1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright 2016,2017 IBM Corporation. 4 */ 5 6 #define pr_fmt(fmt) "xive: " fmt 7 8 #include <linux/types.h> 9 #include <linux/threads.h> 10 #include <linux/kernel.h> 11 #include <linux/irq.h> 12 #include <linux/debugfs.h> 13 #include <linux/smp.h> 14 #include <linux/interrupt.h> 15 #include <linux/seq_file.h> 16 #include <linux/init.h> 17 #include <linux/cpu.h> 18 #include <linux/of.h> 19 #include <linux/slab.h> 20 #include <linux/spinlock.h> 21 #include <linux/msi.h> 22 #include <linux/vmalloc.h> 23 24 #include <asm/prom.h> 25 #include <asm/io.h> 26 #include <asm/smp.h> 27 #include <asm/machdep.h> 28 #include <asm/irq.h> 29 #include <asm/errno.h> 30 #include <asm/xive.h> 31 #include <asm/xive-regs.h> 32 #include <asm/xmon.h> 33 34 #include "xive-internal.h" 35 36 #undef DEBUG_FLUSH 37 #undef DEBUG_ALL 38 39 #ifdef DEBUG_ALL 40 #define DBG_VERBOSE(fmt, ...) pr_devel("cpu %d - " fmt, \ 41 smp_processor_id(), ## __VA_ARGS__) 42 #else 43 #define DBG_VERBOSE(fmt...) do { } while(0) 44 #endif 45 46 bool __xive_enabled; 47 EXPORT_SYMBOL_GPL(__xive_enabled); 48 bool xive_cmdline_disabled; 49 50 /* We use only one priority for now */ 51 static u8 xive_irq_priority; 52 53 /* TIMA exported to KVM */ 54 void __iomem *xive_tima; 55 EXPORT_SYMBOL_GPL(xive_tima); 56 u32 xive_tima_offset; 57 58 /* Backend ops */ 59 static const struct xive_ops *xive_ops; 60 61 /* Our global interrupt domain */ 62 static struct irq_domain *xive_irq_domain; 63 64 #ifdef CONFIG_SMP 65 /* The IPIs use the same logical irq number when on the same chip */ 66 static struct xive_ipi_desc { 67 unsigned int irq; 68 char name[16]; 69 atomic_t started; 70 } *xive_ipis; 71 72 /* 73 * Use early_cpu_to_node() for hot-plugged CPUs 74 */ 75 static unsigned int xive_ipi_cpu_to_irq(unsigned int cpu) 76 { 77 return xive_ipis[early_cpu_to_node(cpu)].irq; 78 } 79 #endif 80 81 /* Xive state for each CPU */ 82 static DEFINE_PER_CPU(struct xive_cpu *, xive_cpu); 83 84 /* An invalid CPU target */ 85 #define XIVE_INVALID_TARGET (-1) 86 87 /* 88 * Read the next entry in a queue, return its content if it's valid 89 * or 0 if there is no new entry. 90 * 91 * The queue pointer is moved forward unless "just_peek" is set 92 */ 93 static u32 xive_read_eq(struct xive_q *q, bool just_peek) 94 { 95 u32 cur; 96 97 if (!q->qpage) 98 return 0; 99 cur = be32_to_cpup(q->qpage + q->idx); 100 101 /* Check valid bit (31) vs current toggle polarity */ 102 if ((cur >> 31) == q->toggle) 103 return 0; 104 105 /* If consuming from the queue ... */ 106 if (!just_peek) { 107 /* Next entry */ 108 q->idx = (q->idx + 1) & q->msk; 109 110 /* Wrap around: flip valid toggle */ 111 if (q->idx == 0) 112 q->toggle ^= 1; 113 } 114 /* Mask out the valid bit (31) */ 115 return cur & 0x7fffffff; 116 } 117 118 /* 119 * Scans all the queue that may have interrupts in them 120 * (based on "pending_prio") in priority order until an 121 * interrupt is found or all the queues are empty. 122 * 123 * Then updates the CPPR (Current Processor Priority 124 * Register) based on the most favored interrupt found 125 * (0xff if none) and return what was found (0 if none). 126 * 127 * If just_peek is set, return the most favored pending 128 * interrupt if any but don't update the queue pointers. 129 * 130 * Note: This function can operate generically on any number 131 * of queues (up to 8). The current implementation of the XIVE 132 * driver only uses a single queue however. 133 * 134 * Note2: This will also "flush" "the pending_count" of a queue 135 * into the "count" when that queue is observed to be empty. 136 * This is used to keep track of the amount of interrupts 137 * targetting a queue. When an interrupt is moved away from 138 * a queue, we only decrement that queue count once the queue 139 * has been observed empty to avoid races. 140 */ 141 static u32 xive_scan_interrupts(struct xive_cpu *xc, bool just_peek) 142 { 143 u32 irq = 0; 144 u8 prio = 0; 145 146 /* Find highest pending priority */ 147 while (xc->pending_prio != 0) { 148 struct xive_q *q; 149 150 prio = ffs(xc->pending_prio) - 1; 151 DBG_VERBOSE("scan_irq: trying prio %d\n", prio); 152 153 /* Try to fetch */ 154 irq = xive_read_eq(&xc->queue[prio], just_peek); 155 156 /* Found something ? That's it */ 157 if (irq) { 158 if (just_peek || irq_to_desc(irq)) 159 break; 160 /* 161 * We should never get here; if we do then we must 162 * have failed to synchronize the interrupt properly 163 * when shutting it down. 164 */ 165 pr_crit("xive: got interrupt %d without descriptor, dropping\n", 166 irq); 167 WARN_ON(1); 168 continue; 169 } 170 171 /* Clear pending bits */ 172 xc->pending_prio &= ~(1 << prio); 173 174 /* 175 * Check if the queue count needs adjusting due to 176 * interrupts being moved away. See description of 177 * xive_dec_target_count() 178 */ 179 q = &xc->queue[prio]; 180 if (atomic_read(&q->pending_count)) { 181 int p = atomic_xchg(&q->pending_count, 0); 182 if (p) { 183 WARN_ON(p > atomic_read(&q->count)); 184 atomic_sub(p, &q->count); 185 } 186 } 187 } 188 189 /* If nothing was found, set CPPR to 0xff */ 190 if (irq == 0) 191 prio = 0xff; 192 193 /* Update HW CPPR to match if necessary */ 194 if (prio != xc->cppr) { 195 DBG_VERBOSE("scan_irq: adjusting CPPR to %d\n", prio); 196 xc->cppr = prio; 197 out_8(xive_tima + xive_tima_offset + TM_CPPR, prio); 198 } 199 200 return irq; 201 } 202 203 /* 204 * This is used to perform the magic loads from an ESB 205 * described in xive-regs.h 206 */ 207 static notrace u8 xive_esb_read(struct xive_irq_data *xd, u32 offset) 208 { 209 u64 val; 210 211 if (offset == XIVE_ESB_SET_PQ_10 && xd->flags & XIVE_IRQ_FLAG_STORE_EOI) 212 offset |= XIVE_ESB_LD_ST_MO; 213 214 if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw) 215 val = xive_ops->esb_rw(xd->hw_irq, offset, 0, 0); 216 else 217 val = in_be64(xd->eoi_mmio + offset); 218 219 return (u8)val; 220 } 221 222 static void xive_esb_write(struct xive_irq_data *xd, u32 offset, u64 data) 223 { 224 if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw) 225 xive_ops->esb_rw(xd->hw_irq, offset, data, 1); 226 else 227 out_be64(xd->eoi_mmio + offset, data); 228 } 229 230 #ifdef CONFIG_XMON 231 static notrace void xive_dump_eq(const char *name, struct xive_q *q) 232 { 233 u32 i0, i1, idx; 234 235 if (!q->qpage) 236 return; 237 idx = q->idx; 238 i0 = be32_to_cpup(q->qpage + idx); 239 idx = (idx + 1) & q->msk; 240 i1 = be32_to_cpup(q->qpage + idx); 241 xmon_printf("%s idx=%d T=%d %08x %08x ...", name, 242 q->idx, q->toggle, i0, i1); 243 } 244 245 notrace void xmon_xive_do_dump(int cpu) 246 { 247 struct xive_cpu *xc = per_cpu(xive_cpu, cpu); 248 249 xmon_printf("CPU %d:", cpu); 250 if (xc) { 251 xmon_printf("pp=%02x CPPR=%02x ", xc->pending_prio, xc->cppr); 252 253 #ifdef CONFIG_SMP 254 { 255 u64 val = xive_esb_read(&xc->ipi_data, XIVE_ESB_GET); 256 257 xmon_printf("IPI=0x%08x PQ=%c%c ", xc->hw_ipi, 258 val & XIVE_ESB_VAL_P ? 'P' : '-', 259 val & XIVE_ESB_VAL_Q ? 'Q' : '-'); 260 } 261 #endif 262 xive_dump_eq("EQ", &xc->queue[xive_irq_priority]); 263 } 264 xmon_printf("\n"); 265 } 266 267 static struct irq_data *xive_get_irq_data(u32 hw_irq) 268 { 269 unsigned int irq = irq_find_mapping(xive_irq_domain, hw_irq); 270 271 return irq ? irq_get_irq_data(irq) : NULL; 272 } 273 274 int xmon_xive_get_irq_config(u32 hw_irq, struct irq_data *d) 275 { 276 int rc; 277 u32 target; 278 u8 prio; 279 u32 lirq; 280 281 rc = xive_ops->get_irq_config(hw_irq, &target, &prio, &lirq); 282 if (rc) { 283 xmon_printf("IRQ 0x%08x : no config rc=%d\n", hw_irq, rc); 284 return rc; 285 } 286 287 xmon_printf("IRQ 0x%08x : target=0x%x prio=%02x lirq=0x%x ", 288 hw_irq, target, prio, lirq); 289 290 if (!d) 291 d = xive_get_irq_data(hw_irq); 292 293 if (d) { 294 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 295 u64 val = xive_esb_read(xd, XIVE_ESB_GET); 296 297 xmon_printf("flags=%c%c%c PQ=%c%c", 298 xd->flags & XIVE_IRQ_FLAG_STORE_EOI ? 'S' : ' ', 299 xd->flags & XIVE_IRQ_FLAG_LSI ? 'L' : ' ', 300 xd->flags & XIVE_IRQ_FLAG_H_INT_ESB ? 'H' : ' ', 301 val & XIVE_ESB_VAL_P ? 'P' : '-', 302 val & XIVE_ESB_VAL_Q ? 'Q' : '-'); 303 } 304 305 xmon_printf("\n"); 306 return 0; 307 } 308 309 void xmon_xive_get_irq_all(void) 310 { 311 unsigned int i; 312 struct irq_desc *desc; 313 314 for_each_irq_desc(i, desc) { 315 struct irq_data *d = irq_domain_get_irq_data(xive_irq_domain, i); 316 317 if (d) 318 xmon_xive_get_irq_config(irqd_to_hwirq(d), d); 319 } 320 } 321 322 #endif /* CONFIG_XMON */ 323 324 static unsigned int xive_get_irq(void) 325 { 326 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 327 u32 irq; 328 329 /* 330 * This can be called either as a result of a HW interrupt or 331 * as a "replay" because EOI decided there was still something 332 * in one of the queues. 333 * 334 * First we perform an ACK cycle in order to update our mask 335 * of pending priorities. This will also have the effect of 336 * updating the CPPR to the most favored pending interrupts. 337 * 338 * In the future, if we have a way to differentiate a first 339 * entry (on HW interrupt) from a replay triggered by EOI, 340 * we could skip this on replays unless we soft-mask tells us 341 * that a new HW interrupt occurred. 342 */ 343 xive_ops->update_pending(xc); 344 345 DBG_VERBOSE("get_irq: pending=%02x\n", xc->pending_prio); 346 347 /* Scan our queue(s) for interrupts */ 348 irq = xive_scan_interrupts(xc, false); 349 350 DBG_VERBOSE("get_irq: got irq 0x%x, new pending=0x%02x\n", 351 irq, xc->pending_prio); 352 353 /* Return pending interrupt if any */ 354 if (irq == XIVE_BAD_IRQ) 355 return 0; 356 return irq; 357 } 358 359 /* 360 * After EOI'ing an interrupt, we need to re-check the queue 361 * to see if another interrupt is pending since multiple 362 * interrupts can coalesce into a single notification to the 363 * CPU. 364 * 365 * If we find that there is indeed more in there, we call 366 * force_external_irq_replay() to make Linux synthetize an 367 * external interrupt on the next call to local_irq_restore(). 368 */ 369 static void xive_do_queue_eoi(struct xive_cpu *xc) 370 { 371 if (xive_scan_interrupts(xc, true) != 0) { 372 DBG_VERBOSE("eoi: pending=0x%02x\n", xc->pending_prio); 373 force_external_irq_replay(); 374 } 375 } 376 377 /* 378 * EOI an interrupt at the source. There are several methods 379 * to do this depending on the HW version and source type 380 */ 381 static void xive_do_source_eoi(struct xive_irq_data *xd) 382 { 383 u8 eoi_val; 384 385 xd->stale_p = false; 386 387 /* If the XIVE supports the new "store EOI facility, use it */ 388 if (xd->flags & XIVE_IRQ_FLAG_STORE_EOI) { 389 xive_esb_write(xd, XIVE_ESB_STORE_EOI, 0); 390 return; 391 } 392 393 /* 394 * For LSIs, we use the "EOI cycle" special load rather than 395 * PQ bits, as they are automatically re-triggered in HW when 396 * still pending. 397 */ 398 if (xd->flags & XIVE_IRQ_FLAG_LSI) { 399 xive_esb_read(xd, XIVE_ESB_LOAD_EOI); 400 return; 401 } 402 403 /* 404 * Otherwise, we use the special MMIO that does a clear of 405 * both P and Q and returns the old Q. This allows us to then 406 * do a re-trigger if Q was set rather than synthesizing an 407 * interrupt in software 408 */ 409 eoi_val = xive_esb_read(xd, XIVE_ESB_SET_PQ_00); 410 DBG_VERBOSE("eoi_val=%x\n", eoi_val); 411 412 /* Re-trigger if needed */ 413 if ((eoi_val & XIVE_ESB_VAL_Q) && xd->trig_mmio) 414 out_be64(xd->trig_mmio, 0); 415 } 416 417 /* irq_chip eoi callback, called with irq descriptor lock held */ 418 static void xive_irq_eoi(struct irq_data *d) 419 { 420 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 421 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 422 423 DBG_VERBOSE("eoi_irq: irq=%d [0x%lx] pending=%02x\n", 424 d->irq, irqd_to_hwirq(d), xc->pending_prio); 425 426 /* 427 * EOI the source if it hasn't been disabled and hasn't 428 * been passed-through to a KVM guest 429 */ 430 if (!irqd_irq_disabled(d) && !irqd_is_forwarded_to_vcpu(d) && 431 !(xd->flags & XIVE_IRQ_FLAG_NO_EOI)) 432 xive_do_source_eoi(xd); 433 else 434 xd->stale_p = true; 435 436 /* 437 * Clear saved_p to indicate that it's no longer occupying 438 * a queue slot on the target queue 439 */ 440 xd->saved_p = false; 441 442 /* Check for more work in the queue */ 443 xive_do_queue_eoi(xc); 444 } 445 446 /* 447 * Helper used to mask and unmask an interrupt source. 448 */ 449 static void xive_do_source_set_mask(struct xive_irq_data *xd, 450 bool mask) 451 { 452 u64 val; 453 454 /* 455 * If the interrupt had P set, it may be in a queue. 456 * 457 * We need to make sure we don't re-enable it until it 458 * has been fetched from that queue and EOId. We keep 459 * a copy of that P state and use it to restore the 460 * ESB accordingly on unmask. 461 */ 462 if (mask) { 463 val = xive_esb_read(xd, XIVE_ESB_SET_PQ_01); 464 if (!xd->stale_p && !!(val & XIVE_ESB_VAL_P)) 465 xd->saved_p = true; 466 xd->stale_p = false; 467 } else if (xd->saved_p) { 468 xive_esb_read(xd, XIVE_ESB_SET_PQ_10); 469 xd->saved_p = false; 470 } else { 471 xive_esb_read(xd, XIVE_ESB_SET_PQ_00); 472 xd->stale_p = false; 473 } 474 } 475 476 /* 477 * Try to chose "cpu" as a new interrupt target. Increments 478 * the queue accounting for that target if it's not already 479 * full. 480 */ 481 static bool xive_try_pick_target(int cpu) 482 { 483 struct xive_cpu *xc = per_cpu(xive_cpu, cpu); 484 struct xive_q *q = &xc->queue[xive_irq_priority]; 485 int max; 486 487 /* 488 * Calculate max number of interrupts in that queue. 489 * 490 * We leave a gap of 1 just in case... 491 */ 492 max = (q->msk + 1) - 1; 493 return !!atomic_add_unless(&q->count, 1, max); 494 } 495 496 /* 497 * Un-account an interrupt for a target CPU. We don't directly 498 * decrement q->count since the interrupt might still be present 499 * in the queue. 500 * 501 * Instead increment a separate counter "pending_count" which 502 * will be substracted from "count" later when that CPU observes 503 * the queue to be empty. 504 */ 505 static void xive_dec_target_count(int cpu) 506 { 507 struct xive_cpu *xc = per_cpu(xive_cpu, cpu); 508 struct xive_q *q = &xc->queue[xive_irq_priority]; 509 510 if (WARN_ON(cpu < 0 || !xc)) { 511 pr_err("%s: cpu=%d xc=%p\n", __func__, cpu, xc); 512 return; 513 } 514 515 /* 516 * We increment the "pending count" which will be used 517 * to decrement the target queue count whenever it's next 518 * processed and found empty. This ensure that we don't 519 * decrement while we still have the interrupt there 520 * occupying a slot. 521 */ 522 atomic_inc(&q->pending_count); 523 } 524 525 /* Find a tentative CPU target in a CPU mask */ 526 static int xive_find_target_in_mask(const struct cpumask *mask, 527 unsigned int fuzz) 528 { 529 int cpu, first, num, i; 530 531 /* Pick up a starting point CPU in the mask based on fuzz */ 532 num = min_t(int, cpumask_weight(mask), nr_cpu_ids); 533 first = fuzz % num; 534 535 /* Locate it */ 536 cpu = cpumask_first(mask); 537 for (i = 0; i < first && cpu < nr_cpu_ids; i++) 538 cpu = cpumask_next(cpu, mask); 539 540 /* Sanity check */ 541 if (WARN_ON(cpu >= nr_cpu_ids)) 542 cpu = cpumask_first(cpu_online_mask); 543 544 /* Remember first one to handle wrap-around */ 545 first = cpu; 546 547 /* 548 * Now go through the entire mask until we find a valid 549 * target. 550 */ 551 do { 552 /* 553 * We re-check online as the fallback case passes us 554 * an untested affinity mask 555 */ 556 if (cpu_online(cpu) && xive_try_pick_target(cpu)) 557 return cpu; 558 cpu = cpumask_next(cpu, mask); 559 /* Wrap around */ 560 if (cpu >= nr_cpu_ids) 561 cpu = cpumask_first(mask); 562 } while (cpu != first); 563 564 return -1; 565 } 566 567 /* 568 * Pick a target CPU for an interrupt. This is done at 569 * startup or if the affinity is changed in a way that 570 * invalidates the current target. 571 */ 572 static int xive_pick_irq_target(struct irq_data *d, 573 const struct cpumask *affinity) 574 { 575 static unsigned int fuzz; 576 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 577 cpumask_var_t mask; 578 int cpu = -1; 579 580 /* 581 * If we have chip IDs, first we try to build a mask of 582 * CPUs matching the CPU and find a target in there 583 */ 584 if (xd->src_chip != XIVE_INVALID_CHIP_ID && 585 zalloc_cpumask_var(&mask, GFP_ATOMIC)) { 586 /* Build a mask of matching chip IDs */ 587 for_each_cpu_and(cpu, affinity, cpu_online_mask) { 588 struct xive_cpu *xc = per_cpu(xive_cpu, cpu); 589 if (xc->chip_id == xd->src_chip) 590 cpumask_set_cpu(cpu, mask); 591 } 592 /* Try to find a target */ 593 if (cpumask_empty(mask)) 594 cpu = -1; 595 else 596 cpu = xive_find_target_in_mask(mask, fuzz++); 597 free_cpumask_var(mask); 598 if (cpu >= 0) 599 return cpu; 600 fuzz--; 601 } 602 603 /* No chip IDs, fallback to using the affinity mask */ 604 return xive_find_target_in_mask(affinity, fuzz++); 605 } 606 607 static unsigned int xive_irq_startup(struct irq_data *d) 608 { 609 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 610 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 611 int target, rc; 612 613 xd->saved_p = false; 614 xd->stale_p = false; 615 pr_devel("xive_irq_startup: irq %d [0x%x] data @%p\n", 616 d->irq, hw_irq, d); 617 618 /* Pick a target */ 619 target = xive_pick_irq_target(d, irq_data_get_affinity_mask(d)); 620 if (target == XIVE_INVALID_TARGET) { 621 /* Try again breaking affinity */ 622 target = xive_pick_irq_target(d, cpu_online_mask); 623 if (target == XIVE_INVALID_TARGET) 624 return -ENXIO; 625 pr_warn("irq %d started with broken affinity\n", d->irq); 626 } 627 628 /* Sanity check */ 629 if (WARN_ON(target == XIVE_INVALID_TARGET || 630 target >= nr_cpu_ids)) 631 target = smp_processor_id(); 632 633 xd->target = target; 634 635 /* 636 * Configure the logical number to be the Linux IRQ number 637 * and set the target queue 638 */ 639 rc = xive_ops->configure_irq(hw_irq, 640 get_hard_smp_processor_id(target), 641 xive_irq_priority, d->irq); 642 if (rc) 643 return rc; 644 645 /* Unmask the ESB */ 646 xive_do_source_set_mask(xd, false); 647 648 return 0; 649 } 650 651 /* called with irq descriptor lock held */ 652 static void xive_irq_shutdown(struct irq_data *d) 653 { 654 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 655 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 656 657 pr_devel("xive_irq_shutdown: irq %d [0x%x] data @%p\n", 658 d->irq, hw_irq, d); 659 660 if (WARN_ON(xd->target == XIVE_INVALID_TARGET)) 661 return; 662 663 /* Mask the interrupt at the source */ 664 xive_do_source_set_mask(xd, true); 665 666 /* 667 * Mask the interrupt in HW in the IVT/EAS and set the number 668 * to be the "bad" IRQ number 669 */ 670 xive_ops->configure_irq(hw_irq, 671 get_hard_smp_processor_id(xd->target), 672 0xff, XIVE_BAD_IRQ); 673 674 xive_dec_target_count(xd->target); 675 xd->target = XIVE_INVALID_TARGET; 676 } 677 678 static void xive_irq_unmask(struct irq_data *d) 679 { 680 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 681 682 pr_devel("xive_irq_unmask: irq %d data @%p\n", d->irq, xd); 683 684 xive_do_source_set_mask(xd, false); 685 } 686 687 static void xive_irq_mask(struct irq_data *d) 688 { 689 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 690 691 pr_devel("xive_irq_mask: irq %d data @%p\n", d->irq, xd); 692 693 xive_do_source_set_mask(xd, true); 694 } 695 696 static int xive_irq_set_affinity(struct irq_data *d, 697 const struct cpumask *cpumask, 698 bool force) 699 { 700 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 701 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 702 u32 target, old_target; 703 int rc = 0; 704 705 pr_debug("%s: irq %d/%x\n", __func__, d->irq, hw_irq); 706 707 /* Is this valid ? */ 708 if (cpumask_any_and(cpumask, cpu_online_mask) >= nr_cpu_ids) 709 return -EINVAL; 710 711 /* 712 * If existing target is already in the new mask, and is 713 * online then do nothing. 714 */ 715 if (xd->target != XIVE_INVALID_TARGET && 716 cpu_online(xd->target) && 717 cpumask_test_cpu(xd->target, cpumask)) 718 return IRQ_SET_MASK_OK; 719 720 /* Pick a new target */ 721 target = xive_pick_irq_target(d, cpumask); 722 723 /* No target found */ 724 if (target == XIVE_INVALID_TARGET) 725 return -ENXIO; 726 727 /* Sanity check */ 728 if (WARN_ON(target >= nr_cpu_ids)) 729 target = smp_processor_id(); 730 731 old_target = xd->target; 732 733 /* 734 * Only configure the irq if it's not currently passed-through to 735 * a KVM guest 736 */ 737 if (!irqd_is_forwarded_to_vcpu(d)) 738 rc = xive_ops->configure_irq(hw_irq, 739 get_hard_smp_processor_id(target), 740 xive_irq_priority, d->irq); 741 if (rc < 0) { 742 pr_err("Error %d reconfiguring irq %d\n", rc, d->irq); 743 return rc; 744 } 745 746 pr_debug(" target: 0x%x\n", target); 747 xd->target = target; 748 749 /* Give up previous target */ 750 if (old_target != XIVE_INVALID_TARGET) 751 xive_dec_target_count(old_target); 752 753 return IRQ_SET_MASK_OK; 754 } 755 756 static int xive_irq_set_type(struct irq_data *d, unsigned int flow_type) 757 { 758 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 759 760 /* 761 * We only support these. This has really no effect other than setting 762 * the corresponding descriptor bits mind you but those will in turn 763 * affect the resend function when re-enabling an edge interrupt. 764 * 765 * Set set the default to edge as explained in map(). 766 */ 767 if (flow_type == IRQ_TYPE_DEFAULT || flow_type == IRQ_TYPE_NONE) 768 flow_type = IRQ_TYPE_EDGE_RISING; 769 770 if (flow_type != IRQ_TYPE_EDGE_RISING && 771 flow_type != IRQ_TYPE_LEVEL_LOW) 772 return -EINVAL; 773 774 irqd_set_trigger_type(d, flow_type); 775 776 /* 777 * Double check it matches what the FW thinks 778 * 779 * NOTE: We don't know yet if the PAPR interface will provide 780 * the LSI vs MSI information apart from the device-tree so 781 * this check might have to move into an optional backend call 782 * that is specific to the native backend 783 */ 784 if ((flow_type == IRQ_TYPE_LEVEL_LOW) != 785 !!(xd->flags & XIVE_IRQ_FLAG_LSI)) { 786 pr_warn("Interrupt %d (HW 0x%x) type mismatch, Linux says %s, FW says %s\n", 787 d->irq, (u32)irqd_to_hwirq(d), 788 (flow_type == IRQ_TYPE_LEVEL_LOW) ? "Level" : "Edge", 789 (xd->flags & XIVE_IRQ_FLAG_LSI) ? "Level" : "Edge"); 790 } 791 792 return IRQ_SET_MASK_OK_NOCOPY; 793 } 794 795 static int xive_irq_retrigger(struct irq_data *d) 796 { 797 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 798 799 /* This should be only for MSIs */ 800 if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI)) 801 return 0; 802 803 /* 804 * To perform a retrigger, we first set the PQ bits to 805 * 11, then perform an EOI. 806 */ 807 xive_esb_read(xd, XIVE_ESB_SET_PQ_11); 808 xive_do_source_eoi(xd); 809 810 return 1; 811 } 812 813 /* 814 * Caller holds the irq descriptor lock, so this won't be called 815 * concurrently with xive_get_irqchip_state on the same interrupt. 816 */ 817 static int xive_irq_set_vcpu_affinity(struct irq_data *d, void *state) 818 { 819 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 820 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 821 int rc; 822 u8 pq; 823 824 /* 825 * This is called by KVM with state non-NULL for enabling 826 * pass-through or NULL for disabling it 827 */ 828 if (state) { 829 irqd_set_forwarded_to_vcpu(d); 830 831 /* Set it to PQ=10 state to prevent further sends */ 832 pq = xive_esb_read(xd, XIVE_ESB_SET_PQ_10); 833 if (!xd->stale_p) { 834 xd->saved_p = !!(pq & XIVE_ESB_VAL_P); 835 xd->stale_p = !xd->saved_p; 836 } 837 838 /* No target ? nothing to do */ 839 if (xd->target == XIVE_INVALID_TARGET) { 840 /* 841 * An untargetted interrupt should have been 842 * also masked at the source 843 */ 844 WARN_ON(xd->saved_p); 845 846 return 0; 847 } 848 849 /* 850 * If P was set, adjust state to PQ=11 to indicate 851 * that a resend is needed for the interrupt to reach 852 * the guest. Also remember the value of P. 853 * 854 * This also tells us that it's in flight to a host queue 855 * or has already been fetched but hasn't been EOIed yet 856 * by the host. This it's potentially using up a host 857 * queue slot. This is important to know because as long 858 * as this is the case, we must not hard-unmask it when 859 * "returning" that interrupt to the host. 860 * 861 * This saved_p is cleared by the host EOI, when we know 862 * for sure the queue slot is no longer in use. 863 */ 864 if (xd->saved_p) { 865 xive_esb_read(xd, XIVE_ESB_SET_PQ_11); 866 867 /* 868 * Sync the XIVE source HW to ensure the interrupt 869 * has gone through the EAS before we change its 870 * target to the guest. That should guarantee us 871 * that we *will* eventually get an EOI for it on 872 * the host. Otherwise there would be a small window 873 * for P to be seen here but the interrupt going 874 * to the guest queue. 875 */ 876 if (xive_ops->sync_source) 877 xive_ops->sync_source(hw_irq); 878 } 879 } else { 880 irqd_clr_forwarded_to_vcpu(d); 881 882 /* No host target ? hard mask and return */ 883 if (xd->target == XIVE_INVALID_TARGET) { 884 xive_do_source_set_mask(xd, true); 885 return 0; 886 } 887 888 /* 889 * Sync the XIVE source HW to ensure the interrupt 890 * has gone through the EAS before we change its 891 * target to the host. 892 */ 893 if (xive_ops->sync_source) 894 xive_ops->sync_source(hw_irq); 895 896 /* 897 * By convention we are called with the interrupt in 898 * a PQ=10 or PQ=11 state, ie, it won't fire and will 899 * have latched in Q whether there's a pending HW 900 * interrupt or not. 901 * 902 * First reconfigure the target. 903 */ 904 rc = xive_ops->configure_irq(hw_irq, 905 get_hard_smp_processor_id(xd->target), 906 xive_irq_priority, d->irq); 907 if (rc) 908 return rc; 909 910 /* 911 * Then if saved_p is not set, effectively re-enable the 912 * interrupt with an EOI. If it is set, we know there is 913 * still a message in a host queue somewhere that will be 914 * EOId eventually. 915 * 916 * Note: We don't check irqd_irq_disabled(). Effectively, 917 * we *will* let the irq get through even if masked if the 918 * HW is still firing it in order to deal with the whole 919 * saved_p business properly. If the interrupt triggers 920 * while masked, the generic code will re-mask it anyway. 921 */ 922 if (!xd->saved_p) 923 xive_do_source_eoi(xd); 924 925 } 926 return 0; 927 } 928 929 /* Called with irq descriptor lock held. */ 930 static int xive_get_irqchip_state(struct irq_data *data, 931 enum irqchip_irq_state which, bool *state) 932 { 933 struct xive_irq_data *xd = irq_data_get_irq_handler_data(data); 934 u8 pq; 935 936 switch (which) { 937 case IRQCHIP_STATE_ACTIVE: 938 pq = xive_esb_read(xd, XIVE_ESB_GET); 939 940 /* 941 * The esb value being all 1's means we couldn't get 942 * the PQ state of the interrupt through mmio. It may 943 * happen, for example when querying a PHB interrupt 944 * while the PHB is in an error state. We consider the 945 * interrupt to be inactive in that case. 946 */ 947 *state = (pq != XIVE_ESB_INVALID) && !xd->stale_p && 948 (xd->saved_p || (!!(pq & XIVE_ESB_VAL_P) && 949 !irqd_irq_disabled(data))); 950 return 0; 951 default: 952 return -EINVAL; 953 } 954 } 955 956 static struct irq_chip xive_irq_chip = { 957 .name = "XIVE-IRQ", 958 .irq_startup = xive_irq_startup, 959 .irq_shutdown = xive_irq_shutdown, 960 .irq_eoi = xive_irq_eoi, 961 .irq_mask = xive_irq_mask, 962 .irq_unmask = xive_irq_unmask, 963 .irq_set_affinity = xive_irq_set_affinity, 964 .irq_set_type = xive_irq_set_type, 965 .irq_retrigger = xive_irq_retrigger, 966 .irq_set_vcpu_affinity = xive_irq_set_vcpu_affinity, 967 .irq_get_irqchip_state = xive_get_irqchip_state, 968 }; 969 970 bool is_xive_irq(struct irq_chip *chip) 971 { 972 return chip == &xive_irq_chip; 973 } 974 EXPORT_SYMBOL_GPL(is_xive_irq); 975 976 void xive_cleanup_irq_data(struct xive_irq_data *xd) 977 { 978 pr_debug("%s for HW %x\n", __func__, xd->hw_irq); 979 980 if (xd->eoi_mmio) { 981 iounmap(xd->eoi_mmio); 982 if (xd->eoi_mmio == xd->trig_mmio) 983 xd->trig_mmio = NULL; 984 xd->eoi_mmio = NULL; 985 } 986 if (xd->trig_mmio) { 987 iounmap(xd->trig_mmio); 988 xd->trig_mmio = NULL; 989 } 990 } 991 EXPORT_SYMBOL_GPL(xive_cleanup_irq_data); 992 993 static int xive_irq_alloc_data(unsigned int virq, irq_hw_number_t hw) 994 { 995 struct xive_irq_data *xd; 996 int rc; 997 998 xd = kzalloc(sizeof(struct xive_irq_data), GFP_KERNEL); 999 if (!xd) 1000 return -ENOMEM; 1001 rc = xive_ops->populate_irq_data(hw, xd); 1002 if (rc) { 1003 kfree(xd); 1004 return rc; 1005 } 1006 xd->target = XIVE_INVALID_TARGET; 1007 irq_set_handler_data(virq, xd); 1008 1009 /* 1010 * Turn OFF by default the interrupt being mapped. A side 1011 * effect of this check is the mapping the ESB page of the 1012 * interrupt in the Linux address space. This prevents page 1013 * fault issues in the crash handler which masks all 1014 * interrupts. 1015 */ 1016 xive_esb_read(xd, XIVE_ESB_SET_PQ_01); 1017 1018 return 0; 1019 } 1020 1021 void xive_irq_free_data(unsigned int virq) 1022 { 1023 struct xive_irq_data *xd = irq_get_handler_data(virq); 1024 1025 if (!xd) 1026 return; 1027 irq_set_handler_data(virq, NULL); 1028 xive_cleanup_irq_data(xd); 1029 kfree(xd); 1030 } 1031 EXPORT_SYMBOL_GPL(xive_irq_free_data); 1032 1033 #ifdef CONFIG_SMP 1034 1035 static void xive_cause_ipi(int cpu) 1036 { 1037 struct xive_cpu *xc; 1038 struct xive_irq_data *xd; 1039 1040 xc = per_cpu(xive_cpu, cpu); 1041 1042 DBG_VERBOSE("IPI CPU %d -> %d (HW IRQ 0x%x)\n", 1043 smp_processor_id(), cpu, xc->hw_ipi); 1044 1045 xd = &xc->ipi_data; 1046 if (WARN_ON(!xd->trig_mmio)) 1047 return; 1048 out_be64(xd->trig_mmio, 0); 1049 } 1050 1051 static irqreturn_t xive_muxed_ipi_action(int irq, void *dev_id) 1052 { 1053 return smp_ipi_demux(); 1054 } 1055 1056 static void xive_ipi_eoi(struct irq_data *d) 1057 { 1058 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 1059 1060 /* Handle possible race with unplug and drop stale IPIs */ 1061 if (!xc) 1062 return; 1063 1064 DBG_VERBOSE("IPI eoi: irq=%d [0x%lx] (HW IRQ 0x%x) pending=%02x\n", 1065 d->irq, irqd_to_hwirq(d), xc->hw_ipi, xc->pending_prio); 1066 1067 xive_do_source_eoi(&xc->ipi_data); 1068 xive_do_queue_eoi(xc); 1069 } 1070 1071 static void xive_ipi_do_nothing(struct irq_data *d) 1072 { 1073 /* 1074 * Nothing to do, we never mask/unmask IPIs, but the callback 1075 * has to exist for the struct irq_chip. 1076 */ 1077 } 1078 1079 static struct irq_chip xive_ipi_chip = { 1080 .name = "XIVE-IPI", 1081 .irq_eoi = xive_ipi_eoi, 1082 .irq_mask = xive_ipi_do_nothing, 1083 .irq_unmask = xive_ipi_do_nothing, 1084 }; 1085 1086 /* 1087 * IPIs are marked per-cpu. We use separate HW interrupts under the 1088 * hood but associated with the same "linux" interrupt 1089 */ 1090 struct xive_ipi_alloc_info { 1091 irq_hw_number_t hwirq; 1092 }; 1093 1094 static int xive_ipi_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 1095 unsigned int nr_irqs, void *arg) 1096 { 1097 struct xive_ipi_alloc_info *info = arg; 1098 int i; 1099 1100 for (i = 0; i < nr_irqs; i++) { 1101 irq_domain_set_info(domain, virq + i, info->hwirq + i, &xive_ipi_chip, 1102 domain->host_data, handle_percpu_irq, 1103 NULL, NULL); 1104 } 1105 return 0; 1106 } 1107 1108 static const struct irq_domain_ops xive_ipi_irq_domain_ops = { 1109 .alloc = xive_ipi_irq_domain_alloc, 1110 }; 1111 1112 static int __init xive_init_ipis(void) 1113 { 1114 struct fwnode_handle *fwnode; 1115 struct irq_domain *ipi_domain; 1116 unsigned int node; 1117 int ret = -ENOMEM; 1118 1119 fwnode = irq_domain_alloc_named_fwnode("XIVE-IPI"); 1120 if (!fwnode) 1121 goto out; 1122 1123 ipi_domain = irq_domain_create_linear(fwnode, nr_node_ids, 1124 &xive_ipi_irq_domain_ops, NULL); 1125 if (!ipi_domain) 1126 goto out_free_fwnode; 1127 1128 xive_ipis = kcalloc(nr_node_ids, sizeof(*xive_ipis), GFP_KERNEL | __GFP_NOFAIL); 1129 if (!xive_ipis) 1130 goto out_free_domain; 1131 1132 for_each_node(node) { 1133 struct xive_ipi_desc *xid = &xive_ipis[node]; 1134 struct xive_ipi_alloc_info info = { node }; 1135 1136 /* 1137 * Map one IPI interrupt per node for all cpus of that node. 1138 * Since the HW interrupt number doesn't have any meaning, 1139 * simply use the node number. 1140 */ 1141 ret = irq_domain_alloc_irqs(ipi_domain, 1, node, &info); 1142 if (ret < 0) 1143 goto out_free_xive_ipis; 1144 xid->irq = ret; 1145 1146 snprintf(xid->name, sizeof(xid->name), "IPI-%d", node); 1147 } 1148 1149 return ret; 1150 1151 out_free_xive_ipis: 1152 kfree(xive_ipis); 1153 out_free_domain: 1154 irq_domain_remove(ipi_domain); 1155 out_free_fwnode: 1156 irq_domain_free_fwnode(fwnode); 1157 out: 1158 return ret; 1159 } 1160 1161 static int xive_request_ipi(unsigned int cpu) 1162 { 1163 struct xive_ipi_desc *xid = &xive_ipis[early_cpu_to_node(cpu)]; 1164 int ret; 1165 1166 if (atomic_inc_return(&xid->started) > 1) 1167 return 0; 1168 1169 ret = request_irq(xid->irq, xive_muxed_ipi_action, 1170 IRQF_NO_DEBUG | IRQF_PERCPU | IRQF_NO_THREAD, 1171 xid->name, NULL); 1172 1173 WARN(ret < 0, "Failed to request IPI %d: %d\n", xid->irq, ret); 1174 return ret; 1175 } 1176 1177 static int xive_setup_cpu_ipi(unsigned int cpu) 1178 { 1179 unsigned int xive_ipi_irq = xive_ipi_cpu_to_irq(cpu); 1180 struct xive_cpu *xc; 1181 int rc; 1182 1183 pr_debug("Setting up IPI for CPU %d\n", cpu); 1184 1185 xc = per_cpu(xive_cpu, cpu); 1186 1187 /* Check if we are already setup */ 1188 if (xc->hw_ipi != XIVE_BAD_IRQ) 1189 return 0; 1190 1191 /* Register the IPI */ 1192 xive_request_ipi(cpu); 1193 1194 /* Grab an IPI from the backend, this will populate xc->hw_ipi */ 1195 if (xive_ops->get_ipi(cpu, xc)) 1196 return -EIO; 1197 1198 /* 1199 * Populate the IRQ data in the xive_cpu structure and 1200 * configure the HW / enable the IPIs. 1201 */ 1202 rc = xive_ops->populate_irq_data(xc->hw_ipi, &xc->ipi_data); 1203 if (rc) { 1204 pr_err("Failed to populate IPI data on CPU %d\n", cpu); 1205 return -EIO; 1206 } 1207 rc = xive_ops->configure_irq(xc->hw_ipi, 1208 get_hard_smp_processor_id(cpu), 1209 xive_irq_priority, xive_ipi_irq); 1210 if (rc) { 1211 pr_err("Failed to map IPI CPU %d\n", cpu); 1212 return -EIO; 1213 } 1214 pr_devel("CPU %d HW IPI %x, virq %d, trig_mmio=%p\n", cpu, 1215 xc->hw_ipi, xive_ipi_irq, xc->ipi_data.trig_mmio); 1216 1217 /* Unmask it */ 1218 xive_do_source_set_mask(&xc->ipi_data, false); 1219 1220 return 0; 1221 } 1222 1223 static void xive_cleanup_cpu_ipi(unsigned int cpu, struct xive_cpu *xc) 1224 { 1225 unsigned int xive_ipi_irq = xive_ipi_cpu_to_irq(cpu); 1226 1227 /* Disable the IPI and free the IRQ data */ 1228 1229 /* Already cleaned up ? */ 1230 if (xc->hw_ipi == XIVE_BAD_IRQ) 1231 return; 1232 1233 /* TODO: clear IPI mapping */ 1234 1235 /* Mask the IPI */ 1236 xive_do_source_set_mask(&xc->ipi_data, true); 1237 1238 /* 1239 * Note: We don't call xive_cleanup_irq_data() to free 1240 * the mappings as this is called from an IPI on kexec 1241 * which is not a safe environment to call iounmap() 1242 */ 1243 1244 /* Deconfigure/mask in the backend */ 1245 xive_ops->configure_irq(xc->hw_ipi, hard_smp_processor_id(), 1246 0xff, xive_ipi_irq); 1247 1248 /* Free the IPIs in the backend */ 1249 xive_ops->put_ipi(cpu, xc); 1250 } 1251 1252 void __init xive_smp_probe(void) 1253 { 1254 smp_ops->cause_ipi = xive_cause_ipi; 1255 1256 /* Register the IPI */ 1257 xive_init_ipis(); 1258 1259 /* Allocate and setup IPI for the boot CPU */ 1260 xive_setup_cpu_ipi(smp_processor_id()); 1261 } 1262 1263 #endif /* CONFIG_SMP */ 1264 1265 static int xive_irq_domain_map(struct irq_domain *h, unsigned int virq, 1266 irq_hw_number_t hw) 1267 { 1268 int rc; 1269 1270 /* 1271 * Mark interrupts as edge sensitive by default so that resend 1272 * actually works. Will fix that up below if needed. 1273 */ 1274 irq_clear_status_flags(virq, IRQ_LEVEL); 1275 1276 rc = xive_irq_alloc_data(virq, hw); 1277 if (rc) 1278 return rc; 1279 1280 irq_set_chip_and_handler(virq, &xive_irq_chip, handle_fasteoi_irq); 1281 1282 return 0; 1283 } 1284 1285 static void xive_irq_domain_unmap(struct irq_domain *d, unsigned int virq) 1286 { 1287 xive_irq_free_data(virq); 1288 } 1289 1290 static int xive_irq_domain_xlate(struct irq_domain *h, struct device_node *ct, 1291 const u32 *intspec, unsigned int intsize, 1292 irq_hw_number_t *out_hwirq, unsigned int *out_flags) 1293 1294 { 1295 *out_hwirq = intspec[0]; 1296 1297 /* 1298 * If intsize is at least 2, we look for the type in the second cell, 1299 * we assume the LSB indicates a level interrupt. 1300 */ 1301 if (intsize > 1) { 1302 if (intspec[1] & 1) 1303 *out_flags = IRQ_TYPE_LEVEL_LOW; 1304 else 1305 *out_flags = IRQ_TYPE_EDGE_RISING; 1306 } else 1307 *out_flags = IRQ_TYPE_LEVEL_LOW; 1308 1309 return 0; 1310 } 1311 1312 static int xive_irq_domain_match(struct irq_domain *h, struct device_node *node, 1313 enum irq_domain_bus_token bus_token) 1314 { 1315 return xive_ops->match(node); 1316 } 1317 1318 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS 1319 static const char * const esb_names[] = { "RESET", "OFF", "PENDING", "QUEUED" }; 1320 1321 static const struct { 1322 u64 mask; 1323 char *name; 1324 } xive_irq_flags[] = { 1325 { XIVE_IRQ_FLAG_STORE_EOI, "STORE_EOI" }, 1326 { XIVE_IRQ_FLAG_LSI, "LSI" }, 1327 { XIVE_IRQ_FLAG_H_INT_ESB, "H_INT_ESB" }, 1328 { XIVE_IRQ_FLAG_NO_EOI, "NO_EOI" }, 1329 }; 1330 1331 static void xive_irq_domain_debug_show(struct seq_file *m, struct irq_domain *d, 1332 struct irq_data *irqd, int ind) 1333 { 1334 struct xive_irq_data *xd; 1335 u64 val; 1336 int i; 1337 1338 /* No IRQ domain level information. To be done */ 1339 if (!irqd) 1340 return; 1341 1342 if (!is_xive_irq(irq_data_get_irq_chip(irqd))) 1343 return; 1344 1345 seq_printf(m, "%*sXIVE:\n", ind, ""); 1346 ind++; 1347 1348 xd = irq_data_get_irq_handler_data(irqd); 1349 if (!xd) { 1350 seq_printf(m, "%*snot assigned\n", ind, ""); 1351 return; 1352 } 1353 1354 val = xive_esb_read(xd, XIVE_ESB_GET); 1355 seq_printf(m, "%*sESB: %s\n", ind, "", esb_names[val & 0x3]); 1356 seq_printf(m, "%*sPstate: %s %s\n", ind, "", xd->stale_p ? "stale" : "", 1357 xd->saved_p ? "saved" : ""); 1358 seq_printf(m, "%*sTarget: %d\n", ind, "", xd->target); 1359 seq_printf(m, "%*sChip: %d\n", ind, "", xd->src_chip); 1360 seq_printf(m, "%*sTrigger: 0x%016llx\n", ind, "", xd->trig_page); 1361 seq_printf(m, "%*sEOI: 0x%016llx\n", ind, "", xd->eoi_page); 1362 seq_printf(m, "%*sFlags: 0x%llx\n", ind, "", xd->flags); 1363 for (i = 0; i < ARRAY_SIZE(xive_irq_flags); i++) { 1364 if (xd->flags & xive_irq_flags[i].mask) 1365 seq_printf(m, "%*s%s\n", ind + 12, "", xive_irq_flags[i].name); 1366 } 1367 } 1368 #endif 1369 1370 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 1371 static int xive_irq_domain_translate(struct irq_domain *d, 1372 struct irq_fwspec *fwspec, 1373 unsigned long *hwirq, 1374 unsigned int *type) 1375 { 1376 return xive_irq_domain_xlate(d, to_of_node(fwspec->fwnode), 1377 fwspec->param, fwspec->param_count, 1378 hwirq, type); 1379 } 1380 1381 static int xive_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 1382 unsigned int nr_irqs, void *arg) 1383 { 1384 struct irq_fwspec *fwspec = arg; 1385 irq_hw_number_t hwirq; 1386 unsigned int type = IRQ_TYPE_NONE; 1387 int i, rc; 1388 1389 rc = xive_irq_domain_translate(domain, fwspec, &hwirq, &type); 1390 if (rc) 1391 return rc; 1392 1393 pr_debug("%s %d/%lx #%d\n", __func__, virq, hwirq, nr_irqs); 1394 1395 for (i = 0; i < nr_irqs; i++) { 1396 /* TODO: call xive_irq_domain_map() */ 1397 1398 /* 1399 * Mark interrupts as edge sensitive by default so that resend 1400 * actually works. Will fix that up below if needed. 1401 */ 1402 irq_clear_status_flags(virq, IRQ_LEVEL); 1403 1404 /* allocates and sets handler data */ 1405 rc = xive_irq_alloc_data(virq + i, hwirq + i); 1406 if (rc) 1407 return rc; 1408 1409 irq_domain_set_hwirq_and_chip(domain, virq + i, hwirq + i, 1410 &xive_irq_chip, domain->host_data); 1411 irq_set_handler(virq + i, handle_fasteoi_irq); 1412 } 1413 1414 return 0; 1415 } 1416 1417 static void xive_irq_domain_free(struct irq_domain *domain, 1418 unsigned int virq, unsigned int nr_irqs) 1419 { 1420 int i; 1421 1422 pr_debug("%s %d #%d\n", __func__, virq, nr_irqs); 1423 1424 for (i = 0; i < nr_irqs; i++) 1425 xive_irq_free_data(virq + i); 1426 } 1427 #endif 1428 1429 static const struct irq_domain_ops xive_irq_domain_ops = { 1430 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 1431 .alloc = xive_irq_domain_alloc, 1432 .free = xive_irq_domain_free, 1433 .translate = xive_irq_domain_translate, 1434 #endif 1435 .match = xive_irq_domain_match, 1436 .map = xive_irq_domain_map, 1437 .unmap = xive_irq_domain_unmap, 1438 .xlate = xive_irq_domain_xlate, 1439 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS 1440 .debug_show = xive_irq_domain_debug_show, 1441 #endif 1442 }; 1443 1444 static void __init xive_init_host(struct device_node *np) 1445 { 1446 xive_irq_domain = irq_domain_add_tree(np, &xive_irq_domain_ops, NULL); 1447 if (WARN_ON(xive_irq_domain == NULL)) 1448 return; 1449 irq_set_default_host(xive_irq_domain); 1450 } 1451 1452 static void xive_cleanup_cpu_queues(unsigned int cpu, struct xive_cpu *xc) 1453 { 1454 if (xc->queue[xive_irq_priority].qpage) 1455 xive_ops->cleanup_queue(cpu, xc, xive_irq_priority); 1456 } 1457 1458 static int xive_setup_cpu_queues(unsigned int cpu, struct xive_cpu *xc) 1459 { 1460 int rc = 0; 1461 1462 /* We setup 1 queues for now with a 64k page */ 1463 if (!xc->queue[xive_irq_priority].qpage) 1464 rc = xive_ops->setup_queue(cpu, xc, xive_irq_priority); 1465 1466 return rc; 1467 } 1468 1469 static int xive_prepare_cpu(unsigned int cpu) 1470 { 1471 struct xive_cpu *xc; 1472 1473 xc = per_cpu(xive_cpu, cpu); 1474 if (!xc) { 1475 xc = kzalloc_node(sizeof(struct xive_cpu), 1476 GFP_KERNEL, cpu_to_node(cpu)); 1477 if (!xc) 1478 return -ENOMEM; 1479 xc->hw_ipi = XIVE_BAD_IRQ; 1480 xc->chip_id = XIVE_INVALID_CHIP_ID; 1481 if (xive_ops->prepare_cpu) 1482 xive_ops->prepare_cpu(cpu, xc); 1483 1484 per_cpu(xive_cpu, cpu) = xc; 1485 } 1486 1487 /* Setup EQs if not already */ 1488 return xive_setup_cpu_queues(cpu, xc); 1489 } 1490 1491 static void xive_setup_cpu(void) 1492 { 1493 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 1494 1495 /* The backend might have additional things to do */ 1496 if (xive_ops->setup_cpu) 1497 xive_ops->setup_cpu(smp_processor_id(), xc); 1498 1499 /* Set CPPR to 0xff to enable flow of interrupts */ 1500 xc->cppr = 0xff; 1501 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff); 1502 } 1503 1504 #ifdef CONFIG_SMP 1505 void xive_smp_setup_cpu(void) 1506 { 1507 pr_devel("SMP setup CPU %d\n", smp_processor_id()); 1508 1509 /* This will have already been done on the boot CPU */ 1510 if (smp_processor_id() != boot_cpuid) 1511 xive_setup_cpu(); 1512 1513 } 1514 1515 int xive_smp_prepare_cpu(unsigned int cpu) 1516 { 1517 int rc; 1518 1519 /* Allocate per-CPU data and queues */ 1520 rc = xive_prepare_cpu(cpu); 1521 if (rc) 1522 return rc; 1523 1524 /* Allocate and setup IPI for the new CPU */ 1525 return xive_setup_cpu_ipi(cpu); 1526 } 1527 1528 #ifdef CONFIG_HOTPLUG_CPU 1529 static void xive_flush_cpu_queue(unsigned int cpu, struct xive_cpu *xc) 1530 { 1531 u32 irq; 1532 1533 /* We assume local irqs are disabled */ 1534 WARN_ON(!irqs_disabled()); 1535 1536 /* Check what's already in the CPU queue */ 1537 while ((irq = xive_scan_interrupts(xc, false)) != 0) { 1538 /* 1539 * We need to re-route that interrupt to its new destination. 1540 * First get and lock the descriptor 1541 */ 1542 struct irq_desc *desc = irq_to_desc(irq); 1543 struct irq_data *d = irq_desc_get_irq_data(desc); 1544 struct xive_irq_data *xd; 1545 1546 /* 1547 * Ignore anything that isn't a XIVE irq and ignore 1548 * IPIs, so can just be dropped. 1549 */ 1550 if (d->domain != xive_irq_domain) 1551 continue; 1552 1553 /* 1554 * The IRQ should have already been re-routed, it's just a 1555 * stale in the old queue, so re-trigger it in order to make 1556 * it reach is new destination. 1557 */ 1558 #ifdef DEBUG_FLUSH 1559 pr_info("CPU %d: Got irq %d while offline, re-sending...\n", 1560 cpu, irq); 1561 #endif 1562 raw_spin_lock(&desc->lock); 1563 xd = irq_desc_get_handler_data(desc); 1564 1565 /* 1566 * Clear saved_p to indicate that it's no longer pending 1567 */ 1568 xd->saved_p = false; 1569 1570 /* 1571 * For LSIs, we EOI, this will cause a resend if it's 1572 * still asserted. Otherwise do an MSI retrigger. 1573 */ 1574 if (xd->flags & XIVE_IRQ_FLAG_LSI) 1575 xive_do_source_eoi(xd); 1576 else 1577 xive_irq_retrigger(d); 1578 1579 raw_spin_unlock(&desc->lock); 1580 } 1581 } 1582 1583 void xive_smp_disable_cpu(void) 1584 { 1585 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 1586 unsigned int cpu = smp_processor_id(); 1587 1588 /* Migrate interrupts away from the CPU */ 1589 irq_migrate_all_off_this_cpu(); 1590 1591 /* Set CPPR to 0 to disable flow of interrupts */ 1592 xc->cppr = 0; 1593 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0); 1594 1595 /* Flush everything still in the queue */ 1596 xive_flush_cpu_queue(cpu, xc); 1597 1598 /* Re-enable CPPR */ 1599 xc->cppr = 0xff; 1600 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff); 1601 } 1602 1603 void xive_flush_interrupt(void) 1604 { 1605 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 1606 unsigned int cpu = smp_processor_id(); 1607 1608 /* Called if an interrupt occurs while the CPU is hot unplugged */ 1609 xive_flush_cpu_queue(cpu, xc); 1610 } 1611 1612 #endif /* CONFIG_HOTPLUG_CPU */ 1613 1614 #endif /* CONFIG_SMP */ 1615 1616 void xive_teardown_cpu(void) 1617 { 1618 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 1619 unsigned int cpu = smp_processor_id(); 1620 1621 /* Set CPPR to 0 to disable flow of interrupts */ 1622 xc->cppr = 0; 1623 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0); 1624 1625 if (xive_ops->teardown_cpu) 1626 xive_ops->teardown_cpu(cpu, xc); 1627 1628 #ifdef CONFIG_SMP 1629 /* Get rid of IPI */ 1630 xive_cleanup_cpu_ipi(cpu, xc); 1631 #endif 1632 1633 /* Disable and free the queues */ 1634 xive_cleanup_cpu_queues(cpu, xc); 1635 } 1636 1637 void xive_shutdown(void) 1638 { 1639 xive_ops->shutdown(); 1640 } 1641 1642 bool __init xive_core_init(struct device_node *np, const struct xive_ops *ops, 1643 void __iomem *area, u32 offset, u8 max_prio) 1644 { 1645 xive_tima = area; 1646 xive_tima_offset = offset; 1647 xive_ops = ops; 1648 xive_irq_priority = max_prio; 1649 1650 ppc_md.get_irq = xive_get_irq; 1651 __xive_enabled = true; 1652 1653 pr_devel("Initializing host..\n"); 1654 xive_init_host(np); 1655 1656 pr_devel("Initializing boot CPU..\n"); 1657 1658 /* Allocate per-CPU data and queues */ 1659 xive_prepare_cpu(smp_processor_id()); 1660 1661 /* Get ready for interrupts */ 1662 xive_setup_cpu(); 1663 1664 pr_info("Interrupt handling initialized with %s backend\n", 1665 xive_ops->name); 1666 pr_info("Using priority %d for all interrupts\n", max_prio); 1667 1668 return true; 1669 } 1670 1671 __be32 *xive_queue_page_alloc(unsigned int cpu, u32 queue_shift) 1672 { 1673 unsigned int alloc_order; 1674 struct page *pages; 1675 __be32 *qpage; 1676 1677 alloc_order = xive_alloc_order(queue_shift); 1678 pages = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, alloc_order); 1679 if (!pages) 1680 return ERR_PTR(-ENOMEM); 1681 qpage = (__be32 *)page_address(pages); 1682 memset(qpage, 0, 1 << queue_shift); 1683 1684 return qpage; 1685 } 1686 1687 static int __init xive_off(char *arg) 1688 { 1689 xive_cmdline_disabled = true; 1690 return 0; 1691 } 1692 __setup("xive=off", xive_off); 1693 1694 static void xive_debug_show_cpu(struct seq_file *m, int cpu) 1695 { 1696 struct xive_cpu *xc = per_cpu(xive_cpu, cpu); 1697 1698 seq_printf(m, "CPU %d:", cpu); 1699 if (xc) { 1700 seq_printf(m, "pp=%02x CPPR=%02x ", xc->pending_prio, xc->cppr); 1701 1702 #ifdef CONFIG_SMP 1703 { 1704 u64 val = xive_esb_read(&xc->ipi_data, XIVE_ESB_GET); 1705 1706 seq_printf(m, "IPI=0x%08x PQ=%c%c ", xc->hw_ipi, 1707 val & XIVE_ESB_VAL_P ? 'P' : '-', 1708 val & XIVE_ESB_VAL_Q ? 'Q' : '-'); 1709 } 1710 #endif 1711 { 1712 struct xive_q *q = &xc->queue[xive_irq_priority]; 1713 u32 i0, i1, idx; 1714 1715 if (q->qpage) { 1716 idx = q->idx; 1717 i0 = be32_to_cpup(q->qpage + idx); 1718 idx = (idx + 1) & q->msk; 1719 i1 = be32_to_cpup(q->qpage + idx); 1720 seq_printf(m, "EQ idx=%d T=%d %08x %08x ...", 1721 q->idx, q->toggle, i0, i1); 1722 } 1723 } 1724 } 1725 seq_puts(m, "\n"); 1726 } 1727 1728 static void xive_debug_show_irq(struct seq_file *m, struct irq_data *d) 1729 { 1730 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 1731 int rc; 1732 u32 target; 1733 u8 prio; 1734 u32 lirq; 1735 struct xive_irq_data *xd; 1736 u64 val; 1737 1738 rc = xive_ops->get_irq_config(hw_irq, &target, &prio, &lirq); 1739 if (rc) { 1740 seq_printf(m, "IRQ 0x%08x : no config rc=%d\n", hw_irq, rc); 1741 return; 1742 } 1743 1744 seq_printf(m, "IRQ 0x%08x : target=0x%x prio=%02x lirq=0x%x ", 1745 hw_irq, target, prio, lirq); 1746 1747 xd = irq_data_get_irq_handler_data(d); 1748 val = xive_esb_read(xd, XIVE_ESB_GET); 1749 seq_printf(m, "flags=%c%c%c PQ=%c%c", 1750 xd->flags & XIVE_IRQ_FLAG_STORE_EOI ? 'S' : ' ', 1751 xd->flags & XIVE_IRQ_FLAG_LSI ? 'L' : ' ', 1752 xd->flags & XIVE_IRQ_FLAG_H_INT_ESB ? 'H' : ' ', 1753 val & XIVE_ESB_VAL_P ? 'P' : '-', 1754 val & XIVE_ESB_VAL_Q ? 'Q' : '-'); 1755 seq_puts(m, "\n"); 1756 } 1757 1758 static int xive_core_debug_show(struct seq_file *m, void *private) 1759 { 1760 unsigned int i; 1761 struct irq_desc *desc; 1762 int cpu; 1763 1764 if (xive_ops->debug_show) 1765 xive_ops->debug_show(m, private); 1766 1767 for_each_possible_cpu(cpu) 1768 xive_debug_show_cpu(m, cpu); 1769 1770 for_each_irq_desc(i, desc) { 1771 struct irq_data *d = irq_domain_get_irq_data(xive_irq_domain, i); 1772 1773 if (d) 1774 xive_debug_show_irq(m, d); 1775 } 1776 return 0; 1777 } 1778 DEFINE_SHOW_ATTRIBUTE(xive_core_debug); 1779 1780 int xive_core_debug_init(void) 1781 { 1782 if (xive_enabled()) 1783 debugfs_create_file("xive", 0400, arch_debugfs_dir, 1784 NULL, &xive_core_debug_fops); 1785 return 0; 1786 } 1787