1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright 2016,2017 IBM Corporation. 4 */ 5 6 #define pr_fmt(fmt) "xive: " fmt 7 8 #include <linux/types.h> 9 #include <linux/threads.h> 10 #include <linux/kernel.h> 11 #include <linux/irq.h> 12 #include <linux/debugfs.h> 13 #include <linux/smp.h> 14 #include <linux/interrupt.h> 15 #include <linux/seq_file.h> 16 #include <linux/init.h> 17 #include <linux/cpu.h> 18 #include <linux/of.h> 19 #include <linux/slab.h> 20 #include <linux/spinlock.h> 21 #include <linux/msi.h> 22 #include <linux/vmalloc.h> 23 24 #include <asm/debugfs.h> 25 #include <asm/prom.h> 26 #include <asm/io.h> 27 #include <asm/smp.h> 28 #include <asm/machdep.h> 29 #include <asm/irq.h> 30 #include <asm/errno.h> 31 #include <asm/xive.h> 32 #include <asm/xive-regs.h> 33 #include <asm/xmon.h> 34 35 #include "xive-internal.h" 36 37 #undef DEBUG_FLUSH 38 #undef DEBUG_ALL 39 40 #ifdef DEBUG_ALL 41 #define DBG_VERBOSE(fmt, ...) pr_devel("cpu %d - " fmt, \ 42 smp_processor_id(), ## __VA_ARGS__) 43 #else 44 #define DBG_VERBOSE(fmt...) do { } while(0) 45 #endif 46 47 bool __xive_enabled; 48 EXPORT_SYMBOL_GPL(__xive_enabled); 49 bool xive_cmdline_disabled; 50 51 /* We use only one priority for now */ 52 static u8 xive_irq_priority; 53 54 /* TIMA exported to KVM */ 55 void __iomem *xive_tima; 56 EXPORT_SYMBOL_GPL(xive_tima); 57 u32 xive_tima_offset; 58 59 /* Backend ops */ 60 static const struct xive_ops *xive_ops; 61 62 /* Our global interrupt domain */ 63 static struct irq_domain *xive_irq_domain; 64 65 #ifdef CONFIG_SMP 66 /* The IPIs use the same logical irq number when on the same chip */ 67 static struct xive_ipi_desc { 68 unsigned int irq; 69 char name[16]; 70 } *xive_ipis; 71 72 /* 73 * Use early_cpu_to_node() for hot-plugged CPUs 74 */ 75 static unsigned int xive_ipi_cpu_to_irq(unsigned int cpu) 76 { 77 return xive_ipis[early_cpu_to_node(cpu)].irq; 78 } 79 #endif 80 81 /* Xive state for each CPU */ 82 static DEFINE_PER_CPU(struct xive_cpu *, xive_cpu); 83 84 /* An invalid CPU target */ 85 #define XIVE_INVALID_TARGET (-1) 86 87 /* 88 * Read the next entry in a queue, return its content if it's valid 89 * or 0 if there is no new entry. 90 * 91 * The queue pointer is moved forward unless "just_peek" is set 92 */ 93 static u32 xive_read_eq(struct xive_q *q, bool just_peek) 94 { 95 u32 cur; 96 97 if (!q->qpage) 98 return 0; 99 cur = be32_to_cpup(q->qpage + q->idx); 100 101 /* Check valid bit (31) vs current toggle polarity */ 102 if ((cur >> 31) == q->toggle) 103 return 0; 104 105 /* If consuming from the queue ... */ 106 if (!just_peek) { 107 /* Next entry */ 108 q->idx = (q->idx + 1) & q->msk; 109 110 /* Wrap around: flip valid toggle */ 111 if (q->idx == 0) 112 q->toggle ^= 1; 113 } 114 /* Mask out the valid bit (31) */ 115 return cur & 0x7fffffff; 116 } 117 118 /* 119 * Scans all the queue that may have interrupts in them 120 * (based on "pending_prio") in priority order until an 121 * interrupt is found or all the queues are empty. 122 * 123 * Then updates the CPPR (Current Processor Priority 124 * Register) based on the most favored interrupt found 125 * (0xff if none) and return what was found (0 if none). 126 * 127 * If just_peek is set, return the most favored pending 128 * interrupt if any but don't update the queue pointers. 129 * 130 * Note: This function can operate generically on any number 131 * of queues (up to 8). The current implementation of the XIVE 132 * driver only uses a single queue however. 133 * 134 * Note2: This will also "flush" "the pending_count" of a queue 135 * into the "count" when that queue is observed to be empty. 136 * This is used to keep track of the amount of interrupts 137 * targetting a queue. When an interrupt is moved away from 138 * a queue, we only decrement that queue count once the queue 139 * has been observed empty to avoid races. 140 */ 141 static u32 xive_scan_interrupts(struct xive_cpu *xc, bool just_peek) 142 { 143 u32 irq = 0; 144 u8 prio = 0; 145 146 /* Find highest pending priority */ 147 while (xc->pending_prio != 0) { 148 struct xive_q *q; 149 150 prio = ffs(xc->pending_prio) - 1; 151 DBG_VERBOSE("scan_irq: trying prio %d\n", prio); 152 153 /* Try to fetch */ 154 irq = xive_read_eq(&xc->queue[prio], just_peek); 155 156 /* Found something ? That's it */ 157 if (irq) { 158 if (just_peek || irq_to_desc(irq)) 159 break; 160 /* 161 * We should never get here; if we do then we must 162 * have failed to synchronize the interrupt properly 163 * when shutting it down. 164 */ 165 pr_crit("xive: got interrupt %d without descriptor, dropping\n", 166 irq); 167 WARN_ON(1); 168 continue; 169 } 170 171 /* Clear pending bits */ 172 xc->pending_prio &= ~(1 << prio); 173 174 /* 175 * Check if the queue count needs adjusting due to 176 * interrupts being moved away. See description of 177 * xive_dec_target_count() 178 */ 179 q = &xc->queue[prio]; 180 if (atomic_read(&q->pending_count)) { 181 int p = atomic_xchg(&q->pending_count, 0); 182 if (p) { 183 WARN_ON(p > atomic_read(&q->count)); 184 atomic_sub(p, &q->count); 185 } 186 } 187 } 188 189 /* If nothing was found, set CPPR to 0xff */ 190 if (irq == 0) 191 prio = 0xff; 192 193 /* Update HW CPPR to match if necessary */ 194 if (prio != xc->cppr) { 195 DBG_VERBOSE("scan_irq: adjusting CPPR to %d\n", prio); 196 xc->cppr = prio; 197 out_8(xive_tima + xive_tima_offset + TM_CPPR, prio); 198 } 199 200 return irq; 201 } 202 203 /* 204 * This is used to perform the magic loads from an ESB 205 * described in xive-regs.h 206 */ 207 static notrace u8 xive_esb_read(struct xive_irq_data *xd, u32 offset) 208 { 209 u64 val; 210 211 if (offset == XIVE_ESB_SET_PQ_10 && xd->flags & XIVE_IRQ_FLAG_STORE_EOI) 212 offset |= XIVE_ESB_LD_ST_MO; 213 214 if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw) 215 val = xive_ops->esb_rw(xd->hw_irq, offset, 0, 0); 216 else 217 val = in_be64(xd->eoi_mmio + offset); 218 219 return (u8)val; 220 } 221 222 static void xive_esb_write(struct xive_irq_data *xd, u32 offset, u64 data) 223 { 224 if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw) 225 xive_ops->esb_rw(xd->hw_irq, offset, data, 1); 226 else 227 out_be64(xd->eoi_mmio + offset, data); 228 } 229 230 #ifdef CONFIG_XMON 231 static notrace void xive_dump_eq(const char *name, struct xive_q *q) 232 { 233 u32 i0, i1, idx; 234 235 if (!q->qpage) 236 return; 237 idx = q->idx; 238 i0 = be32_to_cpup(q->qpage + idx); 239 idx = (idx + 1) & q->msk; 240 i1 = be32_to_cpup(q->qpage + idx); 241 xmon_printf("%s idx=%d T=%d %08x %08x ...", name, 242 q->idx, q->toggle, i0, i1); 243 } 244 245 notrace void xmon_xive_do_dump(int cpu) 246 { 247 struct xive_cpu *xc = per_cpu(xive_cpu, cpu); 248 249 xmon_printf("CPU %d:", cpu); 250 if (xc) { 251 xmon_printf("pp=%02x CPPR=%02x ", xc->pending_prio, xc->cppr); 252 253 #ifdef CONFIG_SMP 254 { 255 u64 val = xive_esb_read(&xc->ipi_data, XIVE_ESB_GET); 256 257 xmon_printf("IPI=0x%08x PQ=%c%c ", xc->hw_ipi, 258 val & XIVE_ESB_VAL_P ? 'P' : '-', 259 val & XIVE_ESB_VAL_Q ? 'Q' : '-'); 260 } 261 #endif 262 xive_dump_eq("EQ", &xc->queue[xive_irq_priority]); 263 } 264 xmon_printf("\n"); 265 } 266 267 static struct irq_data *xive_get_irq_data(u32 hw_irq) 268 { 269 unsigned int irq = irq_find_mapping(xive_irq_domain, hw_irq); 270 271 return irq ? irq_get_irq_data(irq) : NULL; 272 } 273 274 int xmon_xive_get_irq_config(u32 hw_irq, struct irq_data *d) 275 { 276 int rc; 277 u32 target; 278 u8 prio; 279 u32 lirq; 280 281 rc = xive_ops->get_irq_config(hw_irq, &target, &prio, &lirq); 282 if (rc) { 283 xmon_printf("IRQ 0x%08x : no config rc=%d\n", hw_irq, rc); 284 return rc; 285 } 286 287 xmon_printf("IRQ 0x%08x : target=0x%x prio=%02x lirq=0x%x ", 288 hw_irq, target, prio, lirq); 289 290 if (!d) 291 d = xive_get_irq_data(hw_irq); 292 293 if (d) { 294 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 295 u64 val = xive_esb_read(xd, XIVE_ESB_GET); 296 297 xmon_printf("flags=%c%c%c PQ=%c%c", 298 xd->flags & XIVE_IRQ_FLAG_STORE_EOI ? 'S' : ' ', 299 xd->flags & XIVE_IRQ_FLAG_LSI ? 'L' : ' ', 300 xd->flags & XIVE_IRQ_FLAG_H_INT_ESB ? 'H' : ' ', 301 val & XIVE_ESB_VAL_P ? 'P' : '-', 302 val & XIVE_ESB_VAL_Q ? 'Q' : '-'); 303 } 304 305 xmon_printf("\n"); 306 return 0; 307 } 308 309 void xmon_xive_get_irq_all(void) 310 { 311 unsigned int i; 312 struct irq_desc *desc; 313 314 for_each_irq_desc(i, desc) { 315 struct irq_data *d = irq_desc_get_irq_data(desc); 316 unsigned int hwirq = (unsigned int)irqd_to_hwirq(d); 317 318 if (d->domain == xive_irq_domain) 319 xmon_xive_get_irq_config(hwirq, d); 320 } 321 } 322 323 #endif /* CONFIG_XMON */ 324 325 static unsigned int xive_get_irq(void) 326 { 327 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 328 u32 irq; 329 330 /* 331 * This can be called either as a result of a HW interrupt or 332 * as a "replay" because EOI decided there was still something 333 * in one of the queues. 334 * 335 * First we perform an ACK cycle in order to update our mask 336 * of pending priorities. This will also have the effect of 337 * updating the CPPR to the most favored pending interrupts. 338 * 339 * In the future, if we have a way to differentiate a first 340 * entry (on HW interrupt) from a replay triggered by EOI, 341 * we could skip this on replays unless we soft-mask tells us 342 * that a new HW interrupt occurred. 343 */ 344 xive_ops->update_pending(xc); 345 346 DBG_VERBOSE("get_irq: pending=%02x\n", xc->pending_prio); 347 348 /* Scan our queue(s) for interrupts */ 349 irq = xive_scan_interrupts(xc, false); 350 351 DBG_VERBOSE("get_irq: got irq 0x%x, new pending=0x%02x\n", 352 irq, xc->pending_prio); 353 354 /* Return pending interrupt if any */ 355 if (irq == XIVE_BAD_IRQ) 356 return 0; 357 return irq; 358 } 359 360 /* 361 * After EOI'ing an interrupt, we need to re-check the queue 362 * to see if another interrupt is pending since multiple 363 * interrupts can coalesce into a single notification to the 364 * CPU. 365 * 366 * If we find that there is indeed more in there, we call 367 * force_external_irq_replay() to make Linux synthetize an 368 * external interrupt on the next call to local_irq_restore(). 369 */ 370 static void xive_do_queue_eoi(struct xive_cpu *xc) 371 { 372 if (xive_scan_interrupts(xc, true) != 0) { 373 DBG_VERBOSE("eoi: pending=0x%02x\n", xc->pending_prio); 374 force_external_irq_replay(); 375 } 376 } 377 378 /* 379 * EOI an interrupt at the source. There are several methods 380 * to do this depending on the HW version and source type 381 */ 382 static void xive_do_source_eoi(struct xive_irq_data *xd) 383 { 384 u8 eoi_val; 385 386 xd->stale_p = false; 387 388 /* If the XIVE supports the new "store EOI facility, use it */ 389 if (xd->flags & XIVE_IRQ_FLAG_STORE_EOI) { 390 xive_esb_write(xd, XIVE_ESB_STORE_EOI, 0); 391 return; 392 } 393 394 /* 395 * For LSIs, we use the "EOI cycle" special load rather than 396 * PQ bits, as they are automatically re-triggered in HW when 397 * still pending. 398 */ 399 if (xd->flags & XIVE_IRQ_FLAG_LSI) { 400 xive_esb_read(xd, XIVE_ESB_LOAD_EOI); 401 return; 402 } 403 404 /* 405 * Otherwise, we use the special MMIO that does a clear of 406 * both P and Q and returns the old Q. This allows us to then 407 * do a re-trigger if Q was set rather than synthesizing an 408 * interrupt in software 409 */ 410 eoi_val = xive_esb_read(xd, XIVE_ESB_SET_PQ_00); 411 DBG_VERBOSE("eoi_val=%x\n", eoi_val); 412 413 /* Re-trigger if needed */ 414 if ((eoi_val & XIVE_ESB_VAL_Q) && xd->trig_mmio) 415 out_be64(xd->trig_mmio, 0); 416 } 417 418 /* irq_chip eoi callback, called with irq descriptor lock held */ 419 static void xive_irq_eoi(struct irq_data *d) 420 { 421 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 422 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 423 424 DBG_VERBOSE("eoi_irq: irq=%d [0x%lx] pending=%02x\n", 425 d->irq, irqd_to_hwirq(d), xc->pending_prio); 426 427 /* 428 * EOI the source if it hasn't been disabled and hasn't 429 * been passed-through to a KVM guest 430 */ 431 if (!irqd_irq_disabled(d) && !irqd_is_forwarded_to_vcpu(d) && 432 !(xd->flags & XIVE_IRQ_FLAG_NO_EOI)) 433 xive_do_source_eoi(xd); 434 else 435 xd->stale_p = true; 436 437 /* 438 * Clear saved_p to indicate that it's no longer occupying 439 * a queue slot on the target queue 440 */ 441 xd->saved_p = false; 442 443 /* Check for more work in the queue */ 444 xive_do_queue_eoi(xc); 445 } 446 447 /* 448 * Helper used to mask and unmask an interrupt source. 449 */ 450 static void xive_do_source_set_mask(struct xive_irq_data *xd, 451 bool mask) 452 { 453 u64 val; 454 455 /* 456 * If the interrupt had P set, it may be in a queue. 457 * 458 * We need to make sure we don't re-enable it until it 459 * has been fetched from that queue and EOId. We keep 460 * a copy of that P state and use it to restore the 461 * ESB accordingly on unmask. 462 */ 463 if (mask) { 464 val = xive_esb_read(xd, XIVE_ESB_SET_PQ_01); 465 if (!xd->stale_p && !!(val & XIVE_ESB_VAL_P)) 466 xd->saved_p = true; 467 xd->stale_p = false; 468 } else if (xd->saved_p) { 469 xive_esb_read(xd, XIVE_ESB_SET_PQ_10); 470 xd->saved_p = false; 471 } else { 472 xive_esb_read(xd, XIVE_ESB_SET_PQ_00); 473 xd->stale_p = false; 474 } 475 } 476 477 /* 478 * Try to chose "cpu" as a new interrupt target. Increments 479 * the queue accounting for that target if it's not already 480 * full. 481 */ 482 static bool xive_try_pick_target(int cpu) 483 { 484 struct xive_cpu *xc = per_cpu(xive_cpu, cpu); 485 struct xive_q *q = &xc->queue[xive_irq_priority]; 486 int max; 487 488 /* 489 * Calculate max number of interrupts in that queue. 490 * 491 * We leave a gap of 1 just in case... 492 */ 493 max = (q->msk + 1) - 1; 494 return !!atomic_add_unless(&q->count, 1, max); 495 } 496 497 /* 498 * Un-account an interrupt for a target CPU. We don't directly 499 * decrement q->count since the interrupt might still be present 500 * in the queue. 501 * 502 * Instead increment a separate counter "pending_count" which 503 * will be substracted from "count" later when that CPU observes 504 * the queue to be empty. 505 */ 506 static void xive_dec_target_count(int cpu) 507 { 508 struct xive_cpu *xc = per_cpu(xive_cpu, cpu); 509 struct xive_q *q = &xc->queue[xive_irq_priority]; 510 511 if (WARN_ON(cpu < 0 || !xc)) { 512 pr_err("%s: cpu=%d xc=%p\n", __func__, cpu, xc); 513 return; 514 } 515 516 /* 517 * We increment the "pending count" which will be used 518 * to decrement the target queue count whenever it's next 519 * processed and found empty. This ensure that we don't 520 * decrement while we still have the interrupt there 521 * occupying a slot. 522 */ 523 atomic_inc(&q->pending_count); 524 } 525 526 /* Find a tentative CPU target in a CPU mask */ 527 static int xive_find_target_in_mask(const struct cpumask *mask, 528 unsigned int fuzz) 529 { 530 int cpu, first, num, i; 531 532 /* Pick up a starting point CPU in the mask based on fuzz */ 533 num = min_t(int, cpumask_weight(mask), nr_cpu_ids); 534 first = fuzz % num; 535 536 /* Locate it */ 537 cpu = cpumask_first(mask); 538 for (i = 0; i < first && cpu < nr_cpu_ids; i++) 539 cpu = cpumask_next(cpu, mask); 540 541 /* Sanity check */ 542 if (WARN_ON(cpu >= nr_cpu_ids)) 543 cpu = cpumask_first(cpu_online_mask); 544 545 /* Remember first one to handle wrap-around */ 546 first = cpu; 547 548 /* 549 * Now go through the entire mask until we find a valid 550 * target. 551 */ 552 do { 553 /* 554 * We re-check online as the fallback case passes us 555 * an untested affinity mask 556 */ 557 if (cpu_online(cpu) && xive_try_pick_target(cpu)) 558 return cpu; 559 cpu = cpumask_next(cpu, mask); 560 /* Wrap around */ 561 if (cpu >= nr_cpu_ids) 562 cpu = cpumask_first(mask); 563 } while (cpu != first); 564 565 return -1; 566 } 567 568 /* 569 * Pick a target CPU for an interrupt. This is done at 570 * startup or if the affinity is changed in a way that 571 * invalidates the current target. 572 */ 573 static int xive_pick_irq_target(struct irq_data *d, 574 const struct cpumask *affinity) 575 { 576 static unsigned int fuzz; 577 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 578 cpumask_var_t mask; 579 int cpu = -1; 580 581 /* 582 * If we have chip IDs, first we try to build a mask of 583 * CPUs matching the CPU and find a target in there 584 */ 585 if (xd->src_chip != XIVE_INVALID_CHIP_ID && 586 zalloc_cpumask_var(&mask, GFP_ATOMIC)) { 587 /* Build a mask of matching chip IDs */ 588 for_each_cpu_and(cpu, affinity, cpu_online_mask) { 589 struct xive_cpu *xc = per_cpu(xive_cpu, cpu); 590 if (xc->chip_id == xd->src_chip) 591 cpumask_set_cpu(cpu, mask); 592 } 593 /* Try to find a target */ 594 if (cpumask_empty(mask)) 595 cpu = -1; 596 else 597 cpu = xive_find_target_in_mask(mask, fuzz++); 598 free_cpumask_var(mask); 599 if (cpu >= 0) 600 return cpu; 601 fuzz--; 602 } 603 604 /* No chip IDs, fallback to using the affinity mask */ 605 return xive_find_target_in_mask(affinity, fuzz++); 606 } 607 608 static unsigned int xive_irq_startup(struct irq_data *d) 609 { 610 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 611 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 612 int target, rc; 613 614 xd->saved_p = false; 615 xd->stale_p = false; 616 pr_devel("xive_irq_startup: irq %d [0x%x] data @%p\n", 617 d->irq, hw_irq, d); 618 619 #ifdef CONFIG_PCI_MSI 620 /* 621 * The generic MSI code returns with the interrupt disabled on the 622 * card, using the MSI mask bits. Firmware doesn't appear to unmask 623 * at that level, so we do it here by hand. 624 */ 625 if (irq_data_get_msi_desc(d)) 626 pci_msi_unmask_irq(d); 627 #endif 628 629 /* Pick a target */ 630 target = xive_pick_irq_target(d, irq_data_get_affinity_mask(d)); 631 if (target == XIVE_INVALID_TARGET) { 632 /* Try again breaking affinity */ 633 target = xive_pick_irq_target(d, cpu_online_mask); 634 if (target == XIVE_INVALID_TARGET) 635 return -ENXIO; 636 pr_warn("irq %d started with broken affinity\n", d->irq); 637 } 638 639 /* Sanity check */ 640 if (WARN_ON(target == XIVE_INVALID_TARGET || 641 target >= nr_cpu_ids)) 642 target = smp_processor_id(); 643 644 xd->target = target; 645 646 /* 647 * Configure the logical number to be the Linux IRQ number 648 * and set the target queue 649 */ 650 rc = xive_ops->configure_irq(hw_irq, 651 get_hard_smp_processor_id(target), 652 xive_irq_priority, d->irq); 653 if (rc) 654 return rc; 655 656 /* Unmask the ESB */ 657 xive_do_source_set_mask(xd, false); 658 659 return 0; 660 } 661 662 /* called with irq descriptor lock held */ 663 static void xive_irq_shutdown(struct irq_data *d) 664 { 665 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 666 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 667 668 pr_devel("xive_irq_shutdown: irq %d [0x%x] data @%p\n", 669 d->irq, hw_irq, d); 670 671 if (WARN_ON(xd->target == XIVE_INVALID_TARGET)) 672 return; 673 674 /* Mask the interrupt at the source */ 675 xive_do_source_set_mask(xd, true); 676 677 /* 678 * Mask the interrupt in HW in the IVT/EAS and set the number 679 * to be the "bad" IRQ number 680 */ 681 xive_ops->configure_irq(hw_irq, 682 get_hard_smp_processor_id(xd->target), 683 0xff, XIVE_BAD_IRQ); 684 685 xive_dec_target_count(xd->target); 686 xd->target = XIVE_INVALID_TARGET; 687 } 688 689 static void xive_irq_unmask(struct irq_data *d) 690 { 691 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 692 693 pr_devel("xive_irq_unmask: irq %d data @%p\n", d->irq, xd); 694 695 xive_do_source_set_mask(xd, false); 696 } 697 698 static void xive_irq_mask(struct irq_data *d) 699 { 700 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 701 702 pr_devel("xive_irq_mask: irq %d data @%p\n", d->irq, xd); 703 704 xive_do_source_set_mask(xd, true); 705 } 706 707 static int xive_irq_set_affinity(struct irq_data *d, 708 const struct cpumask *cpumask, 709 bool force) 710 { 711 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 712 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 713 u32 target, old_target; 714 int rc = 0; 715 716 pr_devel("xive_irq_set_affinity: irq %d\n", d->irq); 717 718 /* Is this valid ? */ 719 if (cpumask_any_and(cpumask, cpu_online_mask) >= nr_cpu_ids) 720 return -EINVAL; 721 722 /* Don't do anything if the interrupt isn't started */ 723 if (!irqd_is_started(d)) 724 return IRQ_SET_MASK_OK; 725 726 /* 727 * If existing target is already in the new mask, and is 728 * online then do nothing. 729 */ 730 if (xd->target != XIVE_INVALID_TARGET && 731 cpu_online(xd->target) && 732 cpumask_test_cpu(xd->target, cpumask)) 733 return IRQ_SET_MASK_OK; 734 735 /* Pick a new target */ 736 target = xive_pick_irq_target(d, cpumask); 737 738 /* No target found */ 739 if (target == XIVE_INVALID_TARGET) 740 return -ENXIO; 741 742 /* Sanity check */ 743 if (WARN_ON(target >= nr_cpu_ids)) 744 target = smp_processor_id(); 745 746 old_target = xd->target; 747 748 /* 749 * Only configure the irq if it's not currently passed-through to 750 * a KVM guest 751 */ 752 if (!irqd_is_forwarded_to_vcpu(d)) 753 rc = xive_ops->configure_irq(hw_irq, 754 get_hard_smp_processor_id(target), 755 xive_irq_priority, d->irq); 756 if (rc < 0) { 757 pr_err("Error %d reconfiguring irq %d\n", rc, d->irq); 758 return rc; 759 } 760 761 pr_devel(" target: 0x%x\n", target); 762 xd->target = target; 763 764 /* Give up previous target */ 765 if (old_target != XIVE_INVALID_TARGET) 766 xive_dec_target_count(old_target); 767 768 return IRQ_SET_MASK_OK; 769 } 770 771 static int xive_irq_set_type(struct irq_data *d, unsigned int flow_type) 772 { 773 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 774 775 /* 776 * We only support these. This has really no effect other than setting 777 * the corresponding descriptor bits mind you but those will in turn 778 * affect the resend function when re-enabling an edge interrupt. 779 * 780 * Set set the default to edge as explained in map(). 781 */ 782 if (flow_type == IRQ_TYPE_DEFAULT || flow_type == IRQ_TYPE_NONE) 783 flow_type = IRQ_TYPE_EDGE_RISING; 784 785 if (flow_type != IRQ_TYPE_EDGE_RISING && 786 flow_type != IRQ_TYPE_LEVEL_LOW) 787 return -EINVAL; 788 789 irqd_set_trigger_type(d, flow_type); 790 791 /* 792 * Double check it matches what the FW thinks 793 * 794 * NOTE: We don't know yet if the PAPR interface will provide 795 * the LSI vs MSI information apart from the device-tree so 796 * this check might have to move into an optional backend call 797 * that is specific to the native backend 798 */ 799 if ((flow_type == IRQ_TYPE_LEVEL_LOW) != 800 !!(xd->flags & XIVE_IRQ_FLAG_LSI)) { 801 pr_warn("Interrupt %d (HW 0x%x) type mismatch, Linux says %s, FW says %s\n", 802 d->irq, (u32)irqd_to_hwirq(d), 803 (flow_type == IRQ_TYPE_LEVEL_LOW) ? "Level" : "Edge", 804 (xd->flags & XIVE_IRQ_FLAG_LSI) ? "Level" : "Edge"); 805 } 806 807 return IRQ_SET_MASK_OK_NOCOPY; 808 } 809 810 static int xive_irq_retrigger(struct irq_data *d) 811 { 812 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 813 814 /* This should be only for MSIs */ 815 if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI)) 816 return 0; 817 818 /* 819 * To perform a retrigger, we first set the PQ bits to 820 * 11, then perform an EOI. 821 */ 822 xive_esb_read(xd, XIVE_ESB_SET_PQ_11); 823 xive_do_source_eoi(xd); 824 825 return 1; 826 } 827 828 /* 829 * Caller holds the irq descriptor lock, so this won't be called 830 * concurrently with xive_get_irqchip_state on the same interrupt. 831 */ 832 static int xive_irq_set_vcpu_affinity(struct irq_data *d, void *state) 833 { 834 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 835 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 836 int rc; 837 u8 pq; 838 839 /* 840 * This is called by KVM with state non-NULL for enabling 841 * pass-through or NULL for disabling it 842 */ 843 if (state) { 844 irqd_set_forwarded_to_vcpu(d); 845 846 /* Set it to PQ=10 state to prevent further sends */ 847 pq = xive_esb_read(xd, XIVE_ESB_SET_PQ_10); 848 if (!xd->stale_p) { 849 xd->saved_p = !!(pq & XIVE_ESB_VAL_P); 850 xd->stale_p = !xd->saved_p; 851 } 852 853 /* No target ? nothing to do */ 854 if (xd->target == XIVE_INVALID_TARGET) { 855 /* 856 * An untargetted interrupt should have been 857 * also masked at the source 858 */ 859 WARN_ON(xd->saved_p); 860 861 return 0; 862 } 863 864 /* 865 * If P was set, adjust state to PQ=11 to indicate 866 * that a resend is needed for the interrupt to reach 867 * the guest. Also remember the value of P. 868 * 869 * This also tells us that it's in flight to a host queue 870 * or has already been fetched but hasn't been EOIed yet 871 * by the host. This it's potentially using up a host 872 * queue slot. This is important to know because as long 873 * as this is the case, we must not hard-unmask it when 874 * "returning" that interrupt to the host. 875 * 876 * This saved_p is cleared by the host EOI, when we know 877 * for sure the queue slot is no longer in use. 878 */ 879 if (xd->saved_p) { 880 xive_esb_read(xd, XIVE_ESB_SET_PQ_11); 881 882 /* 883 * Sync the XIVE source HW to ensure the interrupt 884 * has gone through the EAS before we change its 885 * target to the guest. That should guarantee us 886 * that we *will* eventually get an EOI for it on 887 * the host. Otherwise there would be a small window 888 * for P to be seen here but the interrupt going 889 * to the guest queue. 890 */ 891 if (xive_ops->sync_source) 892 xive_ops->sync_source(hw_irq); 893 } 894 } else { 895 irqd_clr_forwarded_to_vcpu(d); 896 897 /* No host target ? hard mask and return */ 898 if (xd->target == XIVE_INVALID_TARGET) { 899 xive_do_source_set_mask(xd, true); 900 return 0; 901 } 902 903 /* 904 * Sync the XIVE source HW to ensure the interrupt 905 * has gone through the EAS before we change its 906 * target to the host. 907 */ 908 if (xive_ops->sync_source) 909 xive_ops->sync_source(hw_irq); 910 911 /* 912 * By convention we are called with the interrupt in 913 * a PQ=10 or PQ=11 state, ie, it won't fire and will 914 * have latched in Q whether there's a pending HW 915 * interrupt or not. 916 * 917 * First reconfigure the target. 918 */ 919 rc = xive_ops->configure_irq(hw_irq, 920 get_hard_smp_processor_id(xd->target), 921 xive_irq_priority, d->irq); 922 if (rc) 923 return rc; 924 925 /* 926 * Then if saved_p is not set, effectively re-enable the 927 * interrupt with an EOI. If it is set, we know there is 928 * still a message in a host queue somewhere that will be 929 * EOId eventually. 930 * 931 * Note: We don't check irqd_irq_disabled(). Effectively, 932 * we *will* let the irq get through even if masked if the 933 * HW is still firing it in order to deal with the whole 934 * saved_p business properly. If the interrupt triggers 935 * while masked, the generic code will re-mask it anyway. 936 */ 937 if (!xd->saved_p) 938 xive_do_source_eoi(xd); 939 940 } 941 return 0; 942 } 943 944 /* Called with irq descriptor lock held. */ 945 static int xive_get_irqchip_state(struct irq_data *data, 946 enum irqchip_irq_state which, bool *state) 947 { 948 struct xive_irq_data *xd = irq_data_get_irq_handler_data(data); 949 u8 pq; 950 951 switch (which) { 952 case IRQCHIP_STATE_ACTIVE: 953 pq = xive_esb_read(xd, XIVE_ESB_GET); 954 955 /* 956 * The esb value being all 1's means we couldn't get 957 * the PQ state of the interrupt through mmio. It may 958 * happen, for example when querying a PHB interrupt 959 * while the PHB is in an error state. We consider the 960 * interrupt to be inactive in that case. 961 */ 962 *state = (pq != XIVE_ESB_INVALID) && !xd->stale_p && 963 (xd->saved_p || !!(pq & XIVE_ESB_VAL_P)); 964 return 0; 965 default: 966 return -EINVAL; 967 } 968 } 969 970 static struct irq_chip xive_irq_chip = { 971 .name = "XIVE-IRQ", 972 .irq_startup = xive_irq_startup, 973 .irq_shutdown = xive_irq_shutdown, 974 .irq_eoi = xive_irq_eoi, 975 .irq_mask = xive_irq_mask, 976 .irq_unmask = xive_irq_unmask, 977 .irq_set_affinity = xive_irq_set_affinity, 978 .irq_set_type = xive_irq_set_type, 979 .irq_retrigger = xive_irq_retrigger, 980 .irq_set_vcpu_affinity = xive_irq_set_vcpu_affinity, 981 .irq_get_irqchip_state = xive_get_irqchip_state, 982 }; 983 984 bool is_xive_irq(struct irq_chip *chip) 985 { 986 return chip == &xive_irq_chip; 987 } 988 EXPORT_SYMBOL_GPL(is_xive_irq); 989 990 void xive_cleanup_irq_data(struct xive_irq_data *xd) 991 { 992 if (xd->eoi_mmio) { 993 iounmap(xd->eoi_mmio); 994 if (xd->eoi_mmio == xd->trig_mmio) 995 xd->trig_mmio = NULL; 996 xd->eoi_mmio = NULL; 997 } 998 if (xd->trig_mmio) { 999 iounmap(xd->trig_mmio); 1000 xd->trig_mmio = NULL; 1001 } 1002 } 1003 EXPORT_SYMBOL_GPL(xive_cleanup_irq_data); 1004 1005 static int xive_irq_alloc_data(unsigned int virq, irq_hw_number_t hw) 1006 { 1007 struct xive_irq_data *xd; 1008 int rc; 1009 1010 xd = kzalloc(sizeof(struct xive_irq_data), GFP_KERNEL); 1011 if (!xd) 1012 return -ENOMEM; 1013 rc = xive_ops->populate_irq_data(hw, xd); 1014 if (rc) { 1015 kfree(xd); 1016 return rc; 1017 } 1018 xd->target = XIVE_INVALID_TARGET; 1019 irq_set_handler_data(virq, xd); 1020 1021 /* 1022 * Turn OFF by default the interrupt being mapped. A side 1023 * effect of this check is the mapping the ESB page of the 1024 * interrupt in the Linux address space. This prevents page 1025 * fault issues in the crash handler which masks all 1026 * interrupts. 1027 */ 1028 xive_esb_read(xd, XIVE_ESB_SET_PQ_01); 1029 1030 return 0; 1031 } 1032 1033 static void xive_irq_free_data(unsigned int virq) 1034 { 1035 struct xive_irq_data *xd = irq_get_handler_data(virq); 1036 1037 if (!xd) 1038 return; 1039 irq_set_handler_data(virq, NULL); 1040 xive_cleanup_irq_data(xd); 1041 kfree(xd); 1042 } 1043 1044 #ifdef CONFIG_SMP 1045 1046 static void xive_cause_ipi(int cpu) 1047 { 1048 struct xive_cpu *xc; 1049 struct xive_irq_data *xd; 1050 1051 xc = per_cpu(xive_cpu, cpu); 1052 1053 DBG_VERBOSE("IPI CPU %d -> %d (HW IRQ 0x%x)\n", 1054 smp_processor_id(), cpu, xc->hw_ipi); 1055 1056 xd = &xc->ipi_data; 1057 if (WARN_ON(!xd->trig_mmio)) 1058 return; 1059 out_be64(xd->trig_mmio, 0); 1060 } 1061 1062 static irqreturn_t xive_muxed_ipi_action(int irq, void *dev_id) 1063 { 1064 return smp_ipi_demux(); 1065 } 1066 1067 static void xive_ipi_eoi(struct irq_data *d) 1068 { 1069 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 1070 1071 /* Handle possible race with unplug and drop stale IPIs */ 1072 if (!xc) 1073 return; 1074 1075 DBG_VERBOSE("IPI eoi: irq=%d [0x%lx] (HW IRQ 0x%x) pending=%02x\n", 1076 d->irq, irqd_to_hwirq(d), xc->hw_ipi, xc->pending_prio); 1077 1078 xive_do_source_eoi(&xc->ipi_data); 1079 xive_do_queue_eoi(xc); 1080 } 1081 1082 static void xive_ipi_do_nothing(struct irq_data *d) 1083 { 1084 /* 1085 * Nothing to do, we never mask/unmask IPIs, but the callback 1086 * has to exist for the struct irq_chip. 1087 */ 1088 } 1089 1090 static struct irq_chip xive_ipi_chip = { 1091 .name = "XIVE-IPI", 1092 .irq_eoi = xive_ipi_eoi, 1093 .irq_mask = xive_ipi_do_nothing, 1094 .irq_unmask = xive_ipi_do_nothing, 1095 }; 1096 1097 /* 1098 * IPIs are marked per-cpu. We use separate HW interrupts under the 1099 * hood but associated with the same "linux" interrupt 1100 */ 1101 struct xive_ipi_alloc_info { 1102 irq_hw_number_t hwirq; 1103 }; 1104 1105 static int xive_ipi_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 1106 unsigned int nr_irqs, void *arg) 1107 { 1108 struct xive_ipi_alloc_info *info = arg; 1109 int i; 1110 1111 for (i = 0; i < nr_irqs; i++) { 1112 irq_domain_set_info(domain, virq + i, info->hwirq + i, &xive_ipi_chip, 1113 domain->host_data, handle_percpu_irq, 1114 NULL, NULL); 1115 } 1116 return 0; 1117 } 1118 1119 static const struct irq_domain_ops xive_ipi_irq_domain_ops = { 1120 .alloc = xive_ipi_irq_domain_alloc, 1121 }; 1122 1123 static int __init xive_request_ipi(void) 1124 { 1125 struct fwnode_handle *fwnode; 1126 struct irq_domain *ipi_domain; 1127 unsigned int node; 1128 int ret = -ENOMEM; 1129 1130 fwnode = irq_domain_alloc_named_fwnode("XIVE-IPI"); 1131 if (!fwnode) 1132 goto out; 1133 1134 ipi_domain = irq_domain_create_linear(fwnode, nr_node_ids, 1135 &xive_ipi_irq_domain_ops, NULL); 1136 if (!ipi_domain) 1137 goto out_free_fwnode; 1138 1139 xive_ipis = kcalloc(nr_node_ids, sizeof(*xive_ipis), GFP_KERNEL | __GFP_NOFAIL); 1140 if (!xive_ipis) 1141 goto out_free_domain; 1142 1143 for_each_node(node) { 1144 struct xive_ipi_desc *xid = &xive_ipis[node]; 1145 struct xive_ipi_alloc_info info = { node }; 1146 1147 /* Skip nodes without CPUs */ 1148 if (cpumask_empty(cpumask_of_node(node))) 1149 continue; 1150 1151 /* 1152 * Map one IPI interrupt per node for all cpus of that node. 1153 * Since the HW interrupt number doesn't have any meaning, 1154 * simply use the node number. 1155 */ 1156 xid->irq = irq_domain_alloc_irqs(ipi_domain, 1, node, &info); 1157 if (xid->irq < 0) { 1158 ret = xid->irq; 1159 goto out_free_xive_ipis; 1160 } 1161 1162 snprintf(xid->name, sizeof(xid->name), "IPI-%d", node); 1163 1164 ret = request_irq(xid->irq, xive_muxed_ipi_action, 1165 IRQF_PERCPU | IRQF_NO_THREAD, xid->name, NULL); 1166 1167 WARN(ret < 0, "Failed to request IPI %d: %d\n", xid->irq, ret); 1168 } 1169 1170 return ret; 1171 1172 out_free_xive_ipis: 1173 kfree(xive_ipis); 1174 out_free_domain: 1175 irq_domain_remove(ipi_domain); 1176 out_free_fwnode: 1177 irq_domain_free_fwnode(fwnode); 1178 out: 1179 return ret; 1180 } 1181 1182 static int xive_setup_cpu_ipi(unsigned int cpu) 1183 { 1184 unsigned int xive_ipi_irq = xive_ipi_cpu_to_irq(cpu); 1185 struct xive_cpu *xc; 1186 int rc; 1187 1188 pr_debug("Setting up IPI for CPU %d\n", cpu); 1189 1190 xc = per_cpu(xive_cpu, cpu); 1191 1192 /* Check if we are already setup */ 1193 if (xc->hw_ipi != XIVE_BAD_IRQ) 1194 return 0; 1195 1196 /* Grab an IPI from the backend, this will populate xc->hw_ipi */ 1197 if (xive_ops->get_ipi(cpu, xc)) 1198 return -EIO; 1199 1200 /* 1201 * Populate the IRQ data in the xive_cpu structure and 1202 * configure the HW / enable the IPIs. 1203 */ 1204 rc = xive_ops->populate_irq_data(xc->hw_ipi, &xc->ipi_data); 1205 if (rc) { 1206 pr_err("Failed to populate IPI data on CPU %d\n", cpu); 1207 return -EIO; 1208 } 1209 rc = xive_ops->configure_irq(xc->hw_ipi, 1210 get_hard_smp_processor_id(cpu), 1211 xive_irq_priority, xive_ipi_irq); 1212 if (rc) { 1213 pr_err("Failed to map IPI CPU %d\n", cpu); 1214 return -EIO; 1215 } 1216 pr_devel("CPU %d HW IPI %x, virq %d, trig_mmio=%p\n", cpu, 1217 xc->hw_ipi, xive_ipi_irq, xc->ipi_data.trig_mmio); 1218 1219 /* Unmask it */ 1220 xive_do_source_set_mask(&xc->ipi_data, false); 1221 1222 return 0; 1223 } 1224 1225 static void xive_cleanup_cpu_ipi(unsigned int cpu, struct xive_cpu *xc) 1226 { 1227 unsigned int xive_ipi_irq = xive_ipi_cpu_to_irq(cpu); 1228 1229 /* Disable the IPI and free the IRQ data */ 1230 1231 /* Already cleaned up ? */ 1232 if (xc->hw_ipi == XIVE_BAD_IRQ) 1233 return; 1234 1235 /* Mask the IPI */ 1236 xive_do_source_set_mask(&xc->ipi_data, true); 1237 1238 /* 1239 * Note: We don't call xive_cleanup_irq_data() to free 1240 * the mappings as this is called from an IPI on kexec 1241 * which is not a safe environment to call iounmap() 1242 */ 1243 1244 /* Deconfigure/mask in the backend */ 1245 xive_ops->configure_irq(xc->hw_ipi, hard_smp_processor_id(), 1246 0xff, xive_ipi_irq); 1247 1248 /* Free the IPIs in the backend */ 1249 xive_ops->put_ipi(cpu, xc); 1250 } 1251 1252 void __init xive_smp_probe(void) 1253 { 1254 smp_ops->cause_ipi = xive_cause_ipi; 1255 1256 /* Register the IPI */ 1257 xive_request_ipi(); 1258 1259 /* Allocate and setup IPI for the boot CPU */ 1260 xive_setup_cpu_ipi(smp_processor_id()); 1261 } 1262 1263 #endif /* CONFIG_SMP */ 1264 1265 static int xive_irq_domain_map(struct irq_domain *h, unsigned int virq, 1266 irq_hw_number_t hw) 1267 { 1268 int rc; 1269 1270 /* 1271 * Mark interrupts as edge sensitive by default so that resend 1272 * actually works. Will fix that up below if needed. 1273 */ 1274 irq_clear_status_flags(virq, IRQ_LEVEL); 1275 1276 rc = xive_irq_alloc_data(virq, hw); 1277 if (rc) 1278 return rc; 1279 1280 irq_set_chip_and_handler(virq, &xive_irq_chip, handle_fasteoi_irq); 1281 1282 return 0; 1283 } 1284 1285 static void xive_irq_domain_unmap(struct irq_domain *d, unsigned int virq) 1286 { 1287 xive_irq_free_data(virq); 1288 } 1289 1290 static int xive_irq_domain_xlate(struct irq_domain *h, struct device_node *ct, 1291 const u32 *intspec, unsigned int intsize, 1292 irq_hw_number_t *out_hwirq, unsigned int *out_flags) 1293 1294 { 1295 *out_hwirq = intspec[0]; 1296 1297 /* 1298 * If intsize is at least 2, we look for the type in the second cell, 1299 * we assume the LSB indicates a level interrupt. 1300 */ 1301 if (intsize > 1) { 1302 if (intspec[1] & 1) 1303 *out_flags = IRQ_TYPE_LEVEL_LOW; 1304 else 1305 *out_flags = IRQ_TYPE_EDGE_RISING; 1306 } else 1307 *out_flags = IRQ_TYPE_LEVEL_LOW; 1308 1309 return 0; 1310 } 1311 1312 static int xive_irq_domain_match(struct irq_domain *h, struct device_node *node, 1313 enum irq_domain_bus_token bus_token) 1314 { 1315 return xive_ops->match(node); 1316 } 1317 1318 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS 1319 static const char * const esb_names[] = { "RESET", "OFF", "PENDING", "QUEUED" }; 1320 1321 static const struct { 1322 u64 mask; 1323 char *name; 1324 } xive_irq_flags[] = { 1325 { XIVE_IRQ_FLAG_STORE_EOI, "STORE_EOI" }, 1326 { XIVE_IRQ_FLAG_LSI, "LSI" }, 1327 { XIVE_IRQ_FLAG_H_INT_ESB, "H_INT_ESB" }, 1328 { XIVE_IRQ_FLAG_NO_EOI, "NO_EOI" }, 1329 }; 1330 1331 static void xive_irq_domain_debug_show(struct seq_file *m, struct irq_domain *d, 1332 struct irq_data *irqd, int ind) 1333 { 1334 struct xive_irq_data *xd; 1335 u64 val; 1336 int i; 1337 1338 /* No IRQ domain level information. To be done */ 1339 if (!irqd) 1340 return; 1341 1342 if (!is_xive_irq(irq_data_get_irq_chip(irqd))) 1343 return; 1344 1345 seq_printf(m, "%*sXIVE:\n", ind, ""); 1346 ind++; 1347 1348 xd = irq_data_get_irq_handler_data(irqd); 1349 if (!xd) { 1350 seq_printf(m, "%*snot assigned\n", ind, ""); 1351 return; 1352 } 1353 1354 val = xive_esb_read(xd, XIVE_ESB_GET); 1355 seq_printf(m, "%*sESB: %s\n", ind, "", esb_names[val & 0x3]); 1356 seq_printf(m, "%*sPstate: %s %s\n", ind, "", xd->stale_p ? "stale" : "", 1357 xd->saved_p ? "saved" : ""); 1358 seq_printf(m, "%*sTarget: %d\n", ind, "", xd->target); 1359 seq_printf(m, "%*sChip: %d\n", ind, "", xd->src_chip); 1360 seq_printf(m, "%*sTrigger: 0x%016llx\n", ind, "", xd->trig_page); 1361 seq_printf(m, "%*sEOI: 0x%016llx\n", ind, "", xd->eoi_page); 1362 seq_printf(m, "%*sFlags: 0x%llx\n", ind, "", xd->flags); 1363 for (i = 0; i < ARRAY_SIZE(xive_irq_flags); i++) { 1364 if (xd->flags & xive_irq_flags[i].mask) 1365 seq_printf(m, "%*s%s\n", ind + 12, "", xive_irq_flags[i].name); 1366 } 1367 } 1368 #endif 1369 1370 static const struct irq_domain_ops xive_irq_domain_ops = { 1371 .match = xive_irq_domain_match, 1372 .map = xive_irq_domain_map, 1373 .unmap = xive_irq_domain_unmap, 1374 .xlate = xive_irq_domain_xlate, 1375 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS 1376 .debug_show = xive_irq_domain_debug_show, 1377 #endif 1378 }; 1379 1380 static void __init xive_init_host(struct device_node *np) 1381 { 1382 xive_irq_domain = irq_domain_add_nomap(np, XIVE_MAX_IRQ, 1383 &xive_irq_domain_ops, NULL); 1384 if (WARN_ON(xive_irq_domain == NULL)) 1385 return; 1386 irq_set_default_host(xive_irq_domain); 1387 } 1388 1389 static void xive_cleanup_cpu_queues(unsigned int cpu, struct xive_cpu *xc) 1390 { 1391 if (xc->queue[xive_irq_priority].qpage) 1392 xive_ops->cleanup_queue(cpu, xc, xive_irq_priority); 1393 } 1394 1395 static int xive_setup_cpu_queues(unsigned int cpu, struct xive_cpu *xc) 1396 { 1397 int rc = 0; 1398 1399 /* We setup 1 queues for now with a 64k page */ 1400 if (!xc->queue[xive_irq_priority].qpage) 1401 rc = xive_ops->setup_queue(cpu, xc, xive_irq_priority); 1402 1403 return rc; 1404 } 1405 1406 static int xive_prepare_cpu(unsigned int cpu) 1407 { 1408 struct xive_cpu *xc; 1409 1410 xc = per_cpu(xive_cpu, cpu); 1411 if (!xc) { 1412 xc = kzalloc_node(sizeof(struct xive_cpu), 1413 GFP_KERNEL, cpu_to_node(cpu)); 1414 if (!xc) 1415 return -ENOMEM; 1416 xc->hw_ipi = XIVE_BAD_IRQ; 1417 xc->chip_id = XIVE_INVALID_CHIP_ID; 1418 if (xive_ops->prepare_cpu) 1419 xive_ops->prepare_cpu(cpu, xc); 1420 1421 per_cpu(xive_cpu, cpu) = xc; 1422 } 1423 1424 /* Setup EQs if not already */ 1425 return xive_setup_cpu_queues(cpu, xc); 1426 } 1427 1428 static void xive_setup_cpu(void) 1429 { 1430 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 1431 1432 /* The backend might have additional things to do */ 1433 if (xive_ops->setup_cpu) 1434 xive_ops->setup_cpu(smp_processor_id(), xc); 1435 1436 /* Set CPPR to 0xff to enable flow of interrupts */ 1437 xc->cppr = 0xff; 1438 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff); 1439 } 1440 1441 #ifdef CONFIG_SMP 1442 void xive_smp_setup_cpu(void) 1443 { 1444 pr_devel("SMP setup CPU %d\n", smp_processor_id()); 1445 1446 /* This will have already been done on the boot CPU */ 1447 if (smp_processor_id() != boot_cpuid) 1448 xive_setup_cpu(); 1449 1450 } 1451 1452 int xive_smp_prepare_cpu(unsigned int cpu) 1453 { 1454 int rc; 1455 1456 /* Allocate per-CPU data and queues */ 1457 rc = xive_prepare_cpu(cpu); 1458 if (rc) 1459 return rc; 1460 1461 /* Allocate and setup IPI for the new CPU */ 1462 return xive_setup_cpu_ipi(cpu); 1463 } 1464 1465 #ifdef CONFIG_HOTPLUG_CPU 1466 static void xive_flush_cpu_queue(unsigned int cpu, struct xive_cpu *xc) 1467 { 1468 u32 irq; 1469 1470 /* We assume local irqs are disabled */ 1471 WARN_ON(!irqs_disabled()); 1472 1473 /* Check what's already in the CPU queue */ 1474 while ((irq = xive_scan_interrupts(xc, false)) != 0) { 1475 /* 1476 * We need to re-route that interrupt to its new destination. 1477 * First get and lock the descriptor 1478 */ 1479 struct irq_desc *desc = irq_to_desc(irq); 1480 struct irq_data *d = irq_desc_get_irq_data(desc); 1481 struct xive_irq_data *xd; 1482 1483 /* 1484 * Ignore anything that isn't a XIVE irq and ignore 1485 * IPIs, so can just be dropped. 1486 */ 1487 if (d->domain != xive_irq_domain) 1488 continue; 1489 1490 /* 1491 * The IRQ should have already been re-routed, it's just a 1492 * stale in the old queue, so re-trigger it in order to make 1493 * it reach is new destination. 1494 */ 1495 #ifdef DEBUG_FLUSH 1496 pr_info("CPU %d: Got irq %d while offline, re-sending...\n", 1497 cpu, irq); 1498 #endif 1499 raw_spin_lock(&desc->lock); 1500 xd = irq_desc_get_handler_data(desc); 1501 1502 /* 1503 * Clear saved_p to indicate that it's no longer pending 1504 */ 1505 xd->saved_p = false; 1506 1507 /* 1508 * For LSIs, we EOI, this will cause a resend if it's 1509 * still asserted. Otherwise do an MSI retrigger. 1510 */ 1511 if (xd->flags & XIVE_IRQ_FLAG_LSI) 1512 xive_do_source_eoi(xd); 1513 else 1514 xive_irq_retrigger(d); 1515 1516 raw_spin_unlock(&desc->lock); 1517 } 1518 } 1519 1520 void xive_smp_disable_cpu(void) 1521 { 1522 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 1523 unsigned int cpu = smp_processor_id(); 1524 1525 /* Migrate interrupts away from the CPU */ 1526 irq_migrate_all_off_this_cpu(); 1527 1528 /* Set CPPR to 0 to disable flow of interrupts */ 1529 xc->cppr = 0; 1530 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0); 1531 1532 /* Flush everything still in the queue */ 1533 xive_flush_cpu_queue(cpu, xc); 1534 1535 /* Re-enable CPPR */ 1536 xc->cppr = 0xff; 1537 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff); 1538 } 1539 1540 void xive_flush_interrupt(void) 1541 { 1542 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 1543 unsigned int cpu = smp_processor_id(); 1544 1545 /* Called if an interrupt occurs while the CPU is hot unplugged */ 1546 xive_flush_cpu_queue(cpu, xc); 1547 } 1548 1549 #endif /* CONFIG_HOTPLUG_CPU */ 1550 1551 #endif /* CONFIG_SMP */ 1552 1553 void xive_teardown_cpu(void) 1554 { 1555 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 1556 unsigned int cpu = smp_processor_id(); 1557 1558 /* Set CPPR to 0 to disable flow of interrupts */ 1559 xc->cppr = 0; 1560 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0); 1561 1562 if (xive_ops->teardown_cpu) 1563 xive_ops->teardown_cpu(cpu, xc); 1564 1565 #ifdef CONFIG_SMP 1566 /* Get rid of IPI */ 1567 xive_cleanup_cpu_ipi(cpu, xc); 1568 #endif 1569 1570 /* Disable and free the queues */ 1571 xive_cleanup_cpu_queues(cpu, xc); 1572 } 1573 1574 void xive_shutdown(void) 1575 { 1576 xive_ops->shutdown(); 1577 } 1578 1579 bool __init xive_core_init(struct device_node *np, const struct xive_ops *ops, 1580 void __iomem *area, u32 offset, u8 max_prio) 1581 { 1582 xive_tima = area; 1583 xive_tima_offset = offset; 1584 xive_ops = ops; 1585 xive_irq_priority = max_prio; 1586 1587 ppc_md.get_irq = xive_get_irq; 1588 __xive_enabled = true; 1589 1590 pr_devel("Initializing host..\n"); 1591 xive_init_host(np); 1592 1593 pr_devel("Initializing boot CPU..\n"); 1594 1595 /* Allocate per-CPU data and queues */ 1596 xive_prepare_cpu(smp_processor_id()); 1597 1598 /* Get ready for interrupts */ 1599 xive_setup_cpu(); 1600 1601 pr_info("Interrupt handling initialized with %s backend\n", 1602 xive_ops->name); 1603 pr_info("Using priority %d for all interrupts\n", max_prio); 1604 1605 return true; 1606 } 1607 1608 __be32 *xive_queue_page_alloc(unsigned int cpu, u32 queue_shift) 1609 { 1610 unsigned int alloc_order; 1611 struct page *pages; 1612 __be32 *qpage; 1613 1614 alloc_order = xive_alloc_order(queue_shift); 1615 pages = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, alloc_order); 1616 if (!pages) 1617 return ERR_PTR(-ENOMEM); 1618 qpage = (__be32 *)page_address(pages); 1619 memset(qpage, 0, 1 << queue_shift); 1620 1621 return qpage; 1622 } 1623 1624 static int __init xive_off(char *arg) 1625 { 1626 xive_cmdline_disabled = true; 1627 return 0; 1628 } 1629 __setup("xive=off", xive_off); 1630 1631 static void xive_debug_show_cpu(struct seq_file *m, int cpu) 1632 { 1633 struct xive_cpu *xc = per_cpu(xive_cpu, cpu); 1634 1635 seq_printf(m, "CPU %d:", cpu); 1636 if (xc) { 1637 seq_printf(m, "pp=%02x CPPR=%02x ", xc->pending_prio, xc->cppr); 1638 1639 #ifdef CONFIG_SMP 1640 { 1641 u64 val = xive_esb_read(&xc->ipi_data, XIVE_ESB_GET); 1642 1643 seq_printf(m, "IPI=0x%08x PQ=%c%c ", xc->hw_ipi, 1644 val & XIVE_ESB_VAL_P ? 'P' : '-', 1645 val & XIVE_ESB_VAL_Q ? 'Q' : '-'); 1646 } 1647 #endif 1648 { 1649 struct xive_q *q = &xc->queue[xive_irq_priority]; 1650 u32 i0, i1, idx; 1651 1652 if (q->qpage) { 1653 idx = q->idx; 1654 i0 = be32_to_cpup(q->qpage + idx); 1655 idx = (idx + 1) & q->msk; 1656 i1 = be32_to_cpup(q->qpage + idx); 1657 seq_printf(m, "EQ idx=%d T=%d %08x %08x ...", 1658 q->idx, q->toggle, i0, i1); 1659 } 1660 } 1661 } 1662 seq_puts(m, "\n"); 1663 } 1664 1665 static void xive_debug_show_irq(struct seq_file *m, struct irq_data *d) 1666 { 1667 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 1668 int rc; 1669 u32 target; 1670 u8 prio; 1671 u32 lirq; 1672 struct xive_irq_data *xd; 1673 u64 val; 1674 1675 rc = xive_ops->get_irq_config(hw_irq, &target, &prio, &lirq); 1676 if (rc) { 1677 seq_printf(m, "IRQ 0x%08x : no config rc=%d\n", hw_irq, rc); 1678 return; 1679 } 1680 1681 seq_printf(m, "IRQ 0x%08x : target=0x%x prio=%02x lirq=0x%x ", 1682 hw_irq, target, prio, lirq); 1683 1684 xd = irq_data_get_irq_handler_data(d); 1685 val = xive_esb_read(xd, XIVE_ESB_GET); 1686 seq_printf(m, "flags=%c%c%c PQ=%c%c", 1687 xd->flags & XIVE_IRQ_FLAG_STORE_EOI ? 'S' : ' ', 1688 xd->flags & XIVE_IRQ_FLAG_LSI ? 'L' : ' ', 1689 xd->flags & XIVE_IRQ_FLAG_H_INT_ESB ? 'H' : ' ', 1690 val & XIVE_ESB_VAL_P ? 'P' : '-', 1691 val & XIVE_ESB_VAL_Q ? 'Q' : '-'); 1692 seq_puts(m, "\n"); 1693 } 1694 1695 static int xive_core_debug_show(struct seq_file *m, void *private) 1696 { 1697 unsigned int i; 1698 struct irq_desc *desc; 1699 int cpu; 1700 1701 if (xive_ops->debug_show) 1702 xive_ops->debug_show(m, private); 1703 1704 for_each_possible_cpu(cpu) 1705 xive_debug_show_cpu(m, cpu); 1706 1707 for_each_irq_desc(i, desc) { 1708 struct irq_data *d = irq_desc_get_irq_data(desc); 1709 1710 if (d->domain == xive_irq_domain) 1711 xive_debug_show_irq(m, d); 1712 } 1713 return 0; 1714 } 1715 DEFINE_SHOW_ATTRIBUTE(xive_core_debug); 1716 1717 int xive_core_debug_init(void) 1718 { 1719 if (xive_enabled()) 1720 debugfs_create_file("xive", 0400, powerpc_debugfs_root, 1721 NULL, &xive_core_debug_fops); 1722 return 0; 1723 } 1724