROT_NONE (zero) 730 * bits 6 to 10: swap type 731 * bits 10 to XLEN-1: swap offset 732 */ 733 #define __SWP_TYPE_SHIFT 6 734 #define __SWP_TYPE_BITS 5 735 #define __SWP_TYPE_MASK ((1UL << __SWP_TYPE_BITS) - 1) 736 #define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT) 737 738 #define MAX_SWAPFILES_CHECK() \ 739 BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS) 740 741 #define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK) 742 #define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT) 743 #define __swp_entry(type, offset) ((swp_entry_t) \ 744 { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) }) 745 746 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 747 #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 748 749 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 750 #define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) }) 751 #define __swp_entry_to_pmd(swp) __pmd((swp).val) 752 #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */ 753 754 /* 755 * In the RV64 Linux scheme, we give the user half of the virtual-address space 756 * and give the kernel the other (upper) half. 757 */ 758 #ifdef CONFIG_64BIT 759 #define KERN_VIRT_START (-(BIT(VA_BITS)) + TASK_SIZE) 760 #else 761 #define KERN_VIRT_START FIXADDR_START 762 #endif 763 764 /* 765 * Task size is 0x4000000000 for RV64 or 0x9fc00000 for RV32. 766 * Note that PGDIR_SIZE must evenly divide TASK_SIZE. 767 * Task size is: 768 * - 0x9fc00000 (~2.5GB) for RV32. 769 * - 0x4000000000 ( 256GB) for RV64 using SV39 mmu 770 * - 0x800000000000 ( 128TB) for RV64 using SV48 mmu 771 * 772 * Note that PGDIR_SIZE must evenly divide TASK_SIZE since "RISC-V 773 * Instruction Set Manual Volume II: Privileged Architecture" states that 774 * "load and store effective addresses, which are 64bits, must have bits 775 * 63–48 all equal to bit 47, or else a page-fault exception will occur." 776 */ 777 #ifdef CONFIG_64BIT 778 #define TASK_SIZE_64 (PGDIR_SIZE * PTRS_PER_PGD / 2) 779 #define TASK_SIZE_MIN (PGDIR_SIZE_L3 * PTRS_PER_PGD / 2) 780 781 #ifdef CONFIG_COMPAT 782 #define TASK_SIZE_32 (_AC(0x80000000, UL) - PAGE_SIZE) 783 #define TASK_SIZE (test_thread_flag(TIF_32BIT) ? \ 784 TASK_SIZE_32 : TASK_SIZE_64) 785 #else 786 #define TASK_SIZE TASK_SIZE_64 787 #endif 788 789 #else 790 #define TASK_SIZE FIXADDR_START 791 #define TASK_SIZE_MIN TASK_SIZE 792 #endif 793 794 #else /* CONFIG_MMU */ 795 796 #define PAGE_SHARED __pgprot(0) 797 #define PAGE_KERNEL __pgprot(0) 798 #define swapper_pg_dir NULL 799 #define TASK_SIZE 0xffffffffUL 800 #define VMALLOC_START 0 801 #define VMALLOC_END TASK_SIZE 802 803 #endif /* !CONFIG_MMU */ 804 805 #define kern_addr_valid(addr) (1) /* FIXME */ 806 807 extern char _start[]; 808 extern void *_dtb_early_va; 809 extern uintptr_t _dtb_early_pa; 810 #if defined(CONFIG_XIP_KERNEL) && defined(CONFIG_MMU) 811 #define dtb_early_va (*(void **)XIP_FIXUP(&_dtb_early_va)) 812 #define dtb_early_pa (*(uintptr_t *)XIP_FIXUP(&_dtb_early_pa)) 813 #else 814 #define dtb_early_va _dtb_early_va 815 #define dtb_early_pa _dtb_early_pa 816 #endif /* CONFIG_XIP_KERNEL */ 817 extern u64 satp_mode; 818 extern bool pgtable_l4_enabled; 819 820 void paging_init(void); 821 void misc_mem_init(void); 822 823 /* 824 * ZERO_PAGE is a global shared page that is always zero, 825 * used for zero-mapped memory areas, etc. 826 */ 827 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]; 828 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 829 830 #endif /* !__ASSEMBLY__ */ 831 832 #endif /* _ASM_RISCV_PGTABLE_H */ 833