xref: /openbmc/linux/arch/riscv/include/asm/io.h (revision ddc141e5)
1 /*
2  * {read,write}{b,w,l,q} based on arch/arm64/include/asm/io.h
3  *   which was based on arch/arm/include/io.h
4  *
5  * Copyright (C) 1996-2000 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  * Copyright (C) 2014 Regents of the University of California
8  *
9  *   This program is free software; you can redistribute it and/or
10  *   modify it under the terms of the GNU General Public License
11  *   as published by the Free Software Foundation, version 2.
12  *
13  *   This program is distributed in the hope that it will be useful,
14  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *   GNU General Public License for more details.
17  */
18 
19 #ifndef _ASM_RISCV_IO_H
20 #define _ASM_RISCV_IO_H
21 
22 #include <linux/types.h>
23 
24 extern void __iomem *ioremap(phys_addr_t offset, unsigned long size);
25 
26 /*
27  * The RISC-V ISA doesn't yet specify how to query or modify PMAs, so we can't
28  * change the properties of memory regions.  This should be fixed by the
29  * upcoming platform spec.
30  */
31 #define ioremap_nocache(addr, size) ioremap((addr), (size))
32 #define ioremap_wc(addr, size) ioremap((addr), (size))
33 #define ioremap_wt(addr, size) ioremap((addr), (size))
34 
35 extern void iounmap(volatile void __iomem *addr);
36 
37 /* Generic IO read/write.  These perform native-endian accesses. */
38 #define __raw_writeb __raw_writeb
39 static inline void __raw_writeb(u8 val, volatile void __iomem *addr)
40 {
41 	asm volatile("sb %0, 0(%1)" : : "r" (val), "r" (addr));
42 }
43 
44 #define __raw_writew __raw_writew
45 static inline void __raw_writew(u16 val, volatile void __iomem *addr)
46 {
47 	asm volatile("sh %0, 0(%1)" : : "r" (val), "r" (addr));
48 }
49 
50 #define __raw_writel __raw_writel
51 static inline void __raw_writel(u32 val, volatile void __iomem *addr)
52 {
53 	asm volatile("sw %0, 0(%1)" : : "r" (val), "r" (addr));
54 }
55 
56 #ifdef CONFIG_64BIT
57 #define __raw_writeq __raw_writeq
58 static inline void __raw_writeq(u64 val, volatile void __iomem *addr)
59 {
60 	asm volatile("sd %0, 0(%1)" : : "r" (val), "r" (addr));
61 }
62 #endif
63 
64 #define __raw_readb __raw_readb
65 static inline u8 __raw_readb(const volatile void __iomem *addr)
66 {
67 	u8 val;
68 
69 	asm volatile("lb %0, 0(%1)" : "=r" (val) : "r" (addr));
70 	return val;
71 }
72 
73 #define __raw_readw __raw_readw
74 static inline u16 __raw_readw(const volatile void __iomem *addr)
75 {
76 	u16 val;
77 
78 	asm volatile("lh %0, 0(%1)" : "=r" (val) : "r" (addr));
79 	return val;
80 }
81 
82 #define __raw_readl __raw_readl
83 static inline u32 __raw_readl(const volatile void __iomem *addr)
84 {
85 	u32 val;
86 
87 	asm volatile("lw %0, 0(%1)" : "=r" (val) : "r" (addr));
88 	return val;
89 }
90 
91 #ifdef CONFIG_64BIT
92 #define __raw_readq __raw_readq
93 static inline u64 __raw_readq(const volatile void __iomem *addr)
94 {
95 	u64 val;
96 
97 	asm volatile("ld %0, 0(%1)" : "=r" (val) : "r" (addr));
98 	return val;
99 }
100 #endif
101 
102 /*
103  * FIXME: I'm flip-flopping on whether or not we should keep this or enforce
104  * the ordering with I/O on spinlocks like PowerPC does.  The worry is that
105  * drivers won't get this correct, but I also don't want to introduce a fence
106  * into the lock code that otherwise only uses AMOs (and is essentially defined
107  * by the ISA to be correct).   For now I'm leaving this here: "o,w" is
108  * sufficient to ensure that all writes to the device have completed before the
109  * write to the spinlock is allowed to commit.  I surmised this from reading
110  * "ACQUIRES VS I/O ACCESSES" in memory-barriers.txt.
111  */
112 #define mmiowb()	__asm__ __volatile__ ("fence o,w" : : : "memory");
113 
114 /*
115  * Unordered I/O memory access primitives.  These are even more relaxed than
116  * the relaxed versions, as they don't even order accesses between successive
117  * operations to the I/O regions.
118  */
119 #define readb_cpu(c)		({ u8  __r = __raw_readb(c); __r; })
120 #define readw_cpu(c)		({ u16 __r = le16_to_cpu((__force __le16)__raw_readw(c)); __r; })
121 #define readl_cpu(c)		({ u32 __r = le32_to_cpu((__force __le32)__raw_readl(c)); __r; })
122 
123 #define writeb_cpu(v,c)		((void)__raw_writeb((v),(c)))
124 #define writew_cpu(v,c)		((void)__raw_writew((__force u16)cpu_to_le16(v),(c)))
125 #define writel_cpu(v,c)		((void)__raw_writel((__force u32)cpu_to_le32(v),(c)))
126 
127 #ifdef CONFIG_64BIT
128 #define readq_cpu(c)		({ u64 __r = le64_to_cpu((__force __le64)__raw_readq(c)); __r; })
129 #define writeq_cpu(v,c)		((void)__raw_writeq((__force u64)cpu_to_le64(v),(c)))
130 #endif
131 
132 /*
133  * Relaxed I/O memory access primitives. These follow the Device memory
134  * ordering rules but do not guarantee any ordering relative to Normal memory
135  * accesses.  These are defined to order the indicated access (either a read or
136  * write) with all other I/O memory accesses. Since the platform specification
137  * defines that all I/O regions are strongly ordered on channel 2, no explicit
138  * fences are required to enforce this ordering.
139  */
140 /* FIXME: These are now the same as asm-generic */
141 #define __io_rbr()		do {} while (0)
142 #define __io_rar()		do {} while (0)
143 #define __io_rbw()		do {} while (0)
144 #define __io_raw()		do {} while (0)
145 
146 #define readb_relaxed(c)	({ u8  __v; __io_rbr(); __v = readb_cpu(c); __io_rar(); __v; })
147 #define readw_relaxed(c)	({ u16 __v; __io_rbr(); __v = readw_cpu(c); __io_rar(); __v; })
148 #define readl_relaxed(c)	({ u32 __v; __io_rbr(); __v = readl_cpu(c); __io_rar(); __v; })
149 
150 #define writeb_relaxed(v,c)	({ __io_rbw(); writeb_cpu((v),(c)); __io_raw(); })
151 #define writew_relaxed(v,c)	({ __io_rbw(); writew_cpu((v),(c)); __io_raw(); })
152 #define writel_relaxed(v,c)	({ __io_rbw(); writel_cpu((v),(c)); __io_raw(); })
153 
154 #ifdef CONFIG_64BIT
155 #define readq_relaxed(c)	({ u64 __v; __io_rbr(); __v = readq_cpu(c); __io_rar(); __v; })
156 #define writeq_relaxed(v,c)	({ __io_rbw(); writeq_cpu((v),(c)); __io_raw(); })
157 #endif
158 
159 /*
160  * I/O memory access primitives. Reads are ordered relative to any
161  * following Normal memory access. Writes are ordered relative to any prior
162  * Normal memory access.  The memory barriers here are necessary as RISC-V
163  * doesn't define any ordering between the memory space and the I/O space.
164  */
165 #define __io_br()	do {} while (0)
166 #define __io_ar()	__asm__ __volatile__ ("fence i,r" : : : "memory");
167 #define __io_bw()	__asm__ __volatile__ ("fence w,o" : : : "memory");
168 #define __io_aw()	do {} while (0)
169 
170 #define readb(c)	({ u8  __v; __io_br(); __v = readb_cpu(c); __io_ar(); __v; })
171 #define readw(c)	({ u16 __v; __io_br(); __v = readw_cpu(c); __io_ar(); __v; })
172 #define readl(c)	({ u32 __v; __io_br(); __v = readl_cpu(c); __io_ar(); __v; })
173 
174 #define writeb(v,c)	({ __io_bw(); writeb_cpu((v),(c)); __io_aw(); })
175 #define writew(v,c)	({ __io_bw(); writew_cpu((v),(c)); __io_aw(); })
176 #define writel(v,c)	({ __io_bw(); writel_cpu((v),(c)); __io_aw(); })
177 
178 #ifdef CONFIG_64BIT
179 #define readq(c)	({ u64 __v; __io_br(); __v = readq_cpu(c); __io_ar(); __v; })
180 #define writeq(v,c)	({ __io_bw(); writeq_cpu((v),(c)); __io_aw(); })
181 #endif
182 
183 /*
184  * Emulation routines for the port-mapped IO space used by some PCI drivers.
185  * These are defined as being "fully synchronous", but also "not guaranteed to
186  * be fully ordered with respect to other memory and I/O operations".  We're
187  * going to be on the safe side here and just make them:
188  *  - Fully ordered WRT each other, by bracketing them with two fences.  The
189  *    outer set contains both I/O so inX is ordered with outX, while the inner just
190  *    needs the type of the access (I for inX and O for outX).
191  *  - Ordered in the same manner as readX/writeX WRT memory by subsuming their
192  *    fences.
193  *  - Ordered WRT timer reads, so udelay and friends don't get elided by the
194  *    implementation.
195  * Note that there is no way to actually enforce that outX is a non-posted
196  * operation on RISC-V, but hopefully the timer ordering constraint is
197  * sufficient to ensure this works sanely on controllers that support I/O
198  * writes.
199  */
200 #define __io_pbr()	__asm__ __volatile__ ("fence io,i"  : : : "memory");
201 #define __io_par()	__asm__ __volatile__ ("fence i,ior" : : : "memory");
202 #define __io_pbw()	__asm__ __volatile__ ("fence iow,o" : : : "memory");
203 #define __io_paw()	__asm__ __volatile__ ("fence o,io"  : : : "memory");
204 
205 #define inb(c)		({ u8  __v; __io_pbr(); __v = readb_cpu((void*)(PCI_IOBASE + (c))); __io_par(); __v; })
206 #define inw(c)		({ u16 __v; __io_pbr(); __v = readw_cpu((void*)(PCI_IOBASE + (c))); __io_par(); __v; })
207 #define inl(c)		({ u32 __v; __io_pbr(); __v = readl_cpu((void*)(PCI_IOBASE + (c))); __io_par(); __v; })
208 
209 #define outb(v,c)	({ __io_pbw(); writeb_cpu((v),(void*)(PCI_IOBASE + (c))); __io_paw(); })
210 #define outw(v,c)	({ __io_pbw(); writew_cpu((v),(void*)(PCI_IOBASE + (c))); __io_paw(); })
211 #define outl(v,c)	({ __io_pbw(); writel_cpu((v),(void*)(PCI_IOBASE + (c))); __io_paw(); })
212 
213 #ifdef CONFIG_64BIT
214 #define inq(c)		({ u64 __v; __io_pbr(); __v = readq_cpu((void*)(c)); __io_par(); __v; })
215 #define outq(v,c)	({ __io_pbw(); writeq_cpu((v),(void*)(c)); __io_paw(); })
216 #endif
217 
218 /*
219  * Accesses from a single hart to a single I/O address must be ordered.  This
220  * allows us to use the raw read macros, but we still need to fence before and
221  * after the block to ensure ordering WRT other macros.  These are defined to
222  * perform host-endian accesses so we use __raw instead of __cpu.
223  */
224 #define __io_reads_ins(port, ctype, len, bfence, afence)			\
225 	static inline void __ ## port ## len(const volatile void __iomem *addr,	\
226 					     void *buffer,			\
227 					     unsigned int count)		\
228 	{									\
229 		bfence;								\
230 		if (count) {							\
231 			ctype *buf = buffer;					\
232 										\
233 			do {							\
234 				ctype x = __raw_read ## len(addr);		\
235 				*buf++ = x;					\
236 			} while (--count);					\
237 		}								\
238 		afence;								\
239 	}
240 
241 #define __io_writes_outs(port, ctype, len, bfence, afence)			\
242 	static inline void __ ## port ## len(volatile void __iomem *addr,	\
243 					     const void *buffer,		\
244 					     unsigned int count)		\
245 	{									\
246 		bfence;								\
247 		if (count) {							\
248 			const ctype *buf = buffer;				\
249 										\
250 			do {							\
251 				__raw_write ## len(*buf++, addr);		\
252 			} while (--count);					\
253 		}								\
254 		afence;								\
255 	}
256 
257 __io_reads_ins(reads,  u8, b, __io_br(), __io_ar())
258 __io_reads_ins(reads, u16, w, __io_br(), __io_ar())
259 __io_reads_ins(reads, u32, l, __io_br(), __io_ar())
260 #define readsb(addr, buffer, count) __readsb(addr, buffer, count)
261 #define readsw(addr, buffer, count) __readsw(addr, buffer, count)
262 #define readsl(addr, buffer, count) __readsl(addr, buffer, count)
263 
264 __io_reads_ins(ins,  u8, b, __io_pbr(), __io_par())
265 __io_reads_ins(ins, u16, w, __io_pbr(), __io_par())
266 __io_reads_ins(ins, u32, l, __io_pbr(), __io_par())
267 #define insb(addr, buffer, count) __insb((void __iomem *)(long)addr, buffer, count)
268 #define insw(addr, buffer, count) __insw((void __iomem *)(long)addr, buffer, count)
269 #define insl(addr, buffer, count) __insl((void __iomem *)(long)addr, buffer, count)
270 
271 __io_writes_outs(writes,  u8, b, __io_bw(), __io_aw())
272 __io_writes_outs(writes, u16, w, __io_bw(), __io_aw())
273 __io_writes_outs(writes, u32, l, __io_bw(), __io_aw())
274 #define writesb(addr, buffer, count) __writesb(addr, buffer, count)
275 #define writesw(addr, buffer, count) __writesw(addr, buffer, count)
276 #define writesl(addr, buffer, count) __writesl(addr, buffer, count)
277 
278 __io_writes_outs(outs,  u8, b, __io_pbw(), __io_paw())
279 __io_writes_outs(outs, u16, w, __io_pbw(), __io_paw())
280 __io_writes_outs(outs, u32, l, __io_pbw(), __io_paw())
281 #define outsb(addr, buffer, count) __outsb((void __iomem *)(long)addr, buffer, count)
282 #define outsw(addr, buffer, count) __outsw((void __iomem *)(long)addr, buffer, count)
283 #define outsl(addr, buffer, count) __outsl((void __iomem *)(long)addr, buffer, count)
284 
285 #ifdef CONFIG_64BIT
286 __io_reads_ins(reads, u64, q, __io_br(), __io_ar())
287 #define readsq(addr, buffer, count) __readsq(addr, buffer, count)
288 
289 __io_reads_ins(ins, u64, q, __io_pbr(), __io_par())
290 #define insq(addr, buffer, count) __insq((void __iomem *)addr, buffer, count)
291 
292 __io_writes_outs(writes, u64, q, __io_bw(), __io_aw())
293 #define writesq(addr, buffer, count) __writesq(addr, buffer, count)
294 
295 __io_writes_outs(outs, u64, q, __io_pbr(), __io_paw())
296 #define outsq(addr, buffer, count) __outsq((void __iomem *)addr, buffer, count)
297 #endif
298 
299 #include <asm-generic/io.h>
300 
301 #endif /* _ASM_RISCV_IO_H */
302