xref: /openbmc/linux/arch/riscv/include/asm/pgtable.h (revision 002dff36)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012 Regents of the University of California
4  */
5 
6 #ifndef _ASM_RISCV_PGTABLE_H
7 #define _ASM_RISCV_PGTABLE_H
8 
9 #include <linux/mmzone.h>
10 #include <linux/sizes.h>
11 
12 #include <asm/pgtable-bits.h>
13 
14 #ifndef __ASSEMBLY__
15 
16 /* Page Upper Directory not used in RISC-V */
17 #include <asm-generic/pgtable-nopud.h>
18 #include <asm/page.h>
19 #include <asm/tlbflush.h>
20 #include <linux/mm_types.h>
21 
22 #ifdef CONFIG_MMU
23 
24 #define VMALLOC_SIZE     (KERN_VIRT_SIZE >> 1)
25 #define VMALLOC_END      (PAGE_OFFSET - 1)
26 #define VMALLOC_START    (PAGE_OFFSET - VMALLOC_SIZE)
27 
28 #define BPF_JIT_REGION_SIZE	(SZ_128M)
29 #define BPF_JIT_REGION_START	(PAGE_OFFSET - BPF_JIT_REGION_SIZE)
30 #define BPF_JIT_REGION_END	(VMALLOC_END)
31 
32 /*
33  * Roughly size the vmemmap space to be large enough to fit enough
34  * struct pages to map half the virtual address space. Then
35  * position vmemmap directly below the VMALLOC region.
36  */
37 #define VMEMMAP_SHIFT \
38 	(CONFIG_VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT)
39 #define VMEMMAP_SIZE	BIT(VMEMMAP_SHIFT)
40 #define VMEMMAP_END	(VMALLOC_START - 1)
41 #define VMEMMAP_START	(VMALLOC_START - VMEMMAP_SIZE)
42 
43 /*
44  * Define vmemmap for pfn_to_page & page_to_pfn calls. Needed if kernel
45  * is configured with CONFIG_SPARSEMEM_VMEMMAP enabled.
46  */
47 #define vmemmap		((struct page *)VMEMMAP_START)
48 
49 #define PCI_IO_SIZE      SZ_16M
50 #define PCI_IO_END       VMEMMAP_START
51 #define PCI_IO_START     (PCI_IO_END - PCI_IO_SIZE)
52 
53 #define FIXADDR_TOP      PCI_IO_START
54 #ifdef CONFIG_64BIT
55 #define FIXADDR_SIZE     PMD_SIZE
56 #else
57 #define FIXADDR_SIZE     PGDIR_SIZE
58 #endif
59 #define FIXADDR_START    (FIXADDR_TOP - FIXADDR_SIZE)
60 
61 #endif
62 
63 #ifdef CONFIG_64BIT
64 #include <asm/pgtable-64.h>
65 #else
66 #include <asm/pgtable-32.h>
67 #endif /* CONFIG_64BIT */
68 
69 #ifdef CONFIG_MMU
70 /* Number of entries in the page global directory */
71 #define PTRS_PER_PGD    (PAGE_SIZE / sizeof(pgd_t))
72 /* Number of entries in the page table */
73 #define PTRS_PER_PTE    (PAGE_SIZE / sizeof(pte_t))
74 
75 /* Number of PGD entries that a user-mode program can use */
76 #define USER_PTRS_PER_PGD   (TASK_SIZE / PGDIR_SIZE)
77 
78 /* Page protection bits */
79 #define _PAGE_BASE	(_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_USER)
80 
81 #define PAGE_NONE		__pgprot(_PAGE_PROT_NONE)
82 #define PAGE_READ		__pgprot(_PAGE_BASE | _PAGE_READ)
83 #define PAGE_WRITE		__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_WRITE)
84 #define PAGE_EXEC		__pgprot(_PAGE_BASE | _PAGE_EXEC)
85 #define PAGE_READ_EXEC		__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
86 #define PAGE_WRITE_EXEC		__pgprot(_PAGE_BASE | _PAGE_READ |	\
87 					 _PAGE_EXEC | _PAGE_WRITE)
88 
89 #define PAGE_COPY		PAGE_READ
90 #define PAGE_COPY_EXEC		PAGE_EXEC
91 #define PAGE_COPY_READ_EXEC	PAGE_READ_EXEC
92 #define PAGE_SHARED		PAGE_WRITE
93 #define PAGE_SHARED_EXEC	PAGE_WRITE_EXEC
94 
95 #define _PAGE_KERNEL		(_PAGE_READ \
96 				| _PAGE_WRITE \
97 				| _PAGE_PRESENT \
98 				| _PAGE_ACCESSED \
99 				| _PAGE_DIRTY)
100 
101 #define PAGE_KERNEL		__pgprot(_PAGE_KERNEL)
102 #define PAGE_KERNEL_EXEC	__pgprot(_PAGE_KERNEL | _PAGE_EXEC)
103 
104 #define PAGE_TABLE		__pgprot(_PAGE_TABLE)
105 
106 /*
107  * The RISC-V ISA doesn't yet specify how to query or modify PMAs, so we can't
108  * change the properties of memory regions.
109  */
110 #define _PAGE_IOREMAP _PAGE_KERNEL
111 
112 extern pgd_t swapper_pg_dir[];
113 
114 /* MAP_PRIVATE permissions: xwr (copy-on-write) */
115 #define __P000	PAGE_NONE
116 #define __P001	PAGE_READ
117 #define __P010	PAGE_COPY
118 #define __P011	PAGE_COPY
119 #define __P100	PAGE_EXEC
120 #define __P101	PAGE_READ_EXEC
121 #define __P110	PAGE_COPY_EXEC
122 #define __P111	PAGE_COPY_READ_EXEC
123 
124 /* MAP_SHARED permissions: xwr */
125 #define __S000	PAGE_NONE
126 #define __S001	PAGE_READ
127 #define __S010	PAGE_SHARED
128 #define __S011	PAGE_SHARED
129 #define __S100	PAGE_EXEC
130 #define __S101	PAGE_READ_EXEC
131 #define __S110	PAGE_SHARED_EXEC
132 #define __S111	PAGE_SHARED_EXEC
133 
134 static inline int pmd_present(pmd_t pmd)
135 {
136 	return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
137 }
138 
139 static inline int pmd_none(pmd_t pmd)
140 {
141 	return (pmd_val(pmd) == 0);
142 }
143 
144 static inline int pmd_bad(pmd_t pmd)
145 {
146 	return !pmd_present(pmd);
147 }
148 
149 #define pmd_leaf	pmd_leaf
150 static inline int pmd_leaf(pmd_t pmd)
151 {
152 	return pmd_present(pmd) &&
153 	       (pmd_val(pmd) & (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC));
154 }
155 
156 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
157 {
158 	*pmdp = pmd;
159 }
160 
161 static inline void pmd_clear(pmd_t *pmdp)
162 {
163 	set_pmd(pmdp, __pmd(0));
164 }
165 
166 static inline pgd_t pfn_pgd(unsigned long pfn, pgprot_t prot)
167 {
168 	return __pgd((pfn << _PAGE_PFN_SHIFT) | pgprot_val(prot));
169 }
170 
171 static inline unsigned long _pgd_pfn(pgd_t pgd)
172 {
173 	return pgd_val(pgd) >> _PAGE_PFN_SHIFT;
174 }
175 
176 static inline struct page *pmd_page(pmd_t pmd)
177 {
178 	return pfn_to_page(pmd_val(pmd) >> _PAGE_PFN_SHIFT);
179 }
180 
181 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
182 {
183 	return (unsigned long)pfn_to_virt(pmd_val(pmd) >> _PAGE_PFN_SHIFT);
184 }
185 
186 /* Yields the page frame number (PFN) of a page table entry */
187 static inline unsigned long pte_pfn(pte_t pte)
188 {
189 	return (pte_val(pte) >> _PAGE_PFN_SHIFT);
190 }
191 
192 #define pte_page(x)     pfn_to_page(pte_pfn(x))
193 
194 /* Constructs a page table entry */
195 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot)
196 {
197 	return __pte((pfn << _PAGE_PFN_SHIFT) | pgprot_val(prot));
198 }
199 
200 #define mk_pte(page, prot)       pfn_pte(page_to_pfn(page), prot)
201 
202 static inline int pte_present(pte_t pte)
203 {
204 	return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
205 }
206 
207 static inline int pte_none(pte_t pte)
208 {
209 	return (pte_val(pte) == 0);
210 }
211 
212 static inline int pte_write(pte_t pte)
213 {
214 	return pte_val(pte) & _PAGE_WRITE;
215 }
216 
217 static inline int pte_exec(pte_t pte)
218 {
219 	return pte_val(pte) & _PAGE_EXEC;
220 }
221 
222 static inline int pte_huge(pte_t pte)
223 {
224 	return pte_present(pte)
225 		&& (pte_val(pte) & (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC));
226 }
227 
228 static inline int pte_dirty(pte_t pte)
229 {
230 	return pte_val(pte) & _PAGE_DIRTY;
231 }
232 
233 static inline int pte_young(pte_t pte)
234 {
235 	return pte_val(pte) & _PAGE_ACCESSED;
236 }
237 
238 static inline int pte_special(pte_t pte)
239 {
240 	return pte_val(pte) & _PAGE_SPECIAL;
241 }
242 
243 /* static inline pte_t pte_rdprotect(pte_t pte) */
244 
245 static inline pte_t pte_wrprotect(pte_t pte)
246 {
247 	return __pte(pte_val(pte) & ~(_PAGE_WRITE));
248 }
249 
250 /* static inline pte_t pte_mkread(pte_t pte) */
251 
252 static inline pte_t pte_mkwrite(pte_t pte)
253 {
254 	return __pte(pte_val(pte) | _PAGE_WRITE);
255 }
256 
257 /* static inline pte_t pte_mkexec(pte_t pte) */
258 
259 static inline pte_t pte_mkdirty(pte_t pte)
260 {
261 	return __pte(pte_val(pte) | _PAGE_DIRTY);
262 }
263 
264 static inline pte_t pte_mkclean(pte_t pte)
265 {
266 	return __pte(pte_val(pte) & ~(_PAGE_DIRTY));
267 }
268 
269 static inline pte_t pte_mkyoung(pte_t pte)
270 {
271 	return __pte(pte_val(pte) | _PAGE_ACCESSED);
272 }
273 
274 static inline pte_t pte_mkold(pte_t pte)
275 {
276 	return __pte(pte_val(pte) & ~(_PAGE_ACCESSED));
277 }
278 
279 static inline pte_t pte_mkspecial(pte_t pte)
280 {
281 	return __pte(pte_val(pte) | _PAGE_SPECIAL);
282 }
283 
284 static inline pte_t pte_mkhuge(pte_t pte)
285 {
286 	return pte;
287 }
288 
289 /* Modify page protection bits */
290 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
291 {
292 	return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
293 }
294 
295 #define pgd_ERROR(e) \
296 	pr_err("%s:%d: bad pgd " PTE_FMT ".\n", __FILE__, __LINE__, pgd_val(e))
297 
298 
299 /* Commit new configuration to MMU hardware */
300 static inline void update_mmu_cache(struct vm_area_struct *vma,
301 	unsigned long address, pte_t *ptep)
302 {
303 	/*
304 	 * The kernel assumes that TLBs don't cache invalid entries, but
305 	 * in RISC-V, SFENCE.VMA specifies an ordering constraint, not a
306 	 * cache flush; it is necessary even after writing invalid entries.
307 	 * Relying on flush_tlb_fix_spurious_fault would suffice, but
308 	 * the extra traps reduce performance.  So, eagerly SFENCE.VMA.
309 	 */
310 	local_flush_tlb_page(address);
311 }
312 
313 #define __HAVE_ARCH_PTE_SAME
314 static inline int pte_same(pte_t pte_a, pte_t pte_b)
315 {
316 	return pte_val(pte_a) == pte_val(pte_b);
317 }
318 
319 /*
320  * Certain architectures need to do special things when PTEs within
321  * a page table are directly modified.  Thus, the following hook is
322  * made available.
323  */
324 static inline void set_pte(pte_t *ptep, pte_t pteval)
325 {
326 	*ptep = pteval;
327 }
328 
329 void flush_icache_pte(pte_t pte);
330 
331 static inline void set_pte_at(struct mm_struct *mm,
332 	unsigned long addr, pte_t *ptep, pte_t pteval)
333 {
334 	if (pte_present(pteval) && pte_exec(pteval))
335 		flush_icache_pte(pteval);
336 
337 	set_pte(ptep, pteval);
338 }
339 
340 static inline void pte_clear(struct mm_struct *mm,
341 	unsigned long addr, pte_t *ptep)
342 {
343 	set_pte_at(mm, addr, ptep, __pte(0));
344 }
345 
346 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
347 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
348 					unsigned long address, pte_t *ptep,
349 					pte_t entry, int dirty)
350 {
351 	if (!pte_same(*ptep, entry))
352 		set_pte_at(vma->vm_mm, address, ptep, entry);
353 	/*
354 	 * update_mmu_cache will unconditionally execute, handling both
355 	 * the case that the PTE changed and the spurious fault case.
356 	 */
357 	return true;
358 }
359 
360 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
361 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
362 				       unsigned long address, pte_t *ptep)
363 {
364 	return __pte(atomic_long_xchg((atomic_long_t *)ptep, 0));
365 }
366 
367 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
368 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
369 					    unsigned long address,
370 					    pte_t *ptep)
371 {
372 	if (!pte_young(*ptep))
373 		return 0;
374 	return test_and_clear_bit(_PAGE_ACCESSED_OFFSET, &pte_val(*ptep));
375 }
376 
377 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
378 static inline void ptep_set_wrprotect(struct mm_struct *mm,
379 				      unsigned long address, pte_t *ptep)
380 {
381 	atomic_long_and(~(unsigned long)_PAGE_WRITE, (atomic_long_t *)ptep);
382 }
383 
384 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
385 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
386 					 unsigned long address, pte_t *ptep)
387 {
388 	/*
389 	 * This comment is borrowed from x86, but applies equally to RISC-V:
390 	 *
391 	 * Clearing the accessed bit without a TLB flush
392 	 * doesn't cause data corruption. [ It could cause incorrect
393 	 * page aging and the (mistaken) reclaim of hot pages, but the
394 	 * chance of that should be relatively low. ]
395 	 *
396 	 * So as a performance optimization don't flush the TLB when
397 	 * clearing the accessed bit, it will eventually be flushed by
398 	 * a context switch or a VM operation anyway. [ In the rare
399 	 * event of it not getting flushed for a long time the delay
400 	 * shouldn't really matter because there's no real memory
401 	 * pressure for swapout to react to. ]
402 	 */
403 	return ptep_test_and_clear_young(vma, address, ptep);
404 }
405 
406 /*
407  * Encode and decode a swap entry
408  *
409  * Format of swap PTE:
410  *	bit            0:	_PAGE_PRESENT (zero)
411  *	bit            1:	_PAGE_PROT_NONE (zero)
412  *	bits      2 to 6:	swap type
413  *	bits 7 to XLEN-1:	swap offset
414  */
415 #define __SWP_TYPE_SHIFT	2
416 #define __SWP_TYPE_BITS		5
417 #define __SWP_TYPE_MASK		((1UL << __SWP_TYPE_BITS) - 1)
418 #define __SWP_OFFSET_SHIFT	(__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
419 
420 #define MAX_SWAPFILES_CHECK()	\
421 	BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
422 
423 #define __swp_type(x)	(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
424 #define __swp_offset(x)	((x).val >> __SWP_OFFSET_SHIFT)
425 #define __swp_entry(type, offset) ((swp_entry_t) \
426 	{ ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
427 
428 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
429 #define __swp_entry_to_pte(x)	((pte_t) { (x).val })
430 
431 /*
432  * In the RV64 Linux scheme, we give the user half of the virtual-address space
433  * and give the kernel the other (upper) half.
434  */
435 #ifdef CONFIG_64BIT
436 #define KERN_VIRT_START	(-(BIT(CONFIG_VA_BITS)) + TASK_SIZE)
437 #else
438 #define KERN_VIRT_START	FIXADDR_START
439 #endif
440 
441 /*
442  * Task size is 0x4000000000 for RV64 or 0x9fc00000 for RV32.
443  * Note that PGDIR_SIZE must evenly divide TASK_SIZE.
444  */
445 #ifdef CONFIG_64BIT
446 #define TASK_SIZE (PGDIR_SIZE * PTRS_PER_PGD / 2)
447 #else
448 #define TASK_SIZE FIXADDR_START
449 #endif
450 
451 #else /* CONFIG_MMU */
452 
453 #define PAGE_SHARED		__pgprot(0)
454 #define PAGE_KERNEL		__pgprot(0)
455 #define swapper_pg_dir		NULL
456 #define TASK_SIZE		0xffffffffUL
457 #define VMALLOC_START		0
458 #define VMALLOC_END		TASK_SIZE
459 
460 static inline void __kernel_map_pages(struct page *page, int numpages, int enable) {}
461 
462 #endif /* !CONFIG_MMU */
463 
464 #define kern_addr_valid(addr)   (1) /* FIXME */
465 
466 extern void *dtb_early_va;
467 void setup_bootmem(void);
468 void paging_init(void);
469 
470 #define FIRST_USER_ADDRESS  0
471 
472 /*
473  * ZERO_PAGE is a global shared page that is always zero,
474  * used for zero-mapped memory areas, etc.
475  */
476 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
477 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
478 
479 #endif /* !__ASSEMBLY__ */
480 
481 #endif /* _ASM_RISCV_PGTABLE_H */
482