xref: /openbmc/linux/arch/powerpc/sysdev/xive/common.c (revision ba61bb17)
1 /*
2  * Copyright 2016,2017 IBM Corporation.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * as published by the Free Software Foundation; either version
7  * 2 of the License, or (at your option) any later version.
8  */
9 
10 #define pr_fmt(fmt) "xive: " fmt
11 
12 #include <linux/types.h>
13 #include <linux/threads.h>
14 #include <linux/kernel.h>
15 #include <linux/irq.h>
16 #include <linux/debugfs.h>
17 #include <linux/smp.h>
18 #include <linux/interrupt.h>
19 #include <linux/seq_file.h>
20 #include <linux/init.h>
21 #include <linux/cpu.h>
22 #include <linux/of.h>
23 #include <linux/slab.h>
24 #include <linux/spinlock.h>
25 #include <linux/msi.h>
26 
27 #include <asm/prom.h>
28 #include <asm/io.h>
29 #include <asm/smp.h>
30 #include <asm/machdep.h>
31 #include <asm/irq.h>
32 #include <asm/errno.h>
33 #include <asm/xive.h>
34 #include <asm/xive-regs.h>
35 #include <asm/xmon.h>
36 
37 #include "xive-internal.h"
38 
39 #undef DEBUG_FLUSH
40 #undef DEBUG_ALL
41 
42 #ifdef DEBUG_ALL
43 #define DBG_VERBOSE(fmt, ...)	pr_devel("cpu %d - " fmt, \
44 					 smp_processor_id(), ## __VA_ARGS__)
45 #else
46 #define DBG_VERBOSE(fmt...)	do { } while(0)
47 #endif
48 
49 bool __xive_enabled;
50 EXPORT_SYMBOL_GPL(__xive_enabled);
51 bool xive_cmdline_disabled;
52 
53 /* We use only one priority for now */
54 static u8 xive_irq_priority;
55 
56 /* TIMA exported to KVM */
57 void __iomem *xive_tima;
58 EXPORT_SYMBOL_GPL(xive_tima);
59 u32 xive_tima_offset;
60 
61 /* Backend ops */
62 static const struct xive_ops *xive_ops;
63 
64 /* Our global interrupt domain */
65 static struct irq_domain *xive_irq_domain;
66 
67 #ifdef CONFIG_SMP
68 /* The IPIs all use the same logical irq number */
69 static u32 xive_ipi_irq;
70 #endif
71 
72 /* Xive state for each CPU */
73 static DEFINE_PER_CPU(struct xive_cpu *, xive_cpu);
74 
75 /*
76  * A "disabled" interrupt should never fire, to catch problems
77  * we set its logical number to this
78  */
79 #define XIVE_BAD_IRQ		0x7fffffff
80 #define XIVE_MAX_IRQ		(XIVE_BAD_IRQ - 1)
81 
82 /* An invalid CPU target */
83 #define XIVE_INVALID_TARGET	(-1)
84 
85 /*
86  * Read the next entry in a queue, return its content if it's valid
87  * or 0 if there is no new entry.
88  *
89  * The queue pointer is moved forward unless "just_peek" is set
90  */
91 static u32 xive_read_eq(struct xive_q *q, bool just_peek)
92 {
93 	u32 cur;
94 
95 	if (!q->qpage)
96 		return 0;
97 	cur = be32_to_cpup(q->qpage + q->idx);
98 
99 	/* Check valid bit (31) vs current toggle polarity */
100 	if ((cur >> 31) == q->toggle)
101 		return 0;
102 
103 	/* If consuming from the queue ... */
104 	if (!just_peek) {
105 		/* Next entry */
106 		q->idx = (q->idx + 1) & q->msk;
107 
108 		/* Wrap around: flip valid toggle */
109 		if (q->idx == 0)
110 			q->toggle ^= 1;
111 	}
112 	/* Mask out the valid bit (31) */
113 	return cur & 0x7fffffff;
114 }
115 
116 /*
117  * Scans all the queue that may have interrupts in them
118  * (based on "pending_prio") in priority order until an
119  * interrupt is found or all the queues are empty.
120  *
121  * Then updates the CPPR (Current Processor Priority
122  * Register) based on the most favored interrupt found
123  * (0xff if none) and return what was found (0 if none).
124  *
125  * If just_peek is set, return the most favored pending
126  * interrupt if any but don't update the queue pointers.
127  *
128  * Note: This function can operate generically on any number
129  * of queues (up to 8). The current implementation of the XIVE
130  * driver only uses a single queue however.
131  *
132  * Note2: This will also "flush" "the pending_count" of a queue
133  * into the "count" when that queue is observed to be empty.
134  * This is used to keep track of the amount of interrupts
135  * targetting a queue. When an interrupt is moved away from
136  * a queue, we only decrement that queue count once the queue
137  * has been observed empty to avoid races.
138  */
139 static u32 xive_scan_interrupts(struct xive_cpu *xc, bool just_peek)
140 {
141 	u32 irq = 0;
142 	u8 prio;
143 
144 	/* Find highest pending priority */
145 	while (xc->pending_prio != 0) {
146 		struct xive_q *q;
147 
148 		prio = ffs(xc->pending_prio) - 1;
149 		DBG_VERBOSE("scan_irq: trying prio %d\n", prio);
150 
151 		/* Try to fetch */
152 		irq = xive_read_eq(&xc->queue[prio], just_peek);
153 
154 		/* Found something ? That's it */
155 		if (irq)
156 			break;
157 
158 		/* Clear pending bits */
159 		xc->pending_prio &= ~(1 << prio);
160 
161 		/*
162 		 * Check if the queue count needs adjusting due to
163 		 * interrupts being moved away. See description of
164 		 * xive_dec_target_count()
165 		 */
166 		q = &xc->queue[prio];
167 		if (atomic_read(&q->pending_count)) {
168 			int p = atomic_xchg(&q->pending_count, 0);
169 			if (p) {
170 				WARN_ON(p > atomic_read(&q->count));
171 				atomic_sub(p, &q->count);
172 			}
173 		}
174 	}
175 
176 	/* If nothing was found, set CPPR to 0xff */
177 	if (irq == 0)
178 		prio = 0xff;
179 
180 	/* Update HW CPPR to match if necessary */
181 	if (prio != xc->cppr) {
182 		DBG_VERBOSE("scan_irq: adjusting CPPR to %d\n", prio);
183 		xc->cppr = prio;
184 		out_8(xive_tima + xive_tima_offset + TM_CPPR, prio);
185 	}
186 
187 	return irq;
188 }
189 
190 /*
191  * This is used to perform the magic loads from an ESB
192  * described in xive.h
193  */
194 static notrace u8 xive_esb_read(struct xive_irq_data *xd, u32 offset)
195 {
196 	u64 val;
197 
198 	/* Handle HW errata */
199 	if (xd->flags & XIVE_IRQ_FLAG_SHIFT_BUG)
200 		offset |= offset << 4;
201 
202 	if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw)
203 		val = xive_ops->esb_rw(xd->hw_irq, offset, 0, 0);
204 	else
205 		val = in_be64(xd->eoi_mmio + offset);
206 
207 	return (u8)val;
208 }
209 
210 static void xive_esb_write(struct xive_irq_data *xd, u32 offset, u64 data)
211 {
212 	/* Handle HW errata */
213 	if (xd->flags & XIVE_IRQ_FLAG_SHIFT_BUG)
214 		offset |= offset << 4;
215 
216 	if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw)
217 		xive_ops->esb_rw(xd->hw_irq, offset, data, 1);
218 	else
219 		out_be64(xd->eoi_mmio + offset, data);
220 }
221 
222 #ifdef CONFIG_XMON
223 static notrace void xive_dump_eq(const char *name, struct xive_q *q)
224 {
225 	u32 i0, i1, idx;
226 
227 	if (!q->qpage)
228 		return;
229 	idx = q->idx;
230 	i0 = be32_to_cpup(q->qpage + idx);
231 	idx = (idx + 1) & q->msk;
232 	i1 = be32_to_cpup(q->qpage + idx);
233 	xmon_printf("  %s Q T=%d %08x %08x ...\n", name,
234 		    q->toggle, i0, i1);
235 }
236 
237 notrace void xmon_xive_do_dump(int cpu)
238 {
239 	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
240 
241 	xmon_printf("XIVE state for CPU %d:\n", cpu);
242 	xmon_printf("  pp=%02x cppr=%02x\n", xc->pending_prio, xc->cppr);
243 	xive_dump_eq("IRQ", &xc->queue[xive_irq_priority]);
244 #ifdef CONFIG_SMP
245 	{
246 		u64 val = xive_esb_read(&xc->ipi_data, XIVE_ESB_GET);
247 		xmon_printf("  IPI state: %x:%c%c\n", xc->hw_ipi,
248 			val & XIVE_ESB_VAL_P ? 'P' : 'p',
249 			val & XIVE_ESB_VAL_Q ? 'Q' : 'q');
250 	}
251 #endif
252 }
253 #endif /* CONFIG_XMON */
254 
255 static unsigned int xive_get_irq(void)
256 {
257 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
258 	u32 irq;
259 
260 	/*
261 	 * This can be called either as a result of a HW interrupt or
262 	 * as a "replay" because EOI decided there was still something
263 	 * in one of the queues.
264 	 *
265 	 * First we perform an ACK cycle in order to update our mask
266 	 * of pending priorities. This will also have the effect of
267 	 * updating the CPPR to the most favored pending interrupts.
268 	 *
269 	 * In the future, if we have a way to differenciate a first
270 	 * entry (on HW interrupt) from a replay triggered by EOI,
271 	 * we could skip this on replays unless we soft-mask tells us
272 	 * that a new HW interrupt occurred.
273 	 */
274 	xive_ops->update_pending(xc);
275 
276 	DBG_VERBOSE("get_irq: pending=%02x\n", xc->pending_prio);
277 
278 	/* Scan our queue(s) for interrupts */
279 	irq = xive_scan_interrupts(xc, false);
280 
281 	DBG_VERBOSE("get_irq: got irq 0x%x, new pending=0x%02x\n",
282 	    irq, xc->pending_prio);
283 
284 	/* Return pending interrupt if any */
285 	if (irq == XIVE_BAD_IRQ)
286 		return 0;
287 	return irq;
288 }
289 
290 /*
291  * After EOI'ing an interrupt, we need to re-check the queue
292  * to see if another interrupt is pending since multiple
293  * interrupts can coalesce into a single notification to the
294  * CPU.
295  *
296  * If we find that there is indeed more in there, we call
297  * force_external_irq_replay() to make Linux synthetize an
298  * external interrupt on the next call to local_irq_restore().
299  */
300 static void xive_do_queue_eoi(struct xive_cpu *xc)
301 {
302 	if (xive_scan_interrupts(xc, true) != 0) {
303 		DBG_VERBOSE("eoi: pending=0x%02x\n", xc->pending_prio);
304 		force_external_irq_replay();
305 	}
306 }
307 
308 /*
309  * EOI an interrupt at the source. There are several methods
310  * to do this depending on the HW version and source type
311  */
312 void xive_do_source_eoi(u32 hw_irq, struct xive_irq_data *xd)
313 {
314 	/* If the XIVE supports the new "store EOI facility, use it */
315 	if (xd->flags & XIVE_IRQ_FLAG_STORE_EOI)
316 		xive_esb_write(xd, XIVE_ESB_STORE_EOI, 0);
317 	else if (hw_irq && xd->flags & XIVE_IRQ_FLAG_EOI_FW) {
318 		/*
319 		 * The FW told us to call it. This happens for some
320 		 * interrupt sources that need additional HW whacking
321 		 * beyond the ESB manipulation. For example LPC interrupts
322 		 * on P9 DD1.0 need a latch to be clared in the LPC bridge
323 		 * itself. The Firmware will take care of it.
324 		 */
325 		if (WARN_ON_ONCE(!xive_ops->eoi))
326 			return;
327 		xive_ops->eoi(hw_irq);
328 	} else {
329 		u8 eoi_val;
330 
331 		/*
332 		 * Otherwise for EOI, we use the special MMIO that does
333 		 * a clear of both P and Q and returns the old Q,
334 		 * except for LSIs where we use the "EOI cycle" special
335 		 * load.
336 		 *
337 		 * This allows us to then do a re-trigger if Q was set
338 		 * rather than synthesizing an interrupt in software
339 		 *
340 		 * For LSIs, using the HW EOI cycle works around a problem
341 		 * on P9 DD1 PHBs where the other ESB accesses don't work
342 		 * properly.
343 		 */
344 		if (xd->flags & XIVE_IRQ_FLAG_LSI)
345 			xive_esb_read(xd, XIVE_ESB_LOAD_EOI);
346 		else {
347 			eoi_val = xive_esb_read(xd, XIVE_ESB_SET_PQ_00);
348 			DBG_VERBOSE("eoi_val=%x\n", eoi_val);
349 
350 			/* Re-trigger if needed */
351 			if ((eoi_val & XIVE_ESB_VAL_Q) && xd->trig_mmio)
352 				out_be64(xd->trig_mmio, 0);
353 		}
354 	}
355 }
356 
357 /* irq_chip eoi callback */
358 static void xive_irq_eoi(struct irq_data *d)
359 {
360 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
361 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
362 
363 	DBG_VERBOSE("eoi_irq: irq=%d [0x%lx] pending=%02x\n",
364 		    d->irq, irqd_to_hwirq(d), xc->pending_prio);
365 
366 	/*
367 	 * EOI the source if it hasn't been disabled and hasn't
368 	 * been passed-through to a KVM guest
369 	 */
370 	if (!irqd_irq_disabled(d) && !irqd_is_forwarded_to_vcpu(d) &&
371 	    !(xd->flags & XIVE_IRQ_NO_EOI))
372 		xive_do_source_eoi(irqd_to_hwirq(d), xd);
373 
374 	/*
375 	 * Clear saved_p to indicate that it's no longer occupying
376 	 * a queue slot on the target queue
377 	 */
378 	xd->saved_p = false;
379 
380 	/* Check for more work in the queue */
381 	xive_do_queue_eoi(xc);
382 }
383 
384 /*
385  * Helper used to mask and unmask an interrupt source. This
386  * is only called for normal interrupts that do not require
387  * masking/unmasking via firmware.
388  */
389 static void xive_do_source_set_mask(struct xive_irq_data *xd,
390 				    bool mask)
391 {
392 	u64 val;
393 
394 	/*
395 	 * If the interrupt had P set, it may be in a queue.
396 	 *
397 	 * We need to make sure we don't re-enable it until it
398 	 * has been fetched from that queue and EOId. We keep
399 	 * a copy of that P state and use it to restore the
400 	 * ESB accordingly on unmask.
401 	 */
402 	if (mask) {
403 		val = xive_esb_read(xd, XIVE_ESB_SET_PQ_01);
404 		xd->saved_p = !!(val & XIVE_ESB_VAL_P);
405 	} else if (xd->saved_p)
406 		xive_esb_read(xd, XIVE_ESB_SET_PQ_10);
407 	else
408 		xive_esb_read(xd, XIVE_ESB_SET_PQ_00);
409 }
410 
411 /*
412  * Try to chose "cpu" as a new interrupt target. Increments
413  * the queue accounting for that target if it's not already
414  * full.
415  */
416 static bool xive_try_pick_target(int cpu)
417 {
418 	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
419 	struct xive_q *q = &xc->queue[xive_irq_priority];
420 	int max;
421 
422 	/*
423 	 * Calculate max number of interrupts in that queue.
424 	 *
425 	 * We leave a gap of 1 just in case...
426 	 */
427 	max = (q->msk + 1) - 1;
428 	return !!atomic_add_unless(&q->count, 1, max);
429 }
430 
431 /*
432  * Un-account an interrupt for a target CPU. We don't directly
433  * decrement q->count since the interrupt might still be present
434  * in the queue.
435  *
436  * Instead increment a separate counter "pending_count" which
437  * will be substracted from "count" later when that CPU observes
438  * the queue to be empty.
439  */
440 static void xive_dec_target_count(int cpu)
441 {
442 	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
443 	struct xive_q *q = &xc->queue[xive_irq_priority];
444 
445 	if (unlikely(WARN_ON(cpu < 0 || !xc))) {
446 		pr_err("%s: cpu=%d xc=%p\n", __func__, cpu, xc);
447 		return;
448 	}
449 
450 	/*
451 	 * We increment the "pending count" which will be used
452 	 * to decrement the target queue count whenever it's next
453 	 * processed and found empty. This ensure that we don't
454 	 * decrement while we still have the interrupt there
455 	 * occupying a slot.
456 	 */
457 	atomic_inc(&q->pending_count);
458 }
459 
460 /* Find a tentative CPU target in a CPU mask */
461 static int xive_find_target_in_mask(const struct cpumask *mask,
462 				    unsigned int fuzz)
463 {
464 	int cpu, first, num, i;
465 
466 	/* Pick up a starting point CPU in the mask based on  fuzz */
467 	num = min_t(int, cpumask_weight(mask), nr_cpu_ids);
468 	first = fuzz % num;
469 
470 	/* Locate it */
471 	cpu = cpumask_first(mask);
472 	for (i = 0; i < first && cpu < nr_cpu_ids; i++)
473 		cpu = cpumask_next(cpu, mask);
474 
475 	/* Sanity check */
476 	if (WARN_ON(cpu >= nr_cpu_ids))
477 		cpu = cpumask_first(cpu_online_mask);
478 
479 	/* Remember first one to handle wrap-around */
480 	first = cpu;
481 
482 	/*
483 	 * Now go through the entire mask until we find a valid
484 	 * target.
485 	 */
486 	for (;;) {
487 		/*
488 		 * We re-check online as the fallback case passes us
489 		 * an untested affinity mask
490 		 */
491 		if (cpu_online(cpu) && xive_try_pick_target(cpu))
492 			return cpu;
493 		cpu = cpumask_next(cpu, mask);
494 		if (cpu == first)
495 			break;
496 		/* Wrap around */
497 		if (cpu >= nr_cpu_ids)
498 			cpu = cpumask_first(mask);
499 	}
500 	return -1;
501 }
502 
503 /*
504  * Pick a target CPU for an interrupt. This is done at
505  * startup or if the affinity is changed in a way that
506  * invalidates the current target.
507  */
508 static int xive_pick_irq_target(struct irq_data *d,
509 				const struct cpumask *affinity)
510 {
511 	static unsigned int fuzz;
512 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
513 	cpumask_var_t mask;
514 	int cpu = -1;
515 
516 	/*
517 	 * If we have chip IDs, first we try to build a mask of
518 	 * CPUs matching the CPU and find a target in there
519 	 */
520 	if (xd->src_chip != XIVE_INVALID_CHIP_ID &&
521 		zalloc_cpumask_var(&mask, GFP_ATOMIC)) {
522 		/* Build a mask of matching chip IDs */
523 		for_each_cpu_and(cpu, affinity, cpu_online_mask) {
524 			struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
525 			if (xc->chip_id == xd->src_chip)
526 				cpumask_set_cpu(cpu, mask);
527 		}
528 		/* Try to find a target */
529 		if (cpumask_empty(mask))
530 			cpu = -1;
531 		else
532 			cpu = xive_find_target_in_mask(mask, fuzz++);
533 		free_cpumask_var(mask);
534 		if (cpu >= 0)
535 			return cpu;
536 		fuzz--;
537 	}
538 
539 	/* No chip IDs, fallback to using the affinity mask */
540 	return xive_find_target_in_mask(affinity, fuzz++);
541 }
542 
543 static unsigned int xive_irq_startup(struct irq_data *d)
544 {
545 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
546 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
547 	int target, rc;
548 
549 	pr_devel("xive_irq_startup: irq %d [0x%x] data @%p\n",
550 		 d->irq, hw_irq, d);
551 
552 #ifdef CONFIG_PCI_MSI
553 	/*
554 	 * The generic MSI code returns with the interrupt disabled on the
555 	 * card, using the MSI mask bits. Firmware doesn't appear to unmask
556 	 * at that level, so we do it here by hand.
557 	 */
558 	if (irq_data_get_msi_desc(d))
559 		pci_msi_unmask_irq(d);
560 #endif
561 
562 	/* Pick a target */
563 	target = xive_pick_irq_target(d, irq_data_get_affinity_mask(d));
564 	if (target == XIVE_INVALID_TARGET) {
565 		/* Try again breaking affinity */
566 		target = xive_pick_irq_target(d, cpu_online_mask);
567 		if (target == XIVE_INVALID_TARGET)
568 			return -ENXIO;
569 		pr_warn("irq %d started with broken affinity\n", d->irq);
570 	}
571 
572 	/* Sanity check */
573 	if (WARN_ON(target == XIVE_INVALID_TARGET ||
574 		    target >= nr_cpu_ids))
575 		target = smp_processor_id();
576 
577 	xd->target = target;
578 
579 	/*
580 	 * Configure the logical number to be the Linux IRQ number
581 	 * and set the target queue
582 	 */
583 	rc = xive_ops->configure_irq(hw_irq,
584 				     get_hard_smp_processor_id(target),
585 				     xive_irq_priority, d->irq);
586 	if (rc)
587 		return rc;
588 
589 	/* Unmask the ESB */
590 	xive_do_source_set_mask(xd, false);
591 
592 	return 0;
593 }
594 
595 static void xive_irq_shutdown(struct irq_data *d)
596 {
597 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
598 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
599 
600 	pr_devel("xive_irq_shutdown: irq %d [0x%x] data @%p\n",
601 		 d->irq, hw_irq, d);
602 
603 	if (WARN_ON(xd->target == XIVE_INVALID_TARGET))
604 		return;
605 
606 	/* Mask the interrupt at the source */
607 	xive_do_source_set_mask(xd, true);
608 
609 	/*
610 	 * The above may have set saved_p. We clear it otherwise it
611 	 * will prevent re-enabling later on. It is ok to forget the
612 	 * fact that the interrupt might be in a queue because we are
613 	 * accounting that already in xive_dec_target_count() and will
614 	 * be re-routing it to a new queue with proper accounting when
615 	 * it's started up again
616 	 */
617 	xd->saved_p = false;
618 
619 	/*
620 	 * Mask the interrupt in HW in the IVT/EAS and set the number
621 	 * to be the "bad" IRQ number
622 	 */
623 	xive_ops->configure_irq(hw_irq,
624 				get_hard_smp_processor_id(xd->target),
625 				0xff, XIVE_BAD_IRQ);
626 
627 	xive_dec_target_count(xd->target);
628 	xd->target = XIVE_INVALID_TARGET;
629 }
630 
631 static void xive_irq_unmask(struct irq_data *d)
632 {
633 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
634 
635 	pr_devel("xive_irq_unmask: irq %d data @%p\n", d->irq, xd);
636 
637 	/*
638 	 * This is a workaround for PCI LSI problems on P9, for
639 	 * these, we call FW to set the mask. The problems might
640 	 * be fixed by P9 DD2.0, if that is the case, firmware
641 	 * will no longer set that flag.
642 	 */
643 	if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) {
644 		unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
645 		xive_ops->configure_irq(hw_irq,
646 					get_hard_smp_processor_id(xd->target),
647 					xive_irq_priority, d->irq);
648 		return;
649 	}
650 
651 	xive_do_source_set_mask(xd, false);
652 }
653 
654 static void xive_irq_mask(struct irq_data *d)
655 {
656 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
657 
658 	pr_devel("xive_irq_mask: irq %d data @%p\n", d->irq, xd);
659 
660 	/*
661 	 * This is a workaround for PCI LSI problems on P9, for
662 	 * these, we call OPAL to set the mask. The problems might
663 	 * be fixed by P9 DD2.0, if that is the case, firmware
664 	 * will no longer set that flag.
665 	 */
666 	if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) {
667 		unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
668 		xive_ops->configure_irq(hw_irq,
669 					get_hard_smp_processor_id(xd->target),
670 					0xff, d->irq);
671 		return;
672 	}
673 
674 	xive_do_source_set_mask(xd, true);
675 }
676 
677 static int xive_irq_set_affinity(struct irq_data *d,
678 				 const struct cpumask *cpumask,
679 				 bool force)
680 {
681 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
682 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
683 	u32 target, old_target;
684 	int rc = 0;
685 
686 	pr_devel("xive_irq_set_affinity: irq %d\n", d->irq);
687 
688 	/* Is this valid ? */
689 	if (cpumask_any_and(cpumask, cpu_online_mask) >= nr_cpu_ids)
690 		return -EINVAL;
691 
692 	/* Don't do anything if the interrupt isn't started */
693 	if (!irqd_is_started(d))
694 		return IRQ_SET_MASK_OK;
695 
696 	/*
697 	 * If existing target is already in the new mask, and is
698 	 * online then do nothing.
699 	 */
700 	if (xd->target != XIVE_INVALID_TARGET &&
701 	    cpu_online(xd->target) &&
702 	    cpumask_test_cpu(xd->target, cpumask))
703 		return IRQ_SET_MASK_OK;
704 
705 	/* Pick a new target */
706 	target = xive_pick_irq_target(d, cpumask);
707 
708 	/* No target found */
709 	if (target == XIVE_INVALID_TARGET)
710 		return -ENXIO;
711 
712 	/* Sanity check */
713 	if (WARN_ON(target >= nr_cpu_ids))
714 		target = smp_processor_id();
715 
716 	old_target = xd->target;
717 
718 	/*
719 	 * Only configure the irq if it's not currently passed-through to
720 	 * a KVM guest
721 	 */
722 	if (!irqd_is_forwarded_to_vcpu(d))
723 		rc = xive_ops->configure_irq(hw_irq,
724 					     get_hard_smp_processor_id(target),
725 					     xive_irq_priority, d->irq);
726 	if (rc < 0) {
727 		pr_err("Error %d reconfiguring irq %d\n", rc, d->irq);
728 		return rc;
729 	}
730 
731 	pr_devel("  target: 0x%x\n", target);
732 	xd->target = target;
733 
734 	/* Give up previous target */
735 	if (old_target != XIVE_INVALID_TARGET)
736 	    xive_dec_target_count(old_target);
737 
738 	return IRQ_SET_MASK_OK;
739 }
740 
741 static int xive_irq_set_type(struct irq_data *d, unsigned int flow_type)
742 {
743 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
744 
745 	/*
746 	 * We only support these. This has really no effect other than setting
747 	 * the corresponding descriptor bits mind you but those will in turn
748 	 * affect the resend function when re-enabling an edge interrupt.
749 	 *
750 	 * Set set the default to edge as explained in map().
751 	 */
752 	if (flow_type == IRQ_TYPE_DEFAULT || flow_type == IRQ_TYPE_NONE)
753 		flow_type = IRQ_TYPE_EDGE_RISING;
754 
755 	if (flow_type != IRQ_TYPE_EDGE_RISING &&
756 	    flow_type != IRQ_TYPE_LEVEL_LOW)
757 		return -EINVAL;
758 
759 	irqd_set_trigger_type(d, flow_type);
760 
761 	/*
762 	 * Double check it matches what the FW thinks
763 	 *
764 	 * NOTE: We don't know yet if the PAPR interface will provide
765 	 * the LSI vs MSI information apart from the device-tree so
766 	 * this check might have to move into an optional backend call
767 	 * that is specific to the native backend
768 	 */
769 	if ((flow_type == IRQ_TYPE_LEVEL_LOW) !=
770 	    !!(xd->flags & XIVE_IRQ_FLAG_LSI)) {
771 		pr_warn("Interrupt %d (HW 0x%x) type mismatch, Linux says %s, FW says %s\n",
772 			d->irq, (u32)irqd_to_hwirq(d),
773 			(flow_type == IRQ_TYPE_LEVEL_LOW) ? "Level" : "Edge",
774 			(xd->flags & XIVE_IRQ_FLAG_LSI) ? "Level" : "Edge");
775 	}
776 
777 	return IRQ_SET_MASK_OK_NOCOPY;
778 }
779 
780 static int xive_irq_retrigger(struct irq_data *d)
781 {
782 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
783 
784 	/* This should be only for MSIs */
785 	if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
786 		return 0;
787 
788 	/*
789 	 * To perform a retrigger, we first set the PQ bits to
790 	 * 11, then perform an EOI.
791 	 */
792 	xive_esb_read(xd, XIVE_ESB_SET_PQ_11);
793 
794 	/*
795 	 * Note: We pass "0" to the hw_irq argument in order to
796 	 * avoid calling into the backend EOI code which we don't
797 	 * want to do in the case of a re-trigger. Backends typically
798 	 * only do EOI for LSIs anyway.
799 	 */
800 	xive_do_source_eoi(0, xd);
801 
802 	return 1;
803 }
804 
805 static int xive_irq_set_vcpu_affinity(struct irq_data *d, void *state)
806 {
807 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
808 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
809 	int rc;
810 	u8 pq;
811 
812 	/*
813 	 * We only support this on interrupts that do not require
814 	 * firmware calls for masking and unmasking
815 	 */
816 	if (xd->flags & XIVE_IRQ_FLAG_MASK_FW)
817 		return -EIO;
818 
819 	/*
820 	 * This is called by KVM with state non-NULL for enabling
821 	 * pass-through or NULL for disabling it
822 	 */
823 	if (state) {
824 		irqd_set_forwarded_to_vcpu(d);
825 
826 		/* Set it to PQ=10 state to prevent further sends */
827 		pq = xive_esb_read(xd, XIVE_ESB_SET_PQ_10);
828 
829 		/* No target ? nothing to do */
830 		if (xd->target == XIVE_INVALID_TARGET) {
831 			/*
832 			 * An untargetted interrupt should have been
833 			 * also masked at the source
834 			 */
835 			WARN_ON(pq & 2);
836 
837 			return 0;
838 		}
839 
840 		/*
841 		 * If P was set, adjust state to PQ=11 to indicate
842 		 * that a resend is needed for the interrupt to reach
843 		 * the guest. Also remember the value of P.
844 		 *
845 		 * This also tells us that it's in flight to a host queue
846 		 * or has already been fetched but hasn't been EOIed yet
847 		 * by the host. This it's potentially using up a host
848 		 * queue slot. This is important to know because as long
849 		 * as this is the case, we must not hard-unmask it when
850 		 * "returning" that interrupt to the host.
851 		 *
852 		 * This saved_p is cleared by the host EOI, when we know
853 		 * for sure the queue slot is no longer in use.
854 		 */
855 		if (pq & 2) {
856 			pq = xive_esb_read(xd, XIVE_ESB_SET_PQ_11);
857 			xd->saved_p = true;
858 
859 			/*
860 			 * Sync the XIVE source HW to ensure the interrupt
861 			 * has gone through the EAS before we change its
862 			 * target to the guest. That should guarantee us
863 			 * that we *will* eventually get an EOI for it on
864 			 * the host. Otherwise there would be a small window
865 			 * for P to be seen here but the interrupt going
866 			 * to the guest queue.
867 			 */
868 			if (xive_ops->sync_source)
869 				xive_ops->sync_source(hw_irq);
870 		} else
871 			xd->saved_p = false;
872 	} else {
873 		irqd_clr_forwarded_to_vcpu(d);
874 
875 		/* No host target ? hard mask and return */
876 		if (xd->target == XIVE_INVALID_TARGET) {
877 			xive_do_source_set_mask(xd, true);
878 			return 0;
879 		}
880 
881 		/*
882 		 * Sync the XIVE source HW to ensure the interrupt
883 		 * has gone through the EAS before we change its
884 		 * target to the host.
885 		 */
886 		if (xive_ops->sync_source)
887 			xive_ops->sync_source(hw_irq);
888 
889 		/*
890 		 * By convention we are called with the interrupt in
891 		 * a PQ=10 or PQ=11 state, ie, it won't fire and will
892 		 * have latched in Q whether there's a pending HW
893 		 * interrupt or not.
894 		 *
895 		 * First reconfigure the target.
896 		 */
897 		rc = xive_ops->configure_irq(hw_irq,
898 					     get_hard_smp_processor_id(xd->target),
899 					     xive_irq_priority, d->irq);
900 		if (rc)
901 			return rc;
902 
903 		/*
904 		 * Then if saved_p is not set, effectively re-enable the
905 		 * interrupt with an EOI. If it is set, we know there is
906 		 * still a message in a host queue somewhere that will be
907 		 * EOId eventually.
908 		 *
909 		 * Note: We don't check irqd_irq_disabled(). Effectively,
910 		 * we *will* let the irq get through even if masked if the
911 		 * HW is still firing it in order to deal with the whole
912 		 * saved_p business properly. If the interrupt triggers
913 		 * while masked, the generic code will re-mask it anyway.
914 		 */
915 		if (!xd->saved_p)
916 			xive_do_source_eoi(hw_irq, xd);
917 
918 	}
919 	return 0;
920 }
921 
922 static struct irq_chip xive_irq_chip = {
923 	.name = "XIVE-IRQ",
924 	.irq_startup = xive_irq_startup,
925 	.irq_shutdown = xive_irq_shutdown,
926 	.irq_eoi = xive_irq_eoi,
927 	.irq_mask = xive_irq_mask,
928 	.irq_unmask = xive_irq_unmask,
929 	.irq_set_affinity = xive_irq_set_affinity,
930 	.irq_set_type = xive_irq_set_type,
931 	.irq_retrigger = xive_irq_retrigger,
932 	.irq_set_vcpu_affinity = xive_irq_set_vcpu_affinity,
933 };
934 
935 bool is_xive_irq(struct irq_chip *chip)
936 {
937 	return chip == &xive_irq_chip;
938 }
939 EXPORT_SYMBOL_GPL(is_xive_irq);
940 
941 void xive_cleanup_irq_data(struct xive_irq_data *xd)
942 {
943 	if (xd->eoi_mmio) {
944 		iounmap(xd->eoi_mmio);
945 		if (xd->eoi_mmio == xd->trig_mmio)
946 			xd->trig_mmio = NULL;
947 		xd->eoi_mmio = NULL;
948 	}
949 	if (xd->trig_mmio) {
950 		iounmap(xd->trig_mmio);
951 		xd->trig_mmio = NULL;
952 	}
953 }
954 EXPORT_SYMBOL_GPL(xive_cleanup_irq_data);
955 
956 static int xive_irq_alloc_data(unsigned int virq, irq_hw_number_t hw)
957 {
958 	struct xive_irq_data *xd;
959 	int rc;
960 
961 	xd = kzalloc(sizeof(struct xive_irq_data), GFP_KERNEL);
962 	if (!xd)
963 		return -ENOMEM;
964 	rc = xive_ops->populate_irq_data(hw, xd);
965 	if (rc) {
966 		kfree(xd);
967 		return rc;
968 	}
969 	xd->target = XIVE_INVALID_TARGET;
970 	irq_set_handler_data(virq, xd);
971 
972 	return 0;
973 }
974 
975 static void xive_irq_free_data(unsigned int virq)
976 {
977 	struct xive_irq_data *xd = irq_get_handler_data(virq);
978 
979 	if (!xd)
980 		return;
981 	irq_set_handler_data(virq, NULL);
982 	xive_cleanup_irq_data(xd);
983 	kfree(xd);
984 }
985 
986 #ifdef CONFIG_SMP
987 
988 static void xive_cause_ipi(int cpu)
989 {
990 	struct xive_cpu *xc;
991 	struct xive_irq_data *xd;
992 
993 	xc = per_cpu(xive_cpu, cpu);
994 
995 	DBG_VERBOSE("IPI CPU %d -> %d (HW IRQ 0x%x)\n",
996 		    smp_processor_id(), cpu, xc->hw_ipi);
997 
998 	xd = &xc->ipi_data;
999 	if (WARN_ON(!xd->trig_mmio))
1000 		return;
1001 	out_be64(xd->trig_mmio, 0);
1002 }
1003 
1004 static irqreturn_t xive_muxed_ipi_action(int irq, void *dev_id)
1005 {
1006 	return smp_ipi_demux();
1007 }
1008 
1009 static void xive_ipi_eoi(struct irq_data *d)
1010 {
1011 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1012 
1013 	DBG_VERBOSE("IPI eoi: irq=%d [0x%lx] (HW IRQ 0x%x) pending=%02x\n",
1014 		    d->irq, irqd_to_hwirq(d), xc->hw_ipi, xc->pending_prio);
1015 
1016 	/* Handle possible race with unplug and drop stale IPIs */
1017 	if (!xc)
1018 		return;
1019 	xive_do_source_eoi(xc->hw_ipi, &xc->ipi_data);
1020 	xive_do_queue_eoi(xc);
1021 }
1022 
1023 static void xive_ipi_do_nothing(struct irq_data *d)
1024 {
1025 	/*
1026 	 * Nothing to do, we never mask/unmask IPIs, but the callback
1027 	 * has to exist for the struct irq_chip.
1028 	 */
1029 }
1030 
1031 static struct irq_chip xive_ipi_chip = {
1032 	.name = "XIVE-IPI",
1033 	.irq_eoi = xive_ipi_eoi,
1034 	.irq_mask = xive_ipi_do_nothing,
1035 	.irq_unmask = xive_ipi_do_nothing,
1036 };
1037 
1038 static void __init xive_request_ipi(void)
1039 {
1040 	unsigned int virq;
1041 
1042 	/*
1043 	 * Initialization failed, move on, we might manage to
1044 	 * reach the point where we display our errors before
1045 	 * the system falls appart
1046 	 */
1047 	if (!xive_irq_domain)
1048 		return;
1049 
1050 	/* Initialize it */
1051 	virq = irq_create_mapping(xive_irq_domain, 0);
1052 	xive_ipi_irq = virq;
1053 
1054 	WARN_ON(request_irq(virq, xive_muxed_ipi_action,
1055 			    IRQF_PERCPU | IRQF_NO_THREAD, "IPI", NULL));
1056 }
1057 
1058 static int xive_setup_cpu_ipi(unsigned int cpu)
1059 {
1060 	struct xive_cpu *xc;
1061 	int rc;
1062 
1063 	pr_debug("Setting up IPI for CPU %d\n", cpu);
1064 
1065 	xc = per_cpu(xive_cpu, cpu);
1066 
1067 	/* Check if we are already setup */
1068 	if (xc->hw_ipi != 0)
1069 		return 0;
1070 
1071 	/* Grab an IPI from the backend, this will populate xc->hw_ipi */
1072 	if (xive_ops->get_ipi(cpu, xc))
1073 		return -EIO;
1074 
1075 	/*
1076 	 * Populate the IRQ data in the xive_cpu structure and
1077 	 * configure the HW / enable the IPIs.
1078 	 */
1079 	rc = xive_ops->populate_irq_data(xc->hw_ipi, &xc->ipi_data);
1080 	if (rc) {
1081 		pr_err("Failed to populate IPI data on CPU %d\n", cpu);
1082 		return -EIO;
1083 	}
1084 	rc = xive_ops->configure_irq(xc->hw_ipi,
1085 				     get_hard_smp_processor_id(cpu),
1086 				     xive_irq_priority, xive_ipi_irq);
1087 	if (rc) {
1088 		pr_err("Failed to map IPI CPU %d\n", cpu);
1089 		return -EIO;
1090 	}
1091 	pr_devel("CPU %d HW IPI %x, virq %d, trig_mmio=%p\n", cpu,
1092 	    xc->hw_ipi, xive_ipi_irq, xc->ipi_data.trig_mmio);
1093 
1094 	/* Unmask it */
1095 	xive_do_source_set_mask(&xc->ipi_data, false);
1096 
1097 	return 0;
1098 }
1099 
1100 static void xive_cleanup_cpu_ipi(unsigned int cpu, struct xive_cpu *xc)
1101 {
1102 	/* Disable the IPI and free the IRQ data */
1103 
1104 	/* Already cleaned up ? */
1105 	if (xc->hw_ipi == 0)
1106 		return;
1107 
1108 	/* Mask the IPI */
1109 	xive_do_source_set_mask(&xc->ipi_data, true);
1110 
1111 	/*
1112 	 * Note: We don't call xive_cleanup_irq_data() to free
1113 	 * the mappings as this is called from an IPI on kexec
1114 	 * which is not a safe environment to call iounmap()
1115 	 */
1116 
1117 	/* Deconfigure/mask in the backend */
1118 	xive_ops->configure_irq(xc->hw_ipi, hard_smp_processor_id(),
1119 				0xff, xive_ipi_irq);
1120 
1121 	/* Free the IPIs in the backend */
1122 	xive_ops->put_ipi(cpu, xc);
1123 }
1124 
1125 void __init xive_smp_probe(void)
1126 {
1127 	smp_ops->cause_ipi = xive_cause_ipi;
1128 
1129 	/* Register the IPI */
1130 	xive_request_ipi();
1131 
1132 	/* Allocate and setup IPI for the boot CPU */
1133 	xive_setup_cpu_ipi(smp_processor_id());
1134 }
1135 
1136 #endif /* CONFIG_SMP */
1137 
1138 static int xive_irq_domain_map(struct irq_domain *h, unsigned int virq,
1139 			       irq_hw_number_t hw)
1140 {
1141 	int rc;
1142 
1143 	/*
1144 	 * Mark interrupts as edge sensitive by default so that resend
1145 	 * actually works. Will fix that up below if needed.
1146 	 */
1147 	irq_clear_status_flags(virq, IRQ_LEVEL);
1148 
1149 #ifdef CONFIG_SMP
1150 	/* IPIs are special and come up with HW number 0 */
1151 	if (hw == 0) {
1152 		/*
1153 		 * IPIs are marked per-cpu. We use separate HW interrupts under
1154 		 * the hood but associated with the same "linux" interrupt
1155 		 */
1156 		irq_set_chip_and_handler(virq, &xive_ipi_chip,
1157 					 handle_percpu_irq);
1158 		return 0;
1159 	}
1160 #endif
1161 
1162 	rc = xive_irq_alloc_data(virq, hw);
1163 	if (rc)
1164 		return rc;
1165 
1166 	irq_set_chip_and_handler(virq, &xive_irq_chip, handle_fasteoi_irq);
1167 
1168 	return 0;
1169 }
1170 
1171 static void xive_irq_domain_unmap(struct irq_domain *d, unsigned int virq)
1172 {
1173 	struct irq_data *data = irq_get_irq_data(virq);
1174 	unsigned int hw_irq;
1175 
1176 	/* XXX Assign BAD number */
1177 	if (!data)
1178 		return;
1179 	hw_irq = (unsigned int)irqd_to_hwirq(data);
1180 	if (hw_irq)
1181 		xive_irq_free_data(virq);
1182 }
1183 
1184 static int xive_irq_domain_xlate(struct irq_domain *h, struct device_node *ct,
1185 				 const u32 *intspec, unsigned int intsize,
1186 				 irq_hw_number_t *out_hwirq, unsigned int *out_flags)
1187 
1188 {
1189 	*out_hwirq = intspec[0];
1190 
1191 	/*
1192 	 * If intsize is at least 2, we look for the type in the second cell,
1193 	 * we assume the LSB indicates a level interrupt.
1194 	 */
1195 	if (intsize > 1) {
1196 		if (intspec[1] & 1)
1197 			*out_flags = IRQ_TYPE_LEVEL_LOW;
1198 		else
1199 			*out_flags = IRQ_TYPE_EDGE_RISING;
1200 	} else
1201 		*out_flags = IRQ_TYPE_LEVEL_LOW;
1202 
1203 	return 0;
1204 }
1205 
1206 static int xive_irq_domain_match(struct irq_domain *h, struct device_node *node,
1207 				 enum irq_domain_bus_token bus_token)
1208 {
1209 	return xive_ops->match(node);
1210 }
1211 
1212 static const struct irq_domain_ops xive_irq_domain_ops = {
1213 	.match = xive_irq_domain_match,
1214 	.map = xive_irq_domain_map,
1215 	.unmap = xive_irq_domain_unmap,
1216 	.xlate = xive_irq_domain_xlate,
1217 };
1218 
1219 static void __init xive_init_host(void)
1220 {
1221 	xive_irq_domain = irq_domain_add_nomap(NULL, XIVE_MAX_IRQ,
1222 					       &xive_irq_domain_ops, NULL);
1223 	if (WARN_ON(xive_irq_domain == NULL))
1224 		return;
1225 	irq_set_default_host(xive_irq_domain);
1226 }
1227 
1228 static void xive_cleanup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1229 {
1230 	if (xc->queue[xive_irq_priority].qpage)
1231 		xive_ops->cleanup_queue(cpu, xc, xive_irq_priority);
1232 }
1233 
1234 static int xive_setup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1235 {
1236 	int rc = 0;
1237 
1238 	/* We setup 1 queues for now with a 64k page */
1239 	if (!xc->queue[xive_irq_priority].qpage)
1240 		rc = xive_ops->setup_queue(cpu, xc, xive_irq_priority);
1241 
1242 	return rc;
1243 }
1244 
1245 static int xive_prepare_cpu(unsigned int cpu)
1246 {
1247 	struct xive_cpu *xc;
1248 
1249 	xc = per_cpu(xive_cpu, cpu);
1250 	if (!xc) {
1251 		struct device_node *np;
1252 
1253 		xc = kzalloc_node(sizeof(struct xive_cpu),
1254 				  GFP_KERNEL, cpu_to_node(cpu));
1255 		if (!xc)
1256 			return -ENOMEM;
1257 		np = of_get_cpu_node(cpu, NULL);
1258 		if (np)
1259 			xc->chip_id = of_get_ibm_chip_id(np);
1260 		of_node_put(np);
1261 
1262 		per_cpu(xive_cpu, cpu) = xc;
1263 	}
1264 
1265 	/* Setup EQs if not already */
1266 	return xive_setup_cpu_queues(cpu, xc);
1267 }
1268 
1269 static void xive_setup_cpu(void)
1270 {
1271 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1272 
1273 	/* The backend might have additional things to do */
1274 	if (xive_ops->setup_cpu)
1275 		xive_ops->setup_cpu(smp_processor_id(), xc);
1276 
1277 	/* Set CPPR to 0xff to enable flow of interrupts */
1278 	xc->cppr = 0xff;
1279 	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1280 }
1281 
1282 #ifdef CONFIG_SMP
1283 void xive_smp_setup_cpu(void)
1284 {
1285 	pr_devel("SMP setup CPU %d\n", smp_processor_id());
1286 
1287 	/* This will have already been done on the boot CPU */
1288 	if (smp_processor_id() != boot_cpuid)
1289 		xive_setup_cpu();
1290 
1291 }
1292 
1293 int xive_smp_prepare_cpu(unsigned int cpu)
1294 {
1295 	int rc;
1296 
1297 	/* Allocate per-CPU data and queues */
1298 	rc = xive_prepare_cpu(cpu);
1299 	if (rc)
1300 		return rc;
1301 
1302 	/* Allocate and setup IPI for the new CPU */
1303 	return xive_setup_cpu_ipi(cpu);
1304 }
1305 
1306 #ifdef CONFIG_HOTPLUG_CPU
1307 static void xive_flush_cpu_queue(unsigned int cpu, struct xive_cpu *xc)
1308 {
1309 	u32 irq;
1310 
1311 	/* We assume local irqs are disabled */
1312 	WARN_ON(!irqs_disabled());
1313 
1314 	/* Check what's already in the CPU queue */
1315 	while ((irq = xive_scan_interrupts(xc, false)) != 0) {
1316 		/*
1317 		 * We need to re-route that interrupt to its new destination.
1318 		 * First get and lock the descriptor
1319 		 */
1320 		struct irq_desc *desc = irq_to_desc(irq);
1321 		struct irq_data *d = irq_desc_get_irq_data(desc);
1322 		struct xive_irq_data *xd;
1323 		unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
1324 
1325 		/*
1326 		 * Ignore anything that isn't a XIVE irq and ignore
1327 		 * IPIs, so can just be dropped.
1328 		 */
1329 		if (d->domain != xive_irq_domain || hw_irq == 0)
1330 			continue;
1331 
1332 		/*
1333 		 * The IRQ should have already been re-routed, it's just a
1334 		 * stale in the old queue, so re-trigger it in order to make
1335 		 * it reach is new destination.
1336 		 */
1337 #ifdef DEBUG_FLUSH
1338 		pr_info("CPU %d: Got irq %d while offline, re-sending...\n",
1339 			cpu, irq);
1340 #endif
1341 		raw_spin_lock(&desc->lock);
1342 		xd = irq_desc_get_handler_data(desc);
1343 
1344 		/*
1345 		 * For LSIs, we EOI, this will cause a resend if it's
1346 		 * still asserted. Otherwise do an MSI retrigger.
1347 		 */
1348 		if (xd->flags & XIVE_IRQ_FLAG_LSI)
1349 			xive_do_source_eoi(irqd_to_hwirq(d), xd);
1350 		else
1351 			xive_irq_retrigger(d);
1352 
1353 		raw_spin_unlock(&desc->lock);
1354 	}
1355 }
1356 
1357 void xive_smp_disable_cpu(void)
1358 {
1359 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1360 	unsigned int cpu = smp_processor_id();
1361 
1362 	/* Migrate interrupts away from the CPU */
1363 	irq_migrate_all_off_this_cpu();
1364 
1365 	/* Set CPPR to 0 to disable flow of interrupts */
1366 	xc->cppr = 0;
1367 	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1368 
1369 	/* Flush everything still in the queue */
1370 	xive_flush_cpu_queue(cpu, xc);
1371 
1372 	/* Re-enable CPPR  */
1373 	xc->cppr = 0xff;
1374 	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1375 }
1376 
1377 void xive_flush_interrupt(void)
1378 {
1379 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1380 	unsigned int cpu = smp_processor_id();
1381 
1382 	/* Called if an interrupt occurs while the CPU is hot unplugged */
1383 	xive_flush_cpu_queue(cpu, xc);
1384 }
1385 
1386 #endif /* CONFIG_HOTPLUG_CPU */
1387 
1388 #endif /* CONFIG_SMP */
1389 
1390 void xive_teardown_cpu(void)
1391 {
1392 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1393 	unsigned int cpu = smp_processor_id();
1394 
1395 	/* Set CPPR to 0 to disable flow of interrupts */
1396 	xc->cppr = 0;
1397 	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1398 
1399 	if (xive_ops->teardown_cpu)
1400 		xive_ops->teardown_cpu(cpu, xc);
1401 
1402 #ifdef CONFIG_SMP
1403 	/* Get rid of IPI */
1404 	xive_cleanup_cpu_ipi(cpu, xc);
1405 #endif
1406 
1407 	/* Disable and free the queues */
1408 	xive_cleanup_cpu_queues(cpu, xc);
1409 }
1410 
1411 void xive_kexec_teardown_cpu(int secondary)
1412 {
1413 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1414 	unsigned int cpu = smp_processor_id();
1415 
1416 	/* Set CPPR to 0 to disable flow of interrupts */
1417 	xc->cppr = 0;
1418 	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1419 
1420 	/* Backend cleanup if any */
1421 	if (xive_ops->teardown_cpu)
1422 		xive_ops->teardown_cpu(cpu, xc);
1423 
1424 #ifdef CONFIG_SMP
1425 	/* Get rid of IPI */
1426 	xive_cleanup_cpu_ipi(cpu, xc);
1427 #endif
1428 
1429 	/* Disable and free the queues */
1430 	xive_cleanup_cpu_queues(cpu, xc);
1431 }
1432 
1433 void xive_shutdown(void)
1434 {
1435 	xive_ops->shutdown();
1436 }
1437 
1438 bool __init xive_core_init(const struct xive_ops *ops, void __iomem *area, u32 offset,
1439 			   u8 max_prio)
1440 {
1441 	xive_tima = area;
1442 	xive_tima_offset = offset;
1443 	xive_ops = ops;
1444 	xive_irq_priority = max_prio;
1445 
1446 	ppc_md.get_irq = xive_get_irq;
1447 	__xive_enabled = true;
1448 
1449 	pr_devel("Initializing host..\n");
1450 	xive_init_host();
1451 
1452 	pr_devel("Initializing boot CPU..\n");
1453 
1454 	/* Allocate per-CPU data and queues */
1455 	xive_prepare_cpu(smp_processor_id());
1456 
1457 	/* Get ready for interrupts */
1458 	xive_setup_cpu();
1459 
1460 	pr_info("Interrupt handling initialized with %s backend\n",
1461 		xive_ops->name);
1462 	pr_info("Using priority %d for all interrupts\n", max_prio);
1463 
1464 	return true;
1465 }
1466 
1467 __be32 *xive_queue_page_alloc(unsigned int cpu, u32 queue_shift)
1468 {
1469 	unsigned int alloc_order;
1470 	struct page *pages;
1471 	__be32 *qpage;
1472 
1473 	alloc_order = xive_alloc_order(queue_shift);
1474 	pages = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, alloc_order);
1475 	if (!pages)
1476 		return ERR_PTR(-ENOMEM);
1477 	qpage = (__be32 *)page_address(pages);
1478 	memset(qpage, 0, 1 << queue_shift);
1479 
1480 	return qpage;
1481 }
1482 
1483 static int __init xive_off(char *arg)
1484 {
1485 	xive_cmdline_disabled = true;
1486 	return 0;
1487 }
1488 __setup("xive=off", xive_off);
1489