xref: /openbmc/linux/arch/riscv/include/asm/pgtable.h (revision 2f828fb2)
1 /*
2  * Copyright (C) 2012 Regents of the University of California
3  *
4  *   This program is free software; you can redistribute it and/or
5  *   modify it under the terms of the GNU General Public License
6  *   as published by the Free Software Foundation, version 2.
7  *
8  *   This program is distributed in the hope that it will be useful,
9  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
10  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  *   GNU General Public License for more details.
12  */
13 
14 #ifndef _ASM_RISCV_PGTABLE_H
15 #define _ASM_RISCV_PGTABLE_H
16 
17 #include <linux/mmzone.h>
18 
19 #include <asm/pgtable-bits.h>
20 
21 #ifndef __ASSEMBLY__
22 
23 #ifdef CONFIG_MMU
24 
25 /* Page Upper Directory not used in RISC-V */
26 #include <asm-generic/pgtable-nopud.h>
27 #include <asm/page.h>
28 #include <asm/tlbflush.h>
29 #include <linux/mm_types.h>
30 
31 #ifdef CONFIG_64BIT
32 #include <asm/pgtable-64.h>
33 #else
34 #include <asm/pgtable-32.h>
35 #endif /* CONFIG_64BIT */
36 
37 /* Number of entries in the page global directory */
38 #define PTRS_PER_PGD    (PAGE_SIZE / sizeof(pgd_t))
39 /* Number of entries in the page table */
40 #define PTRS_PER_PTE    (PAGE_SIZE / sizeof(pte_t))
41 
42 /* Number of PGD entries that a user-mode program can use */
43 #define USER_PTRS_PER_PGD   (TASK_SIZE / PGDIR_SIZE)
44 #define FIRST_USER_ADDRESS  0
45 
46 /* Page protection bits */
47 #define _PAGE_BASE	(_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_USER)
48 
49 #define PAGE_NONE		__pgprot(0)
50 #define PAGE_READ		__pgprot(_PAGE_BASE | _PAGE_READ)
51 #define PAGE_WRITE		__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_WRITE)
52 #define PAGE_EXEC		__pgprot(_PAGE_BASE | _PAGE_EXEC)
53 #define PAGE_READ_EXEC		__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
54 #define PAGE_WRITE_EXEC		__pgprot(_PAGE_BASE | _PAGE_READ |	\
55 					 _PAGE_EXEC | _PAGE_WRITE)
56 
57 #define PAGE_COPY		PAGE_READ
58 #define PAGE_COPY_EXEC		PAGE_EXEC
59 #define PAGE_COPY_READ_EXEC	PAGE_READ_EXEC
60 #define PAGE_SHARED		PAGE_WRITE
61 #define PAGE_SHARED_EXEC	PAGE_WRITE_EXEC
62 
63 #define _PAGE_KERNEL		(_PAGE_READ \
64 				| _PAGE_WRITE \
65 				| _PAGE_PRESENT \
66 				| _PAGE_ACCESSED \
67 				| _PAGE_DIRTY)
68 
69 #define PAGE_KERNEL		__pgprot(_PAGE_KERNEL)
70 #define PAGE_KERNEL_EXEC	__pgprot(_PAGE_KERNEL | _PAGE_EXEC)
71 
72 extern pgd_t swapper_pg_dir[];
73 
74 /* MAP_PRIVATE permissions: xwr (copy-on-write) */
75 #define __P000	PAGE_NONE
76 #define __P001	PAGE_READ
77 #define __P010	PAGE_COPY
78 #define __P011	PAGE_COPY
79 #define __P100	PAGE_EXEC
80 #define __P101	PAGE_READ_EXEC
81 #define __P110	PAGE_COPY_EXEC
82 #define __P111	PAGE_COPY_READ_EXEC
83 
84 /* MAP_SHARED permissions: xwr */
85 #define __S000	PAGE_NONE
86 #define __S001	PAGE_READ
87 #define __S010	PAGE_SHARED
88 #define __S011	PAGE_SHARED
89 #define __S100	PAGE_EXEC
90 #define __S101	PAGE_READ_EXEC
91 #define __S110	PAGE_SHARED_EXEC
92 #define __S111	PAGE_SHARED_EXEC
93 
94 /*
95  * ZERO_PAGE is a global shared page that is always zero,
96  * used for zero-mapped memory areas, etc.
97  */
98 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
99 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
100 
101 static inline int pmd_present(pmd_t pmd)
102 {
103 	return (pmd_val(pmd) & _PAGE_PRESENT);
104 }
105 
106 static inline int pmd_none(pmd_t pmd)
107 {
108 	return (pmd_val(pmd) == 0);
109 }
110 
111 static inline int pmd_bad(pmd_t pmd)
112 {
113 	return !pmd_present(pmd);
114 }
115 
116 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
117 {
118 	*pmdp = pmd;
119 }
120 
121 static inline void pmd_clear(pmd_t *pmdp)
122 {
123 	set_pmd(pmdp, __pmd(0));
124 }
125 
126 
127 static inline pgd_t pfn_pgd(unsigned long pfn, pgprot_t prot)
128 {
129 	return __pgd((pfn << _PAGE_PFN_SHIFT) | pgprot_val(prot));
130 }
131 
132 #define pgd_index(addr) (((addr) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
133 
134 /* Locate an entry in the page global directory */
135 static inline pgd_t *pgd_offset(const struct mm_struct *mm, unsigned long addr)
136 {
137 	return mm->pgd + pgd_index(addr);
138 }
139 /* Locate an entry in the kernel page global directory */
140 #define pgd_offset_k(addr)      pgd_offset(&init_mm, (addr))
141 
142 static inline struct page *pmd_page(pmd_t pmd)
143 {
144 	return pfn_to_page(pmd_val(pmd) >> _PAGE_PFN_SHIFT);
145 }
146 
147 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
148 {
149 	return (unsigned long)pfn_to_virt(pmd_val(pmd) >> _PAGE_PFN_SHIFT);
150 }
151 
152 /* Yields the page frame number (PFN) of a page table entry */
153 static inline unsigned long pte_pfn(pte_t pte)
154 {
155 	return (pte_val(pte) >> _PAGE_PFN_SHIFT);
156 }
157 
158 #define pte_page(x)     pfn_to_page(pte_pfn(x))
159 
160 /* Constructs a page table entry */
161 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot)
162 {
163 	return __pte((pfn << _PAGE_PFN_SHIFT) | pgprot_val(prot));
164 }
165 
166 static inline pte_t mk_pte(struct page *page, pgprot_t prot)
167 {
168 	return pfn_pte(page_to_pfn(page), prot);
169 }
170 
171 #define pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
172 
173 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long addr)
174 {
175 	return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(addr);
176 }
177 
178 #define pte_offset_map(dir, addr)	pte_offset_kernel((dir), (addr))
179 #define pte_unmap(pte)			((void)(pte))
180 
181 /*
182  * Certain architectures need to do special things when PTEs within
183  * a page table are directly modified.  Thus, the following hook is
184  * made available.
185  */
186 static inline void set_pte(pte_t *ptep, pte_t pteval)
187 {
188 	*ptep = pteval;
189 }
190 
191 static inline void set_pte_at(struct mm_struct *mm,
192 	unsigned long addr, pte_t *ptep, pte_t pteval)
193 {
194 	set_pte(ptep, pteval);
195 }
196 
197 static inline void pte_clear(struct mm_struct *mm,
198 	unsigned long addr, pte_t *ptep)
199 {
200 	set_pte_at(mm, addr, ptep, __pte(0));
201 }
202 
203 static inline int pte_present(pte_t pte)
204 {
205 	return (pte_val(pte) & _PAGE_PRESENT);
206 }
207 
208 static inline int pte_none(pte_t pte)
209 {
210 	return (pte_val(pte) == 0);
211 }
212 
213 /* static inline int pte_read(pte_t pte) */
214 
215 static inline int pte_write(pte_t pte)
216 {
217 	return pte_val(pte) & _PAGE_WRITE;
218 }
219 
220 static inline int pte_huge(pte_t pte)
221 {
222 	return pte_present(pte)
223 		&& (pte_val(pte) & (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC));
224 }
225 
226 /* static inline int pte_exec(pte_t pte) */
227 
228 static inline int pte_dirty(pte_t pte)
229 {
230 	return pte_val(pte) & _PAGE_DIRTY;
231 }
232 
233 static inline int pte_young(pte_t pte)
234 {
235 	return pte_val(pte) & _PAGE_ACCESSED;
236 }
237 
238 static inline int pte_special(pte_t pte)
239 {
240 	return pte_val(pte) & _PAGE_SPECIAL;
241 }
242 
243 /* static inline pte_t pte_rdprotect(pte_t pte) */
244 
245 static inline pte_t pte_wrprotect(pte_t pte)
246 {
247 	return __pte(pte_val(pte) & ~(_PAGE_WRITE));
248 }
249 
250 /* static inline pte_t pte_mkread(pte_t pte) */
251 
252 static inline pte_t pte_mkwrite(pte_t pte)
253 {
254 	return __pte(pte_val(pte) | _PAGE_WRITE);
255 }
256 
257 /* static inline pte_t pte_mkexec(pte_t pte) */
258 
259 static inline pte_t pte_mkdirty(pte_t pte)
260 {
261 	return __pte(pte_val(pte) | _PAGE_DIRTY);
262 }
263 
264 static inline pte_t pte_mkclean(pte_t pte)
265 {
266 	return __pte(pte_val(pte) & ~(_PAGE_DIRTY));
267 }
268 
269 static inline pte_t pte_mkyoung(pte_t pte)
270 {
271 	return __pte(pte_val(pte) | _PAGE_ACCESSED);
272 }
273 
274 static inline pte_t pte_mkold(pte_t pte)
275 {
276 	return __pte(pte_val(pte) & ~(_PAGE_ACCESSED));
277 }
278 
279 static inline pte_t pte_mkspecial(pte_t pte)
280 {
281 	return __pte(pte_val(pte) | _PAGE_SPECIAL);
282 }
283 
284 /* Modify page protection bits */
285 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
286 {
287 	return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
288 }
289 
290 #define pgd_ERROR(e) \
291 	pr_err("%s:%d: bad pgd " PTE_FMT ".\n", __FILE__, __LINE__, pgd_val(e))
292 
293 
294 /* Commit new configuration to MMU hardware */
295 static inline void update_mmu_cache(struct vm_area_struct *vma,
296 	unsigned long address, pte_t *ptep)
297 {
298 	/*
299 	 * The kernel assumes that TLBs don't cache invalid entries, but
300 	 * in RISC-V, SFENCE.VMA specifies an ordering constraint, not a
301 	 * cache flush; it is necessary even after writing invalid entries.
302 	 * Relying on flush_tlb_fix_spurious_fault would suffice, but
303 	 * the extra traps reduce performance.  So, eagerly SFENCE.VMA.
304 	 */
305 	local_flush_tlb_page(address);
306 }
307 
308 #define __HAVE_ARCH_PTE_SAME
309 static inline int pte_same(pte_t pte_a, pte_t pte_b)
310 {
311 	return pte_val(pte_a) == pte_val(pte_b);
312 }
313 
314 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
315 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
316 					unsigned long address, pte_t *ptep,
317 					pte_t entry, int dirty)
318 {
319 	if (!pte_same(*ptep, entry))
320 		set_pte_at(vma->vm_mm, address, ptep, entry);
321 	/*
322 	 * update_mmu_cache will unconditionally execute, handling both
323 	 * the case that the PTE changed and the spurious fault case.
324 	 */
325 	return true;
326 }
327 
328 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
329 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
330 				       unsigned long address, pte_t *ptep)
331 {
332 	return __pte(atomic_long_xchg((atomic_long_t *)ptep, 0));
333 }
334 
335 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
336 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
337 					    unsigned long address,
338 					    pte_t *ptep)
339 {
340 	if (!pte_young(*ptep))
341 		return 0;
342 	return test_and_clear_bit(_PAGE_ACCESSED_OFFSET, &pte_val(*ptep));
343 }
344 
345 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
346 static inline void ptep_set_wrprotect(struct mm_struct *mm,
347 				      unsigned long address, pte_t *ptep)
348 {
349 	atomic_long_and(~(unsigned long)_PAGE_WRITE, (atomic_long_t *)ptep);
350 }
351 
352 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
353 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
354 					 unsigned long address, pte_t *ptep)
355 {
356 	/*
357 	 * This comment is borrowed from x86, but applies equally to RISC-V:
358 	 *
359 	 * Clearing the accessed bit without a TLB flush
360 	 * doesn't cause data corruption. [ It could cause incorrect
361 	 * page aging and the (mistaken) reclaim of hot pages, but the
362 	 * chance of that should be relatively low. ]
363 	 *
364 	 * So as a performance optimization don't flush the TLB when
365 	 * clearing the accessed bit, it will eventually be flushed by
366 	 * a context switch or a VM operation anyway. [ In the rare
367 	 * event of it not getting flushed for a long time the delay
368 	 * shouldn't really matter because there's no real memory
369 	 * pressure for swapout to react to. ]
370 	 */
371 	return ptep_test_and_clear_young(vma, address, ptep);
372 }
373 
374 /*
375  * Encode and decode a swap entry
376  *
377  * Format of swap PTE:
378  *	bit            0:	_PAGE_PRESENT (zero)
379  *	bit            1:	reserved for future use (zero)
380  *	bits      2 to 6:	swap type
381  *	bits 7 to XLEN-1:	swap offset
382  */
383 #define __SWP_TYPE_SHIFT	2
384 #define __SWP_TYPE_BITS		5
385 #define __SWP_TYPE_MASK		((1UL << __SWP_TYPE_BITS) - 1)
386 #define __SWP_OFFSET_SHIFT	(__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
387 
388 #define MAX_SWAPFILES_CHECK()	\
389 	BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
390 
391 #define __swp_type(x)	(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
392 #define __swp_offset(x)	((x).val >> __SWP_OFFSET_SHIFT)
393 #define __swp_entry(type, offset) ((swp_entry_t) \
394 	{ ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
395 
396 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
397 #define __swp_entry_to_pte(x)	((pte_t) { (x).val })
398 
399 #ifdef CONFIG_FLATMEM
400 #define kern_addr_valid(addr)   (1) /* FIXME */
401 #endif
402 
403 extern void paging_init(void);
404 
405 static inline void pgtable_cache_init(void)
406 {
407 	/* No page table caches to initialize */
408 }
409 
410 #endif /* CONFIG_MMU */
411 
412 #define VMALLOC_SIZE     (KERN_VIRT_SIZE >> 1)
413 #define VMALLOC_END      (PAGE_OFFSET - 1)
414 #define VMALLOC_START    (PAGE_OFFSET - VMALLOC_SIZE)
415 
416 /*
417  * Task size is 0x40000000000 for RV64 or 0xb800000 for RV32.
418  * Note that PGDIR_SIZE must evenly divide TASK_SIZE.
419  */
420 #ifdef CONFIG_64BIT
421 #define TASK_SIZE (PGDIR_SIZE * PTRS_PER_PGD / 2)
422 #else
423 #define TASK_SIZE VMALLOC_START
424 #endif
425 
426 #include <asm-generic/pgtable.h>
427 
428 #endif /* !__ASSEMBLY__ */
429 
430 #endif /* _ASM_RISCV_PGTABLE_H */
431