xref: /openbmc/linux/arch/riscv/include/asm/io.h (revision b664e06d)
1 /*
2  * {read,write}{b,w,l,q} based on arch/arm64/include/asm/io.h
3  *   which was based on arch/arm/include/io.h
4  *
5  * Copyright (C) 1996-2000 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  * Copyright (C) 2014 Regents of the University of California
8  *
9  *   This program is free software; you can redistribute it and/or
10  *   modify it under the terms of the GNU General Public License
11  *   as published by the Free Software Foundation, version 2.
12  *
13  *   This program is distributed in the hope that it will be useful,
14  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *   GNU General Public License for more details.
17  */
18 
19 #ifndef _ASM_RISCV_IO_H
20 #define _ASM_RISCV_IO_H
21 
22 #include <linux/types.h>
23 #include <asm/mmiowb.h>
24 
25 extern void __iomem *ioremap(phys_addr_t offset, unsigned long size);
26 
27 /*
28  * The RISC-V ISA doesn't yet specify how to query or modify PMAs, so we can't
29  * change the properties of memory regions.  This should be fixed by the
30  * upcoming platform spec.
31  */
32 #define ioremap_nocache(addr, size) ioremap((addr), (size))
33 #define ioremap_wc(addr, size) ioremap((addr), (size))
34 #define ioremap_wt(addr, size) ioremap((addr), (size))
35 
36 extern void iounmap(volatile void __iomem *addr);
37 
38 /* Generic IO read/write.  These perform native-endian accesses. */
39 #define __raw_writeb __raw_writeb
40 static inline void __raw_writeb(u8 val, volatile void __iomem *addr)
41 {
42 	asm volatile("sb %0, 0(%1)" : : "r" (val), "r" (addr));
43 }
44 
45 #define __raw_writew __raw_writew
46 static inline void __raw_writew(u16 val, volatile void __iomem *addr)
47 {
48 	asm volatile("sh %0, 0(%1)" : : "r" (val), "r" (addr));
49 }
50 
51 #define __raw_writel __raw_writel
52 static inline void __raw_writel(u32 val, volatile void __iomem *addr)
53 {
54 	asm volatile("sw %0, 0(%1)" : : "r" (val), "r" (addr));
55 }
56 
57 #ifdef CONFIG_64BIT
58 #define __raw_writeq __raw_writeq
59 static inline void __raw_writeq(u64 val, volatile void __iomem *addr)
60 {
61 	asm volatile("sd %0, 0(%1)" : : "r" (val), "r" (addr));
62 }
63 #endif
64 
65 #define __raw_readb __raw_readb
66 static inline u8 __raw_readb(const volatile void __iomem *addr)
67 {
68 	u8 val;
69 
70 	asm volatile("lb %0, 0(%1)" : "=r" (val) : "r" (addr));
71 	return val;
72 }
73 
74 #define __raw_readw __raw_readw
75 static inline u16 __raw_readw(const volatile void __iomem *addr)
76 {
77 	u16 val;
78 
79 	asm volatile("lh %0, 0(%1)" : "=r" (val) : "r" (addr));
80 	return val;
81 }
82 
83 #define __raw_readl __raw_readl
84 static inline u32 __raw_readl(const volatile void __iomem *addr)
85 {
86 	u32 val;
87 
88 	asm volatile("lw %0, 0(%1)" : "=r" (val) : "r" (addr));
89 	return val;
90 }
91 
92 #ifdef CONFIG_64BIT
93 #define __raw_readq __raw_readq
94 static inline u64 __raw_readq(const volatile void __iomem *addr)
95 {
96 	u64 val;
97 
98 	asm volatile("ld %0, 0(%1)" : "=r" (val) : "r" (addr));
99 	return val;
100 }
101 #endif
102 
103 /*
104  * Unordered I/O memory access primitives.  These are even more relaxed than
105  * the relaxed versions, as they don't even order accesses between successive
106  * operations to the I/O regions.
107  */
108 #define readb_cpu(c)		({ u8  __r = __raw_readb(c); __r; })
109 #define readw_cpu(c)		({ u16 __r = le16_to_cpu((__force __le16)__raw_readw(c)); __r; })
110 #define readl_cpu(c)		({ u32 __r = le32_to_cpu((__force __le32)__raw_readl(c)); __r; })
111 
112 #define writeb_cpu(v,c)		((void)__raw_writeb((v),(c)))
113 #define writew_cpu(v,c)		((void)__raw_writew((__force u16)cpu_to_le16(v),(c)))
114 #define writel_cpu(v,c)		((void)__raw_writel((__force u32)cpu_to_le32(v),(c)))
115 
116 #ifdef CONFIG_64BIT
117 #define readq_cpu(c)		({ u64 __r = le64_to_cpu((__force __le64)__raw_readq(c)); __r; })
118 #define writeq_cpu(v,c)		((void)__raw_writeq((__force u64)cpu_to_le64(v),(c)))
119 #endif
120 
121 /*
122  * Relaxed I/O memory access primitives. These follow the Device memory
123  * ordering rules but do not guarantee any ordering relative to Normal memory
124  * accesses.  These are defined to order the indicated access (either a read or
125  * write) with all other I/O memory accesses. Since the platform specification
126  * defines that all I/O regions are strongly ordered on channel 2, no explicit
127  * fences are required to enforce this ordering.
128  */
129 /* FIXME: These are now the same as asm-generic */
130 #define __io_rbr()		do {} while (0)
131 #define __io_rar()		do {} while (0)
132 #define __io_rbw()		do {} while (0)
133 #define __io_raw()		do {} while (0)
134 
135 #define readb_relaxed(c)	({ u8  __v; __io_rbr(); __v = readb_cpu(c); __io_rar(); __v; })
136 #define readw_relaxed(c)	({ u16 __v; __io_rbr(); __v = readw_cpu(c); __io_rar(); __v; })
137 #define readl_relaxed(c)	({ u32 __v; __io_rbr(); __v = readl_cpu(c); __io_rar(); __v; })
138 
139 #define writeb_relaxed(v,c)	({ __io_rbw(); writeb_cpu((v),(c)); __io_raw(); })
140 #define writew_relaxed(v,c)	({ __io_rbw(); writew_cpu((v),(c)); __io_raw(); })
141 #define writel_relaxed(v,c)	({ __io_rbw(); writel_cpu((v),(c)); __io_raw(); })
142 
143 #ifdef CONFIG_64BIT
144 #define readq_relaxed(c)	({ u64 __v; __io_rbr(); __v = readq_cpu(c); __io_rar(); __v; })
145 #define writeq_relaxed(v,c)	({ __io_rbw(); writeq_cpu((v),(c)); __io_raw(); })
146 #endif
147 
148 /*
149  * I/O memory access primitives. Reads are ordered relative to any
150  * following Normal memory access. Writes are ordered relative to any prior
151  * Normal memory access.  The memory barriers here are necessary as RISC-V
152  * doesn't define any ordering between the memory space and the I/O space.
153  */
154 #define __io_br()	do {} while (0)
155 #define __io_ar(v)	__asm__ __volatile__ ("fence i,r" : : : "memory");
156 #define __io_bw()	__asm__ __volatile__ ("fence w,o" : : : "memory");
157 #define __io_aw()	mmiowb_set_pending()
158 
159 #define readb(c)	({ u8  __v; __io_br(); __v = readb_cpu(c); __io_ar(__v); __v; })
160 #define readw(c)	({ u16 __v; __io_br(); __v = readw_cpu(c); __io_ar(__v); __v; })
161 #define readl(c)	({ u32 __v; __io_br(); __v = readl_cpu(c); __io_ar(__v); __v; })
162 
163 #define writeb(v,c)	({ __io_bw(); writeb_cpu((v),(c)); __io_aw(); })
164 #define writew(v,c)	({ __io_bw(); writew_cpu((v),(c)); __io_aw(); })
165 #define writel(v,c)	({ __io_bw(); writel_cpu((v),(c)); __io_aw(); })
166 
167 #ifdef CONFIG_64BIT
168 #define readq(c)	({ u64 __v; __io_br(); __v = readq_cpu(c); __io_ar(__v); __v; })
169 #define writeq(v,c)	({ __io_bw(); writeq_cpu((v),(c)); __io_aw(); })
170 #endif
171 
172 /*
173  * Emulation routines for the port-mapped IO space used by some PCI drivers.
174  * These are defined as being "fully synchronous", but also "not guaranteed to
175  * be fully ordered with respect to other memory and I/O operations".  We're
176  * going to be on the safe side here and just make them:
177  *  - Fully ordered WRT each other, by bracketing them with two fences.  The
178  *    outer set contains both I/O so inX is ordered with outX, while the inner just
179  *    needs the type of the access (I for inX and O for outX).
180  *  - Ordered in the same manner as readX/writeX WRT memory by subsuming their
181  *    fences.
182  *  - Ordered WRT timer reads, so udelay and friends don't get elided by the
183  *    implementation.
184  * Note that there is no way to actually enforce that outX is a non-posted
185  * operation on RISC-V, but hopefully the timer ordering constraint is
186  * sufficient to ensure this works sanely on controllers that support I/O
187  * writes.
188  */
189 #define __io_pbr()	__asm__ __volatile__ ("fence io,i"  : : : "memory");
190 #define __io_par(v)	__asm__ __volatile__ ("fence i,ior" : : : "memory");
191 #define __io_pbw()	__asm__ __volatile__ ("fence iow,o" : : : "memory");
192 #define __io_paw()	__asm__ __volatile__ ("fence o,io"  : : : "memory");
193 
194 #define inb(c)		({ u8  __v; __io_pbr(); __v = readb_cpu((void*)(PCI_IOBASE + (c))); __io_par(__v); __v; })
195 #define inw(c)		({ u16 __v; __io_pbr(); __v = readw_cpu((void*)(PCI_IOBASE + (c))); __io_par(__v); __v; })
196 #define inl(c)		({ u32 __v; __io_pbr(); __v = readl_cpu((void*)(PCI_IOBASE + (c))); __io_par(__v); __v; })
197 
198 #define outb(v,c)	({ __io_pbw(); writeb_cpu((v),(void*)(PCI_IOBASE + (c))); __io_paw(); })
199 #define outw(v,c)	({ __io_pbw(); writew_cpu((v),(void*)(PCI_IOBASE + (c))); __io_paw(); })
200 #define outl(v,c)	({ __io_pbw(); writel_cpu((v),(void*)(PCI_IOBASE + (c))); __io_paw(); })
201 
202 #ifdef CONFIG_64BIT
203 #define inq(c)		({ u64 __v; __io_pbr(); __v = readq_cpu((void*)(c)); __io_par(__v); __v; })
204 #define outq(v,c)	({ __io_pbw(); writeq_cpu((v),(void*)(c)); __io_paw(); })
205 #endif
206 
207 /*
208  * Accesses from a single hart to a single I/O address must be ordered.  This
209  * allows us to use the raw read macros, but we still need to fence before and
210  * after the block to ensure ordering WRT other macros.  These are defined to
211  * perform host-endian accesses so we use __raw instead of __cpu.
212  */
213 #define __io_reads_ins(port, ctype, len, bfence, afence)			\
214 	static inline void __ ## port ## len(const volatile void __iomem *addr,	\
215 					     void *buffer,			\
216 					     unsigned int count)		\
217 	{									\
218 		bfence;								\
219 		if (count) {							\
220 			ctype *buf = buffer;					\
221 										\
222 			do {							\
223 				ctype x = __raw_read ## len(addr);		\
224 				*buf++ = x;					\
225 			} while (--count);					\
226 		}								\
227 		afence;								\
228 	}
229 
230 #define __io_writes_outs(port, ctype, len, bfence, afence)			\
231 	static inline void __ ## port ## len(volatile void __iomem *addr,	\
232 					     const void *buffer,		\
233 					     unsigned int count)		\
234 	{									\
235 		bfence;								\
236 		if (count) {							\
237 			const ctype *buf = buffer;				\
238 										\
239 			do {							\
240 				__raw_write ## len(*buf++, addr);		\
241 			} while (--count);					\
242 		}								\
243 		afence;								\
244 	}
245 
246 __io_reads_ins(reads,  u8, b, __io_br(), __io_ar(addr))
247 __io_reads_ins(reads, u16, w, __io_br(), __io_ar(addr))
248 __io_reads_ins(reads, u32, l, __io_br(), __io_ar(addr))
249 #define readsb(addr, buffer, count) __readsb(addr, buffer, count)
250 #define readsw(addr, buffer, count) __readsw(addr, buffer, count)
251 #define readsl(addr, buffer, count) __readsl(addr, buffer, count)
252 
253 __io_reads_ins(ins,  u8, b, __io_pbr(), __io_par(addr))
254 __io_reads_ins(ins, u16, w, __io_pbr(), __io_par(addr))
255 __io_reads_ins(ins, u32, l, __io_pbr(), __io_par(addr))
256 #define insb(addr, buffer, count) __insb((void __iomem *)(long)addr, buffer, count)
257 #define insw(addr, buffer, count) __insw((void __iomem *)(long)addr, buffer, count)
258 #define insl(addr, buffer, count) __insl((void __iomem *)(long)addr, buffer, count)
259 
260 __io_writes_outs(writes,  u8, b, __io_bw(), __io_aw())
261 __io_writes_outs(writes, u16, w, __io_bw(), __io_aw())
262 __io_writes_outs(writes, u32, l, __io_bw(), __io_aw())
263 #define writesb(addr, buffer, count) __writesb(addr, buffer, count)
264 #define writesw(addr, buffer, count) __writesw(addr, buffer, count)
265 #define writesl(addr, buffer, count) __writesl(addr, buffer, count)
266 
267 __io_writes_outs(outs,  u8, b, __io_pbw(), __io_paw())
268 __io_writes_outs(outs, u16, w, __io_pbw(), __io_paw())
269 __io_writes_outs(outs, u32, l, __io_pbw(), __io_paw())
270 #define outsb(addr, buffer, count) __outsb((void __iomem *)(long)addr, buffer, count)
271 #define outsw(addr, buffer, count) __outsw((void __iomem *)(long)addr, buffer, count)
272 #define outsl(addr, buffer, count) __outsl((void __iomem *)(long)addr, buffer, count)
273 
274 #ifdef CONFIG_64BIT
275 __io_reads_ins(reads, u64, q, __io_br(), __io_ar(addr))
276 #define readsq(addr, buffer, count) __readsq(addr, buffer, count)
277 
278 __io_reads_ins(ins, u64, q, __io_pbr(), __io_par(addr))
279 #define insq(addr, buffer, count) __insq((void __iomem *)addr, buffer, count)
280 
281 __io_writes_outs(writes, u64, q, __io_bw(), __io_aw())
282 #define writesq(addr, buffer, count) __writesq(addr, buffer, count)
283 
284 __io_writes_outs(outs, u64, q, __io_pbr(), __io_paw())
285 #define outsq(addr, buffer, count) __outsq((void __iomem *)addr, buffer, count)
286 #endif
287 
288 #include <asm-generic/io.h>
289 
290 #endif /* _ASM_RISCV_IO_H */
291