xref: /openbmc/linux/arch/riscv/include/asm/pgtable.h (revision d32fd6bb9f2bc8178cdd65ebec1ad670a8bfa241)
1  /* SPDX-License-Identifier: GPL-2.0-only */
2  /*
3   * Copyright (C) 2012 Regents of the University of California
4   */
5  
6  #ifndef _ASM_RISCV_PGTABLE_H
7  #define _ASM_RISCV_PGTABLE_H
8  
9  #include <linux/mmzone.h>
10  #include <linux/sizes.h>
11  
12  #include <asm/pgtable-bits.h>
13  
14  #ifndef CONFIG_MMU
15  #define KERNEL_LINK_ADDR	PAGE_OFFSET
16  #define KERN_VIRT_SIZE		(UL(-1))
17  #else
18  
19  #define ADDRESS_SPACE_END	(UL(-1))
20  
21  #ifdef CONFIG_64BIT
22  /* Leave 2GB for kernel and BPF at the end of the address space */
23  #define KERNEL_LINK_ADDR	(ADDRESS_SPACE_END - SZ_2G + 1)
24  #else
25  #define KERNEL_LINK_ADDR	PAGE_OFFSET
26  #endif
27  
28  /* Number of entries in the page global directory */
29  #define PTRS_PER_PGD    (PAGE_SIZE / sizeof(pgd_t))
30  /* Number of entries in the page table */
31  #define PTRS_PER_PTE    (PAGE_SIZE / sizeof(pte_t))
32  
33  /*
34   * Half of the kernel address space (1/4 of the entries of the page global
35   * directory) is for the direct mapping.
36   */
37  #define KERN_VIRT_SIZE          ((PTRS_PER_PGD / 2 * PGDIR_SIZE) / 2)
38  
39  #define VMALLOC_SIZE     (KERN_VIRT_SIZE >> 1)
40  #define VMALLOC_END      PAGE_OFFSET
41  #define VMALLOC_START    (PAGE_OFFSET - VMALLOC_SIZE)
42  
43  #define BPF_JIT_REGION_SIZE	(SZ_128M)
44  #ifdef CONFIG_64BIT
45  #define BPF_JIT_REGION_START	(BPF_JIT_REGION_END - BPF_JIT_REGION_SIZE)
46  #define BPF_JIT_REGION_END	(MODULES_END)
47  #else
48  #define BPF_JIT_REGION_START	(PAGE_OFFSET - BPF_JIT_REGION_SIZE)
49  #define BPF_JIT_REGION_END	(VMALLOC_END)
50  #endif
51  
52  /* Modules always live before the kernel */
53  #ifdef CONFIG_64BIT
54  /* This is used to define the end of the KASAN shadow region */
55  #define MODULES_LOWEST_VADDR	(KERNEL_LINK_ADDR - SZ_2G)
56  #define MODULES_VADDR		(PFN_ALIGN((unsigned long)&_end) - SZ_2G)
57  #define MODULES_END		(PFN_ALIGN((unsigned long)&_start))
58  #endif
59  
60  /*
61   * Roughly size the vmemmap space to be large enough to fit enough
62   * struct pages to map half the virtual address space. Then
63   * position vmemmap directly below the VMALLOC region.
64   */
65  #define VA_BITS_SV32 32
66  #ifdef CONFIG_64BIT
67  #define VA_BITS_SV39 39
68  #define VA_BITS_SV48 48
69  #define VA_BITS_SV57 57
70  
71  #define VA_BITS		(pgtable_l5_enabled ? \
72  				VA_BITS_SV57 : (pgtable_l4_enabled ? VA_BITS_SV48 : VA_BITS_SV39))
73  #else
74  #define VA_BITS		VA_BITS_SV32
75  #endif
76  
77  #define VMEMMAP_SHIFT \
78  	(VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT)
79  #define VMEMMAP_SIZE	BIT(VMEMMAP_SHIFT)
80  #define VMEMMAP_END	VMALLOC_START
81  #define VMEMMAP_START	(VMALLOC_START - VMEMMAP_SIZE)
82  
83  /*
84   * Define vmemmap for pfn_to_page & page_to_pfn calls. Needed if kernel
85   * is configured with CONFIG_SPARSEMEM_VMEMMAP enabled.
86   */
87  #define vmemmap		((struct page *)VMEMMAP_START - vmemmap_start_pfn)
88  
89  #define PCI_IO_SIZE      SZ_16M
90  #define PCI_IO_END       VMEMMAP_START
91  #define PCI_IO_START     (PCI_IO_END - PCI_IO_SIZE)
92  
93  #define FIXADDR_TOP      PCI_IO_START
94  #ifdef CONFIG_64BIT
95  #define MAX_FDT_SIZE	 PMD_SIZE
96  #define FIX_FDT_SIZE	 (MAX_FDT_SIZE + SZ_2M)
97  #define FIXADDR_SIZE     (PMD_SIZE + FIX_FDT_SIZE)
98  #else
99  #define MAX_FDT_SIZE	 PGDIR_SIZE
100  #define FIX_FDT_SIZE	 MAX_FDT_SIZE
101  #define FIXADDR_SIZE     (PGDIR_SIZE + FIX_FDT_SIZE)
102  #endif
103  #define FIXADDR_START    (FIXADDR_TOP - FIXADDR_SIZE)
104  
105  #endif
106  
107  #ifdef CONFIG_XIP_KERNEL
108  #define XIP_OFFSET		SZ_32M
109  #define XIP_OFFSET_MASK		(SZ_32M - 1)
110  #else
111  #define XIP_OFFSET		0
112  #endif
113  
114  #ifndef __ASSEMBLY__
115  
116  #include <asm/page.h>
117  #include <asm/tlbflush.h>
118  #include <linux/mm_types.h>
119  #include <asm/compat.h>
120  
121  #define __page_val_to_pfn(_val)  (((_val) & _PAGE_PFN_MASK) >> _PAGE_PFN_SHIFT)
122  
123  #ifdef CONFIG_64BIT
124  #include <asm/pgtable-64.h>
125  
126  #define VA_USER_SV39 (UL(1) << (VA_BITS_SV39 - 1))
127  #define VA_USER_SV48 (UL(1) << (VA_BITS_SV48 - 1))
128  #define VA_USER_SV57 (UL(1) << (VA_BITS_SV57 - 1))
129  
130  #ifdef CONFIG_COMPAT
131  #define MMAP_VA_BITS_64 ((VA_BITS >= VA_BITS_SV48) ? VA_BITS_SV48 : VA_BITS)
132  #define MMAP_MIN_VA_BITS_64 (VA_BITS_SV39)
133  #define MMAP_VA_BITS (is_compat_task() ? VA_BITS_SV32 : MMAP_VA_BITS_64)
134  #define MMAP_MIN_VA_BITS (is_compat_task() ? VA_BITS_SV32 : MMAP_MIN_VA_BITS_64)
135  #else
136  #define MMAP_VA_BITS ((VA_BITS >= VA_BITS_SV48) ? VA_BITS_SV48 : VA_BITS)
137  #define MMAP_MIN_VA_BITS (VA_BITS_SV39)
138  #endif /* CONFIG_COMPAT */
139  
140  #else
141  #include <asm/pgtable-32.h>
142  #endif /* CONFIG_64BIT */
143  
144  #include <linux/page_table_check.h>
145  
146  #ifdef CONFIG_XIP_KERNEL
147  #define XIP_FIXUP(addr) ({							\
148  	uintptr_t __a = (uintptr_t)(addr);					\
149  	(__a >= CONFIG_XIP_PHYS_ADDR && \
150  	 __a < CONFIG_XIP_PHYS_ADDR + XIP_OFFSET * 2) ?	\
151  		__a - CONFIG_XIP_PHYS_ADDR + CONFIG_PHYS_RAM_BASE - XIP_OFFSET :\
152  		__a;								\
153  	})
154  #else
155  #define XIP_FIXUP(addr)		(addr)
156  #endif /* CONFIG_XIP_KERNEL */
157  
158  struct pt_alloc_ops {
159  	pte_t *(*get_pte_virt)(phys_addr_t pa);
160  	phys_addr_t (*alloc_pte)(uintptr_t va);
161  #ifndef __PAGETABLE_PMD_FOLDED
162  	pmd_t *(*get_pmd_virt)(phys_addr_t pa);
163  	phys_addr_t (*alloc_pmd)(uintptr_t va);
164  	pud_t *(*get_pud_virt)(phys_addr_t pa);
165  	phys_addr_t (*alloc_pud)(uintptr_t va);
166  	p4d_t *(*get_p4d_virt)(phys_addr_t pa);
167  	phys_addr_t (*alloc_p4d)(uintptr_t va);
168  #endif
169  };
170  
171  extern struct pt_alloc_ops pt_ops __initdata;
172  
173  #ifdef CONFIG_MMU
174  /* Number of PGD entries that a user-mode program can use */
175  #define USER_PTRS_PER_PGD   (TASK_SIZE / PGDIR_SIZE)
176  
177  /* Page protection bits */
178  #define _PAGE_BASE	(_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_USER)
179  
180  #define PAGE_NONE		__pgprot(_PAGE_PROT_NONE | _PAGE_READ)
181  #define PAGE_READ		__pgprot(_PAGE_BASE | _PAGE_READ)
182  #define PAGE_WRITE		__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_WRITE)
183  #define PAGE_EXEC		__pgprot(_PAGE_BASE | _PAGE_EXEC)
184  #define PAGE_READ_EXEC		__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
185  #define PAGE_WRITE_EXEC		__pgprot(_PAGE_BASE | _PAGE_READ |	\
186  					 _PAGE_EXEC | _PAGE_WRITE)
187  
188  #define PAGE_COPY		PAGE_READ
189  #define PAGE_COPY_EXEC		PAGE_READ_EXEC
190  #define PAGE_SHARED		PAGE_WRITE
191  #define PAGE_SHARED_EXEC	PAGE_WRITE_EXEC
192  
193  #define _PAGE_KERNEL		(_PAGE_READ \
194  				| _PAGE_WRITE \
195  				| _PAGE_PRESENT \
196  				| _PAGE_ACCESSED \
197  				| _PAGE_DIRTY \
198  				| _PAGE_GLOBAL)
199  
200  #define PAGE_KERNEL		__pgprot(_PAGE_KERNEL)
201  #define PAGE_KERNEL_READ	__pgprot(_PAGE_KERNEL & ~_PAGE_WRITE)
202  #define PAGE_KERNEL_EXEC	__pgprot(_PAGE_KERNEL | _PAGE_EXEC)
203  #define PAGE_KERNEL_READ_EXEC	__pgprot((_PAGE_KERNEL & ~_PAGE_WRITE) \
204  					 | _PAGE_EXEC)
205  
206  #define PAGE_TABLE		__pgprot(_PAGE_TABLE)
207  
208  #define _PAGE_IOREMAP	((_PAGE_KERNEL & ~_PAGE_MTMASK) | _PAGE_IO)
209  #define PAGE_KERNEL_IO		__pgprot(_PAGE_IOREMAP)
210  
211  extern pgd_t swapper_pg_dir[];
212  extern pgd_t trampoline_pg_dir[];
213  extern pgd_t early_pg_dir[];
214  
215  #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmd_present(pmd_t pmd)216  static inline int pmd_present(pmd_t pmd)
217  {
218  	/*
219  	 * Checking for _PAGE_LEAF is needed too because:
220  	 * When splitting a THP, split_huge_page() will temporarily clear
221  	 * the present bit, in this situation, pmd_present() and
222  	 * pmd_trans_huge() still needs to return true.
223  	 */
224  	return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE | _PAGE_LEAF));
225  }
226  #else
pmd_present(pmd_t pmd)227  static inline int pmd_present(pmd_t pmd)
228  {
229  	return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
230  }
231  #endif
232  
pmd_none(pmd_t pmd)233  static inline int pmd_none(pmd_t pmd)
234  {
235  	return (pmd_val(pmd) == 0);
236  }
237  
pmd_bad(pmd_t pmd)238  static inline int pmd_bad(pmd_t pmd)
239  {
240  	return !pmd_present(pmd) || (pmd_val(pmd) & _PAGE_LEAF);
241  }
242  
243  #define pmd_leaf	pmd_leaf
pmd_leaf(pmd_t pmd)244  static inline int pmd_leaf(pmd_t pmd)
245  {
246  	return pmd_present(pmd) && (pmd_val(pmd) & _PAGE_LEAF);
247  }
248  
set_pmd(pmd_t * pmdp,pmd_t pmd)249  static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
250  {
251  	WRITE_ONCE(*pmdp, pmd);
252  }
253  
pmd_clear(pmd_t * pmdp)254  static inline void pmd_clear(pmd_t *pmdp)
255  {
256  	set_pmd(pmdp, __pmd(0));
257  }
258  
pfn_pgd(unsigned long pfn,pgprot_t prot)259  static inline pgd_t pfn_pgd(unsigned long pfn, pgprot_t prot)
260  {
261  	unsigned long prot_val = pgprot_val(prot);
262  
263  	ALT_THEAD_PMA(prot_val);
264  
265  	return __pgd((pfn << _PAGE_PFN_SHIFT) | prot_val);
266  }
267  
_pgd_pfn(pgd_t pgd)268  static inline unsigned long _pgd_pfn(pgd_t pgd)
269  {
270  	return __page_val_to_pfn(pgd_val(pgd));
271  }
272  
pmd_page(pmd_t pmd)273  static inline struct page *pmd_page(pmd_t pmd)
274  {
275  	return pfn_to_page(__page_val_to_pfn(pmd_val(pmd)));
276  }
277  
pmd_page_vaddr(pmd_t pmd)278  static inline unsigned long pmd_page_vaddr(pmd_t pmd)
279  {
280  	return (unsigned long)pfn_to_virt(__page_val_to_pfn(pmd_val(pmd)));
281  }
282  
pmd_pte(pmd_t pmd)283  static inline pte_t pmd_pte(pmd_t pmd)
284  {
285  	return __pte(pmd_val(pmd));
286  }
287  
pud_pte(pud_t pud)288  static inline pte_t pud_pte(pud_t pud)
289  {
290  	return __pte(pud_val(pud));
291  }
292  
293  #ifdef CONFIG_RISCV_ISA_SVNAPOT
294  
has_svnapot(void)295  static __always_inline bool has_svnapot(void)
296  {
297  	return riscv_has_extension_likely(RISCV_ISA_EXT_SVNAPOT);
298  }
299  
pte_napot(pte_t pte)300  static inline unsigned long pte_napot(pte_t pte)
301  {
302  	return pte_val(pte) & _PAGE_NAPOT;
303  }
304  
pte_mknapot(pte_t pte,unsigned int order)305  static inline pte_t pte_mknapot(pte_t pte, unsigned int order)
306  {
307  	int pos = order - 1 + _PAGE_PFN_SHIFT;
308  	unsigned long napot_bit = BIT(pos);
309  	unsigned long napot_mask = ~GENMASK(pos, _PAGE_PFN_SHIFT);
310  
311  	return __pte((pte_val(pte) & napot_mask) | napot_bit | _PAGE_NAPOT);
312  }
313  
314  #else
315  
has_svnapot(void)316  static __always_inline bool has_svnapot(void) { return false; }
317  
pte_napot(pte_t pte)318  static inline unsigned long pte_napot(pte_t pte)
319  {
320  	return 0;
321  }
322  
323  #endif /* CONFIG_RISCV_ISA_SVNAPOT */
324  
325  /* Yields the page frame number (PFN) of a page table entry */
pte_pfn(pte_t pte)326  static inline unsigned long pte_pfn(pte_t pte)
327  {
328  	unsigned long res  = __page_val_to_pfn(pte_val(pte));
329  
330  	if (has_svnapot() && pte_napot(pte))
331  		res = res & (res - 1UL);
332  
333  	return res;
334  }
335  
336  #define pte_page(x)     pfn_to_page(pte_pfn(x))
337  
338  /* Constructs a page table entry */
pfn_pte(unsigned long pfn,pgprot_t prot)339  static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot)
340  {
341  	unsigned long prot_val = pgprot_val(prot);
342  
343  	ALT_THEAD_PMA(prot_val);
344  
345  	return __pte((pfn << _PAGE_PFN_SHIFT) | prot_val);
346  }
347  
348  #define mk_pte(page, prot)       pfn_pte(page_to_pfn(page), prot)
349  
pte_present(pte_t pte)350  static inline int pte_present(pte_t pte)
351  {
352  	return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
353  }
354  
pte_none(pte_t pte)355  static inline int pte_none(pte_t pte)
356  {
357  	return (pte_val(pte) == 0);
358  }
359  
pte_write(pte_t pte)360  static inline int pte_write(pte_t pte)
361  {
362  	return pte_val(pte) & _PAGE_WRITE;
363  }
364  
pte_exec(pte_t pte)365  static inline int pte_exec(pte_t pte)
366  {
367  	return pte_val(pte) & _PAGE_EXEC;
368  }
369  
pte_user(pte_t pte)370  static inline int pte_user(pte_t pte)
371  {
372  	return pte_val(pte) & _PAGE_USER;
373  }
374  
pte_huge(pte_t pte)375  static inline int pte_huge(pte_t pte)
376  {
377  	return pte_present(pte) && (pte_val(pte) & _PAGE_LEAF);
378  }
379  
pte_dirty(pte_t pte)380  static inline int pte_dirty(pte_t pte)
381  {
382  	return pte_val(pte) & _PAGE_DIRTY;
383  }
384  
pte_young(pte_t pte)385  static inline int pte_young(pte_t pte)
386  {
387  	return pte_val(pte) & _PAGE_ACCESSED;
388  }
389  
pte_special(pte_t pte)390  static inline int pte_special(pte_t pte)
391  {
392  	return pte_val(pte) & _PAGE_SPECIAL;
393  }
394  
395  /* static inline pte_t pte_rdprotect(pte_t pte) */
396  
pte_wrprotect(pte_t pte)397  static inline pte_t pte_wrprotect(pte_t pte)
398  {
399  	return __pte(pte_val(pte) & ~(_PAGE_WRITE));
400  }
401  
402  /* static inline pte_t pte_mkread(pte_t pte) */
403  
pte_mkwrite_novma(pte_t pte)404  static inline pte_t pte_mkwrite_novma(pte_t pte)
405  {
406  	return __pte(pte_val(pte) | _PAGE_WRITE);
407  }
408  
409  /* static inline pte_t pte_mkexec(pte_t pte) */
410  
pte_mkdirty(pte_t pte)411  static inline pte_t pte_mkdirty(pte_t pte)
412  {
413  	return __pte(pte_val(pte) | _PAGE_DIRTY);
414  }
415  
pte_mkclean(pte_t pte)416  static inline pte_t pte_mkclean(pte_t pte)
417  {
418  	return __pte(pte_val(pte) & ~(_PAGE_DIRTY));
419  }
420  
pte_mkyoung(pte_t pte)421  static inline pte_t pte_mkyoung(pte_t pte)
422  {
423  	return __pte(pte_val(pte) | _PAGE_ACCESSED);
424  }
425  
pte_mkold(pte_t pte)426  static inline pte_t pte_mkold(pte_t pte)
427  {
428  	return __pte(pte_val(pte) & ~(_PAGE_ACCESSED));
429  }
430  
pte_mkspecial(pte_t pte)431  static inline pte_t pte_mkspecial(pte_t pte)
432  {
433  	return __pte(pte_val(pte) | _PAGE_SPECIAL);
434  }
435  
pte_mkhuge(pte_t pte)436  static inline pte_t pte_mkhuge(pte_t pte)
437  {
438  	return pte;
439  }
440  
441  #ifdef CONFIG_RISCV_ISA_SVNAPOT
442  #define pte_leaf_size(pte)	(pte_napot(pte) ?				\
443  					napot_cont_size(napot_cont_order(pte)) :\
444  					PAGE_SIZE)
445  #endif
446  
447  #ifdef CONFIG_NUMA_BALANCING
448  /*
449   * See the comment in include/asm-generic/pgtable.h
450   */
pte_protnone(pte_t pte)451  static inline int pte_protnone(pte_t pte)
452  {
453  	return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE)) == _PAGE_PROT_NONE;
454  }
455  
pmd_protnone(pmd_t pmd)456  static inline int pmd_protnone(pmd_t pmd)
457  {
458  	return pte_protnone(pmd_pte(pmd));
459  }
460  #endif
461  
462  /* Modify page protection bits */
pte_modify(pte_t pte,pgprot_t newprot)463  static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
464  {
465  	unsigned long newprot_val = pgprot_val(newprot);
466  
467  	ALT_THEAD_PMA(newprot_val);
468  
469  	return __pte((pte_val(pte) & _PAGE_CHG_MASK) | newprot_val);
470  }
471  
472  #define pgd_ERROR(e) \
473  	pr_err("%s:%d: bad pgd " PTE_FMT ".\n", __FILE__, __LINE__, pgd_val(e))
474  
475  
476  /* Commit new configuration to MMU hardware */
update_mmu_cache_range(struct vm_fault * vmf,struct vm_area_struct * vma,unsigned long address,pte_t * ptep,unsigned int nr)477  static inline void update_mmu_cache_range(struct vm_fault *vmf,
478  		struct vm_area_struct *vma, unsigned long address,
479  		pte_t *ptep, unsigned int nr)
480  {
481  	/*
482  	 * The kernel assumes that TLBs don't cache invalid entries, but
483  	 * in RISC-V, SFENCE.VMA specifies an ordering constraint, not a
484  	 * cache flush; it is necessary even after writing invalid entries.
485  	 * Relying on flush_tlb_fix_spurious_fault would suffice, but
486  	 * the extra traps reduce performance.  So, eagerly SFENCE.VMA.
487  	 */
488  	while (nr--)
489  		local_flush_tlb_page(address + nr * PAGE_SIZE);
490  }
491  #define update_mmu_cache(vma, addr, ptep) \
492  	update_mmu_cache_range(NULL, vma, addr, ptep, 1)
493  
494  #define __HAVE_ARCH_UPDATE_MMU_TLB
495  #define update_mmu_tlb update_mmu_cache
496  
update_mmu_cache_pmd(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)497  static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
498  		unsigned long address, pmd_t *pmdp)
499  {
500  	pte_t *ptep = (pte_t *)pmdp;
501  
502  	update_mmu_cache(vma, address, ptep);
503  }
504  
505  #define __HAVE_ARCH_PTE_SAME
pte_same(pte_t pte_a,pte_t pte_b)506  static inline int pte_same(pte_t pte_a, pte_t pte_b)
507  {
508  	return pte_val(pte_a) == pte_val(pte_b);
509  }
510  
511  /*
512   * Certain architectures need to do special things when PTEs within
513   * a page table are directly modified.  Thus, the following hook is
514   * made available.
515   */
set_pte(pte_t * ptep,pte_t pteval)516  static inline void set_pte(pte_t *ptep, pte_t pteval)
517  {
518  	WRITE_ONCE(*ptep, pteval);
519  }
520  
521  void flush_icache_pte(pte_t pte);
522  
__set_pte_at(pte_t * ptep,pte_t pteval)523  static inline void __set_pte_at(pte_t *ptep, pte_t pteval)
524  {
525  	if (pte_present(pteval) && pte_exec(pteval))
526  		flush_icache_pte(pteval);
527  
528  	set_pte(ptep, pteval);
529  }
530  
set_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pteval,unsigned int nr)531  static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
532  		pte_t *ptep, pte_t pteval, unsigned int nr)
533  {
534  	page_table_check_ptes_set(mm, ptep, pteval, nr);
535  
536  	for (;;) {
537  		__set_pte_at(ptep, pteval);
538  		if (--nr == 0)
539  			break;
540  		ptep++;
541  		pte_val(pteval) += 1 << _PAGE_PFN_SHIFT;
542  	}
543  }
544  #define set_ptes set_ptes
545  
pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)546  static inline void pte_clear(struct mm_struct *mm,
547  	unsigned long addr, pte_t *ptep)
548  {
549  	__set_pte_at(ptep, __pte(0));
550  }
551  
552  #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS	/* defined in mm/pgtable.c */
553  extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
554  				 pte_t *ptep, pte_t entry, int dirty);
555  #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG	/* defined in mm/pgtable.c */
556  extern int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long address,
557  				     pte_t *ptep);
558  
559  #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long address,pte_t * ptep)560  static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
561  				       unsigned long address, pte_t *ptep)
562  {
563  	pte_t pte = __pte(atomic_long_xchg((atomic_long_t *)ptep, 0));
564  
565  	page_table_check_pte_clear(mm, pte);
566  
567  	return pte;
568  }
569  
570  #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long address,pte_t * ptep)571  static inline void ptep_set_wrprotect(struct mm_struct *mm,
572  				      unsigned long address, pte_t *ptep)
573  {
574  	atomic_long_and(~(unsigned long)_PAGE_WRITE, (atomic_long_t *)ptep);
575  }
576  
577  #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)578  static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
579  					 unsigned long address, pte_t *ptep)
580  {
581  	/*
582  	 * This comment is borrowed from x86, but applies equally to RISC-V:
583  	 *
584  	 * Clearing the accessed bit without a TLB flush
585  	 * doesn't cause data corruption. [ It could cause incorrect
586  	 * page aging and the (mistaken) reclaim of hot pages, but the
587  	 * chance of that should be relatively low. ]
588  	 *
589  	 * So as a performance optimization don't flush the TLB when
590  	 * clearing the accessed bit, it will eventually be flushed by
591  	 * a context switch or a VM operation anyway. [ In the rare
592  	 * event of it not getting flushed for a long time the delay
593  	 * shouldn't really matter because there's no real memory
594  	 * pressure for swapout to react to. ]
595  	 */
596  	return ptep_test_and_clear_young(vma, address, ptep);
597  }
598  
599  #define pgprot_noncached pgprot_noncached
pgprot_noncached(pgprot_t _prot)600  static inline pgprot_t pgprot_noncached(pgprot_t _prot)
601  {
602  	unsigned long prot = pgprot_val(_prot);
603  
604  	prot &= ~_PAGE_MTMASK;
605  	prot |= _PAGE_IO;
606  
607  	return __pgprot(prot);
608  }
609  
610  #define pgprot_writecombine pgprot_writecombine
pgprot_writecombine(pgprot_t _prot)611  static inline pgprot_t pgprot_writecombine(pgprot_t _prot)
612  {
613  	unsigned long prot = pgprot_val(_prot);
614  
615  	prot &= ~_PAGE_MTMASK;
616  	prot |= _PAGE_NOCACHE;
617  
618  	return __pgprot(prot);
619  }
620  
621  /*
622   * THP functions
623   */
pte_pmd(pte_t pte)624  static inline pmd_t pte_pmd(pte_t pte)
625  {
626  	return __pmd(pte_val(pte));
627  }
628  
pmd_mkhuge(pmd_t pmd)629  static inline pmd_t pmd_mkhuge(pmd_t pmd)
630  {
631  	return pmd;
632  }
633  
pmd_mkinvalid(pmd_t pmd)634  static inline pmd_t pmd_mkinvalid(pmd_t pmd)
635  {
636  	return __pmd(pmd_val(pmd) & ~(_PAGE_PRESENT|_PAGE_PROT_NONE));
637  }
638  
639  #define __pmd_to_phys(pmd)  (__page_val_to_pfn(pmd_val(pmd)) << PAGE_SHIFT)
640  
pmd_pfn(pmd_t pmd)641  static inline unsigned long pmd_pfn(pmd_t pmd)
642  {
643  	return ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT);
644  }
645  
646  #define __pud_to_phys(pud)  (__page_val_to_pfn(pud_val(pud)) << PAGE_SHIFT)
647  
pud_pfn(pud_t pud)648  static inline unsigned long pud_pfn(pud_t pud)
649  {
650  	return ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT);
651  }
652  
pmd_modify(pmd_t pmd,pgprot_t newprot)653  static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
654  {
655  	return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
656  }
657  
658  #define pmd_write pmd_write
pmd_write(pmd_t pmd)659  static inline int pmd_write(pmd_t pmd)
660  {
661  	return pte_write(pmd_pte(pmd));
662  }
663  
pmd_dirty(pmd_t pmd)664  static inline int pmd_dirty(pmd_t pmd)
665  {
666  	return pte_dirty(pmd_pte(pmd));
667  }
668  
669  #define pmd_young pmd_young
pmd_young(pmd_t pmd)670  static inline int pmd_young(pmd_t pmd)
671  {
672  	return pte_young(pmd_pte(pmd));
673  }
674  
pmd_user(pmd_t pmd)675  static inline int pmd_user(pmd_t pmd)
676  {
677  	return pte_user(pmd_pte(pmd));
678  }
679  
pmd_mkold(pmd_t pmd)680  static inline pmd_t pmd_mkold(pmd_t pmd)
681  {
682  	return pte_pmd(pte_mkold(pmd_pte(pmd)));
683  }
684  
pmd_mkyoung(pmd_t pmd)685  static inline pmd_t pmd_mkyoung(pmd_t pmd)
686  {
687  	return pte_pmd(pte_mkyoung(pmd_pte(pmd)));
688  }
689  
pmd_mkwrite_novma(pmd_t pmd)690  static inline pmd_t pmd_mkwrite_novma(pmd_t pmd)
691  {
692  	return pte_pmd(pte_mkwrite_novma(pmd_pte(pmd)));
693  }
694  
pmd_wrprotect(pmd_t pmd)695  static inline pmd_t pmd_wrprotect(pmd_t pmd)
696  {
697  	return pte_pmd(pte_wrprotect(pmd_pte(pmd)));
698  }
699  
pmd_mkclean(pmd_t pmd)700  static inline pmd_t pmd_mkclean(pmd_t pmd)
701  {
702  	return pte_pmd(pte_mkclean(pmd_pte(pmd)));
703  }
704  
pmd_mkdirty(pmd_t pmd)705  static inline pmd_t pmd_mkdirty(pmd_t pmd)
706  {
707  	return pte_pmd(pte_mkdirty(pmd_pte(pmd)));
708  }
709  
set_pmd_at(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,pmd_t pmd)710  static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
711  				pmd_t *pmdp, pmd_t pmd)
712  {
713  	page_table_check_pmd_set(mm, pmdp, pmd);
714  	return __set_pte_at((pte_t *)pmdp, pmd_pte(pmd));
715  }
716  
set_pud_at(struct mm_struct * mm,unsigned long addr,pud_t * pudp,pud_t pud)717  static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
718  				pud_t *pudp, pud_t pud)
719  {
720  	page_table_check_pud_set(mm, pudp, pud);
721  	return __set_pte_at((pte_t *)pudp, pud_pte(pud));
722  }
723  
724  #ifdef CONFIG_PAGE_TABLE_CHECK
pte_user_accessible_page(pte_t pte)725  static inline bool pte_user_accessible_page(pte_t pte)
726  {
727  	return pte_present(pte) && pte_user(pte);
728  }
729  
pmd_user_accessible_page(pmd_t pmd)730  static inline bool pmd_user_accessible_page(pmd_t pmd)
731  {
732  	return pmd_leaf(pmd) && pmd_user(pmd);
733  }
734  
pud_user_accessible_page(pud_t pud)735  static inline bool pud_user_accessible_page(pud_t pud)
736  {
737  	return pud_leaf(pud) && pud_user(pud);
738  }
739  #endif
740  
741  #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmd_trans_huge(pmd_t pmd)742  static inline int pmd_trans_huge(pmd_t pmd)
743  {
744  	return pmd_leaf(pmd);
745  }
746  
747  #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t entry,int dirty)748  static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
749  					unsigned long address, pmd_t *pmdp,
750  					pmd_t entry, int dirty)
751  {
752  	return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty);
753  }
754  
755  #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)756  static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
757  					unsigned long address, pmd_t *pmdp)
758  {
759  	return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
760  }
761  
762  #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)763  static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
764  					unsigned long address, pmd_t *pmdp)
765  {
766  	pmd_t pmd = __pmd(atomic_long_xchg((atomic_long_t *)pmdp, 0));
767  
768  	page_table_check_pmd_clear(mm, pmd);
769  
770  	return pmd;
771  }
772  
773  #define __HAVE_ARCH_PMDP_SET_WRPROTECT
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)774  static inline void pmdp_set_wrprotect(struct mm_struct *mm,
775  					unsigned long address, pmd_t *pmdp)
776  {
777  	ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
778  }
779  
780  #define pmdp_establish pmdp_establish
pmdp_establish(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t pmd)781  static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
782  				unsigned long address, pmd_t *pmdp, pmd_t pmd)
783  {
784  	page_table_check_pmd_set(vma->vm_mm, pmdp, pmd);
785  	return __pmd(atomic_long_xchg((atomic_long_t *)pmdp, pmd_val(pmd)));
786  }
787  
788  #define pmdp_collapse_flush pmdp_collapse_flush
789  extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
790  				 unsigned long address, pmd_t *pmdp);
791  #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
792  
793  /*
794   * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that
795   * are !pte_none() && !pte_present().
796   *
797   * Format of swap PTE:
798   *	bit            0:	_PAGE_PRESENT (zero)
799   *	bit       1 to 3:       _PAGE_LEAF (zero)
800   *	bit            5:	_PAGE_PROT_NONE (zero)
801   *	bit            6:	exclusive marker
802   *	bits      7 to 11:	swap type
803   *	bits 11 to XLEN-1:	swap offset
804   */
805  #define __SWP_TYPE_SHIFT	7
806  #define __SWP_TYPE_BITS		5
807  #define __SWP_TYPE_MASK		((1UL << __SWP_TYPE_BITS) - 1)
808  #define __SWP_OFFSET_SHIFT	(__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
809  
810  #define MAX_SWAPFILES_CHECK()	\
811  	BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
812  
813  #define __swp_type(x)	(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
814  #define __swp_offset(x)	((x).val >> __SWP_OFFSET_SHIFT)
815  #define __swp_entry(type, offset) ((swp_entry_t) \
816  	{ (((type) & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT) | \
817  	  ((offset) << __SWP_OFFSET_SHIFT) })
818  
819  #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
820  #define __swp_entry_to_pte(x)	((pte_t) { (x).val })
821  
pte_swp_exclusive(pte_t pte)822  static inline int pte_swp_exclusive(pte_t pte)
823  {
824  	return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
825  }
826  
pte_swp_mkexclusive(pte_t pte)827  static inline pte_t pte_swp_mkexclusive(pte_t pte)
828  {
829  	return __pte(pte_val(pte) | _PAGE_SWP_EXCLUSIVE);
830  }
831  
pte_swp_clear_exclusive(pte_t pte)832  static inline pte_t pte_swp_clear_exclusive(pte_t pte)
833  {
834  	return __pte(pte_val(pte) & ~_PAGE_SWP_EXCLUSIVE);
835  }
836  
837  #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
838  #define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) })
839  #define __swp_entry_to_pmd(swp) __pmd((swp).val)
840  #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
841  
842  /*
843   * In the RV64 Linux scheme, we give the user half of the virtual-address space
844   * and give the kernel the other (upper) half.
845   */
846  #ifdef CONFIG_64BIT
847  #define KERN_VIRT_START	(-(BIT(VA_BITS)) + TASK_SIZE)
848  #else
849  #define KERN_VIRT_START	FIXADDR_START
850  #endif
851  
852  /*
853   * Task size is 0x4000000000 for RV64 or 0x9fc00000 for RV32.
854   * Note that PGDIR_SIZE must evenly divide TASK_SIZE.
855   * Task size is:
856   * -        0x9fc00000	(~2.5GB) for RV32.
857   * -      0x4000000000	( 256GB) for RV64 using SV39 mmu
858   * -    0x800000000000	( 128TB) for RV64 using SV48 mmu
859   * - 0x100000000000000	(  64PB) for RV64 using SV57 mmu
860   *
861   * Note that PGDIR_SIZE must evenly divide TASK_SIZE since "RISC-V
862   * Instruction Set Manual Volume II: Privileged Architecture" states that
863   * "load and store effective addresses, which are 64bits, must have bits
864   * 63–48 all equal to bit 47, or else a page-fault exception will occur."
865   * Similarly for SV57, bits 63–57 must be equal to bit 56.
866   */
867  #ifdef CONFIG_64BIT
868  #define TASK_SIZE_64	(PGDIR_SIZE * PTRS_PER_PGD / 2)
869  #define TASK_SIZE_MIN	(PGDIR_SIZE_L3 * PTRS_PER_PGD / 2)
870  
871  #ifdef CONFIG_COMPAT
872  #define TASK_SIZE_32	(_AC(0x80000000, UL))
873  #define TASK_SIZE	(test_thread_flag(TIF_32BIT) ? \
874  			 TASK_SIZE_32 : TASK_SIZE_64)
875  #else
876  #define TASK_SIZE	TASK_SIZE_64
877  #endif
878  
879  #else
880  #define TASK_SIZE	FIXADDR_START
881  #define TASK_SIZE_MIN	TASK_SIZE
882  #endif
883  
884  #else /* CONFIG_MMU */
885  
886  #define PAGE_SHARED		__pgprot(0)
887  #define PAGE_KERNEL		__pgprot(0)
888  #define swapper_pg_dir		NULL
889  #define TASK_SIZE		_AC(-1, UL)
890  #define VMALLOC_START		_AC(0, UL)
891  #define VMALLOC_END		TASK_SIZE
892  
893  #endif /* !CONFIG_MMU */
894  
895  extern char _start[];
896  extern void *_dtb_early_va;
897  extern uintptr_t _dtb_early_pa;
898  #if defined(CONFIG_XIP_KERNEL) && defined(CONFIG_MMU)
899  #define dtb_early_va	(*(void **)XIP_FIXUP(&_dtb_early_va))
900  #define dtb_early_pa	(*(uintptr_t *)XIP_FIXUP(&_dtb_early_pa))
901  #else
902  #define dtb_early_va	_dtb_early_va
903  #define dtb_early_pa	_dtb_early_pa
904  #endif /* CONFIG_XIP_KERNEL */
905  extern u64 satp_mode;
906  extern bool pgtable_l4_enabled;
907  
908  void paging_init(void);
909  void misc_mem_init(void);
910  
911  /*
912   * ZERO_PAGE is a global shared page that is always zero,
913   * used for zero-mapped memory areas, etc.
914   */
915  extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
916  #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
917  
918  #endif /* !__ASSEMBLY__ */
919  
920  #endif /* _ASM_RISCV_PGTABLE_H */
921