1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright 2016,2017 IBM Corporation. 4 */ 5 6 #define pr_fmt(fmt) "xive: " fmt 7 8 #include <linux/types.h> 9 #include <linux/threads.h> 10 #include <linux/kernel.h> 11 #include <linux/irq.h> 12 #include <linux/debugfs.h> 13 #include <linux/smp.h> 14 #include <linux/interrupt.h> 15 #include <linux/seq_file.h> 16 #include <linux/init.h> 17 #include <linux/cpu.h> 18 #include <linux/of.h> 19 #include <linux/slab.h> 20 #include <linux/spinlock.h> 21 #include <linux/msi.h> 22 23 #include <asm/prom.h> 24 #include <asm/io.h> 25 #include <asm/smp.h> 26 #include <asm/machdep.h> 27 #include <asm/irq.h> 28 #include <asm/errno.h> 29 #include <asm/xive.h> 30 #include <asm/xive-regs.h> 31 #include <asm/xmon.h> 32 33 #include "xive-internal.h" 34 35 #undef DEBUG_FLUSH 36 #undef DEBUG_ALL 37 38 #ifdef DEBUG_ALL 39 #define DBG_VERBOSE(fmt, ...) pr_devel("cpu %d - " fmt, \ 40 smp_processor_id(), ## __VA_ARGS__) 41 #else 42 #define DBG_VERBOSE(fmt...) do { } while(0) 43 #endif 44 45 bool __xive_enabled; 46 EXPORT_SYMBOL_GPL(__xive_enabled); 47 bool xive_cmdline_disabled; 48 49 /* We use only one priority for now */ 50 static u8 xive_irq_priority; 51 52 /* TIMA exported to KVM */ 53 void __iomem *xive_tima; 54 EXPORT_SYMBOL_GPL(xive_tima); 55 u32 xive_tima_offset; 56 57 /* Backend ops */ 58 static const struct xive_ops *xive_ops; 59 60 /* Our global interrupt domain */ 61 static struct irq_domain *xive_irq_domain; 62 63 #ifdef CONFIG_SMP 64 /* The IPIs all use the same logical irq number */ 65 static u32 xive_ipi_irq; 66 #endif 67 68 /* Xive state for each CPU */ 69 static DEFINE_PER_CPU(struct xive_cpu *, xive_cpu); 70 71 /* 72 * A "disabled" interrupt should never fire, to catch problems 73 * we set its logical number to this 74 */ 75 #define XIVE_BAD_IRQ 0x7fffffff 76 #define XIVE_MAX_IRQ (XIVE_BAD_IRQ - 1) 77 78 /* An invalid CPU target */ 79 #define XIVE_INVALID_TARGET (-1) 80 81 /* 82 * Read the next entry in a queue, return its content if it's valid 83 * or 0 if there is no new entry. 84 * 85 * The queue pointer is moved forward unless "just_peek" is set 86 */ 87 static u32 xive_read_eq(struct xive_q *q, bool just_peek) 88 { 89 u32 cur; 90 91 if (!q->qpage) 92 return 0; 93 cur = be32_to_cpup(q->qpage + q->idx); 94 95 /* Check valid bit (31) vs current toggle polarity */ 96 if ((cur >> 31) == q->toggle) 97 return 0; 98 99 /* If consuming from the queue ... */ 100 if (!just_peek) { 101 /* Next entry */ 102 q->idx = (q->idx + 1) & q->msk; 103 104 /* Wrap around: flip valid toggle */ 105 if (q->idx == 0) 106 q->toggle ^= 1; 107 } 108 /* Mask out the valid bit (31) */ 109 return cur & 0x7fffffff; 110 } 111 112 /* 113 * Scans all the queue that may have interrupts in them 114 * (based on "pending_prio") in priority order until an 115 * interrupt is found or all the queues are empty. 116 * 117 * Then updates the CPPR (Current Processor Priority 118 * Register) based on the most favored interrupt found 119 * (0xff if none) and return what was found (0 if none). 120 * 121 * If just_peek is set, return the most favored pending 122 * interrupt if any but don't update the queue pointers. 123 * 124 * Note: This function can operate generically on any number 125 * of queues (up to 8). The current implementation of the XIVE 126 * driver only uses a single queue however. 127 * 128 * Note2: This will also "flush" "the pending_count" of a queue 129 * into the "count" when that queue is observed to be empty. 130 * This is used to keep track of the amount of interrupts 131 * targetting a queue. When an interrupt is moved away from 132 * a queue, we only decrement that queue count once the queue 133 * has been observed empty to avoid races. 134 */ 135 static u32 xive_scan_interrupts(struct xive_cpu *xc, bool just_peek) 136 { 137 u32 irq = 0; 138 u8 prio; 139 140 /* Find highest pending priority */ 141 while (xc->pending_prio != 0) { 142 struct xive_q *q; 143 144 prio = ffs(xc->pending_prio) - 1; 145 DBG_VERBOSE("scan_irq: trying prio %d\n", prio); 146 147 /* Try to fetch */ 148 irq = xive_read_eq(&xc->queue[prio], just_peek); 149 150 /* Found something ? That's it */ 151 if (irq) 152 break; 153 154 /* Clear pending bits */ 155 xc->pending_prio &= ~(1 << prio); 156 157 /* 158 * Check if the queue count needs adjusting due to 159 * interrupts being moved away. See description of 160 * xive_dec_target_count() 161 */ 162 q = &xc->queue[prio]; 163 if (atomic_read(&q->pending_count)) { 164 int p = atomic_xchg(&q->pending_count, 0); 165 if (p) { 166 WARN_ON(p > atomic_read(&q->count)); 167 atomic_sub(p, &q->count); 168 } 169 } 170 } 171 172 /* If nothing was found, set CPPR to 0xff */ 173 if (irq == 0) 174 prio = 0xff; 175 176 /* Update HW CPPR to match if necessary */ 177 if (prio != xc->cppr) { 178 DBG_VERBOSE("scan_irq: adjusting CPPR to %d\n", prio); 179 xc->cppr = prio; 180 out_8(xive_tima + xive_tima_offset + TM_CPPR, prio); 181 } 182 183 return irq; 184 } 185 186 /* 187 * This is used to perform the magic loads from an ESB 188 * described in xive.h 189 */ 190 static notrace u8 xive_esb_read(struct xive_irq_data *xd, u32 offset) 191 { 192 u64 val; 193 194 /* Handle HW errata */ 195 if (xd->flags & XIVE_IRQ_FLAG_SHIFT_BUG) 196 offset |= offset << 4; 197 198 if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw) 199 val = xive_ops->esb_rw(xd->hw_irq, offset, 0, 0); 200 else 201 val = in_be64(xd->eoi_mmio + offset); 202 203 return (u8)val; 204 } 205 206 static void xive_esb_write(struct xive_irq_data *xd, u32 offset, u64 data) 207 { 208 /* Handle HW errata */ 209 if (xd->flags & XIVE_IRQ_FLAG_SHIFT_BUG) 210 offset |= offset << 4; 211 212 if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw) 213 xive_ops->esb_rw(xd->hw_irq, offset, data, 1); 214 else 215 out_be64(xd->eoi_mmio + offset, data); 216 } 217 218 #ifdef CONFIG_XMON 219 static notrace void xive_dump_eq(const char *name, struct xive_q *q) 220 { 221 u32 i0, i1, idx; 222 223 if (!q->qpage) 224 return; 225 idx = q->idx; 226 i0 = be32_to_cpup(q->qpage + idx); 227 idx = (idx + 1) & q->msk; 228 i1 = be32_to_cpup(q->qpage + idx); 229 xmon_printf(" %s Q T=%d %08x %08x ...\n", name, 230 q->toggle, i0, i1); 231 } 232 233 notrace void xmon_xive_do_dump(int cpu) 234 { 235 struct xive_cpu *xc = per_cpu(xive_cpu, cpu); 236 237 xmon_printf("XIVE state for CPU %d:\n", cpu); 238 xmon_printf(" pp=%02x cppr=%02x\n", xc->pending_prio, xc->cppr); 239 xive_dump_eq("IRQ", &xc->queue[xive_irq_priority]); 240 #ifdef CONFIG_SMP 241 { 242 u64 val = xive_esb_read(&xc->ipi_data, XIVE_ESB_GET); 243 xmon_printf(" IPI state: %x:%c%c\n", xc->hw_ipi, 244 val & XIVE_ESB_VAL_P ? 'P' : 'p', 245 val & XIVE_ESB_VAL_Q ? 'Q' : 'q'); 246 } 247 #endif 248 } 249 #endif /* CONFIG_XMON */ 250 251 static unsigned int xive_get_irq(void) 252 { 253 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 254 u32 irq; 255 256 /* 257 * This can be called either as a result of a HW interrupt or 258 * as a "replay" because EOI decided there was still something 259 * in one of the queues. 260 * 261 * First we perform an ACK cycle in order to update our mask 262 * of pending priorities. This will also have the effect of 263 * updating the CPPR to the most favored pending interrupts. 264 * 265 * In the future, if we have a way to differentiate a first 266 * entry (on HW interrupt) from a replay triggered by EOI, 267 * we could skip this on replays unless we soft-mask tells us 268 * that a new HW interrupt occurred. 269 */ 270 xive_ops->update_pending(xc); 271 272 DBG_VERBOSE("get_irq: pending=%02x\n", xc->pending_prio); 273 274 /* Scan our queue(s) for interrupts */ 275 irq = xive_scan_interrupts(xc, false); 276 277 DBG_VERBOSE("get_irq: got irq 0x%x, new pending=0x%02x\n", 278 irq, xc->pending_prio); 279 280 /* Return pending interrupt if any */ 281 if (irq == XIVE_BAD_IRQ) 282 return 0; 283 return irq; 284 } 285 286 /* 287 * After EOI'ing an interrupt, we need to re-check the queue 288 * to see if another interrupt is pending since multiple 289 * interrupts can coalesce into a single notification to the 290 * CPU. 291 * 292 * If we find that there is indeed more in there, we call 293 * force_external_irq_replay() to make Linux synthetize an 294 * external interrupt on the next call to local_irq_restore(). 295 */ 296 static void xive_do_queue_eoi(struct xive_cpu *xc) 297 { 298 if (xive_scan_interrupts(xc, true) != 0) { 299 DBG_VERBOSE("eoi: pending=0x%02x\n", xc->pending_prio); 300 force_external_irq_replay(); 301 } 302 } 303 304 /* 305 * EOI an interrupt at the source. There are several methods 306 * to do this depending on the HW version and source type 307 */ 308 static void xive_do_source_eoi(u32 hw_irq, struct xive_irq_data *xd) 309 { 310 /* If the XIVE supports the new "store EOI facility, use it */ 311 if (xd->flags & XIVE_IRQ_FLAG_STORE_EOI) 312 xive_esb_write(xd, XIVE_ESB_STORE_EOI, 0); 313 else if (hw_irq && xd->flags & XIVE_IRQ_FLAG_EOI_FW) { 314 /* 315 * The FW told us to call it. This happens for some 316 * interrupt sources that need additional HW whacking 317 * beyond the ESB manipulation. For example LPC interrupts 318 * on P9 DD1.0 needed a latch to be clared in the LPC bridge 319 * itself. The Firmware will take care of it. 320 */ 321 if (WARN_ON_ONCE(!xive_ops->eoi)) 322 return; 323 xive_ops->eoi(hw_irq); 324 } else { 325 u8 eoi_val; 326 327 /* 328 * Otherwise for EOI, we use the special MMIO that does 329 * a clear of both P and Q and returns the old Q, 330 * except for LSIs where we use the "EOI cycle" special 331 * load. 332 * 333 * This allows us to then do a re-trigger if Q was set 334 * rather than synthesizing an interrupt in software 335 * 336 * For LSIs the HW EOI cycle is used rather than PQ bits, 337 * as they are automatically re-triggred in HW when still 338 * pending. 339 */ 340 if (xd->flags & XIVE_IRQ_FLAG_LSI) 341 xive_esb_read(xd, XIVE_ESB_LOAD_EOI); 342 else { 343 eoi_val = xive_esb_read(xd, XIVE_ESB_SET_PQ_00); 344 DBG_VERBOSE("eoi_val=%x\n", eoi_val); 345 346 /* Re-trigger if needed */ 347 if ((eoi_val & XIVE_ESB_VAL_Q) && xd->trig_mmio) 348 out_be64(xd->trig_mmio, 0); 349 } 350 } 351 } 352 353 /* irq_chip eoi callback */ 354 static void xive_irq_eoi(struct irq_data *d) 355 { 356 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 357 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 358 359 DBG_VERBOSE("eoi_irq: irq=%d [0x%lx] pending=%02x\n", 360 d->irq, irqd_to_hwirq(d), xc->pending_prio); 361 362 /* 363 * EOI the source if it hasn't been disabled and hasn't 364 * been passed-through to a KVM guest 365 */ 366 if (!irqd_irq_disabled(d) && !irqd_is_forwarded_to_vcpu(d) && 367 !(xd->flags & XIVE_IRQ_NO_EOI)) 368 xive_do_source_eoi(irqd_to_hwirq(d), xd); 369 370 /* 371 * Clear saved_p to indicate that it's no longer occupying 372 * a queue slot on the target queue 373 */ 374 xd->saved_p = false; 375 376 /* Check for more work in the queue */ 377 xive_do_queue_eoi(xc); 378 } 379 380 /* 381 * Helper used to mask and unmask an interrupt source. This 382 * is only called for normal interrupts that do not require 383 * masking/unmasking via firmware. 384 */ 385 static void xive_do_source_set_mask(struct xive_irq_data *xd, 386 bool mask) 387 { 388 u64 val; 389 390 /* 391 * If the interrupt had P set, it may be in a queue. 392 * 393 * We need to make sure we don't re-enable it until it 394 * has been fetched from that queue and EOId. We keep 395 * a copy of that P state and use it to restore the 396 * ESB accordingly on unmask. 397 */ 398 if (mask) { 399 val = xive_esb_read(xd, XIVE_ESB_SET_PQ_01); 400 xd->saved_p = !!(val & XIVE_ESB_VAL_P); 401 } else if (xd->saved_p) 402 xive_esb_read(xd, XIVE_ESB_SET_PQ_10); 403 else 404 xive_esb_read(xd, XIVE_ESB_SET_PQ_00); 405 } 406 407 /* 408 * Try to chose "cpu" as a new interrupt target. Increments 409 * the queue accounting for that target if it's not already 410 * full. 411 */ 412 static bool xive_try_pick_target(int cpu) 413 { 414 struct xive_cpu *xc = per_cpu(xive_cpu, cpu); 415 struct xive_q *q = &xc->queue[xive_irq_priority]; 416 int max; 417 418 /* 419 * Calculate max number of interrupts in that queue. 420 * 421 * We leave a gap of 1 just in case... 422 */ 423 max = (q->msk + 1) - 1; 424 return !!atomic_add_unless(&q->count, 1, max); 425 } 426 427 /* 428 * Un-account an interrupt for a target CPU. We don't directly 429 * decrement q->count since the interrupt might still be present 430 * in the queue. 431 * 432 * Instead increment a separate counter "pending_count" which 433 * will be substracted from "count" later when that CPU observes 434 * the queue to be empty. 435 */ 436 static void xive_dec_target_count(int cpu) 437 { 438 struct xive_cpu *xc = per_cpu(xive_cpu, cpu); 439 struct xive_q *q = &xc->queue[xive_irq_priority]; 440 441 if (WARN_ON(cpu < 0 || !xc)) { 442 pr_err("%s: cpu=%d xc=%p\n", __func__, cpu, xc); 443 return; 444 } 445 446 /* 447 * We increment the "pending count" which will be used 448 * to decrement the target queue count whenever it's next 449 * processed and found empty. This ensure that we don't 450 * decrement while we still have the interrupt there 451 * occupying a slot. 452 */ 453 atomic_inc(&q->pending_count); 454 } 455 456 /* Find a tentative CPU target in a CPU mask */ 457 static int xive_find_target_in_mask(const struct cpumask *mask, 458 unsigned int fuzz) 459 { 460 int cpu, first, num, i; 461 462 /* Pick up a starting point CPU in the mask based on fuzz */ 463 num = min_t(int, cpumask_weight(mask), nr_cpu_ids); 464 first = fuzz % num; 465 466 /* Locate it */ 467 cpu = cpumask_first(mask); 468 for (i = 0; i < first && cpu < nr_cpu_ids; i++) 469 cpu = cpumask_next(cpu, mask); 470 471 /* Sanity check */ 472 if (WARN_ON(cpu >= nr_cpu_ids)) 473 cpu = cpumask_first(cpu_online_mask); 474 475 /* Remember first one to handle wrap-around */ 476 first = cpu; 477 478 /* 479 * Now go through the entire mask until we find a valid 480 * target. 481 */ 482 for (;;) { 483 /* 484 * We re-check online as the fallback case passes us 485 * an untested affinity mask 486 */ 487 if (cpu_online(cpu) && xive_try_pick_target(cpu)) 488 return cpu; 489 cpu = cpumask_next(cpu, mask); 490 if (cpu == first) 491 break; 492 /* Wrap around */ 493 if (cpu >= nr_cpu_ids) 494 cpu = cpumask_first(mask); 495 } 496 return -1; 497 } 498 499 /* 500 * Pick a target CPU for an interrupt. This is done at 501 * startup or if the affinity is changed in a way that 502 * invalidates the current target. 503 */ 504 static int xive_pick_irq_target(struct irq_data *d, 505 const struct cpumask *affinity) 506 { 507 static unsigned int fuzz; 508 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 509 cpumask_var_t mask; 510 int cpu = -1; 511 512 /* 513 * If we have chip IDs, first we try to build a mask of 514 * CPUs matching the CPU and find a target in there 515 */ 516 if (xd->src_chip != XIVE_INVALID_CHIP_ID && 517 zalloc_cpumask_var(&mask, GFP_ATOMIC)) { 518 /* Build a mask of matching chip IDs */ 519 for_each_cpu_and(cpu, affinity, cpu_online_mask) { 520 struct xive_cpu *xc = per_cpu(xive_cpu, cpu); 521 if (xc->chip_id == xd->src_chip) 522 cpumask_set_cpu(cpu, mask); 523 } 524 /* Try to find a target */ 525 if (cpumask_empty(mask)) 526 cpu = -1; 527 else 528 cpu = xive_find_target_in_mask(mask, fuzz++); 529 free_cpumask_var(mask); 530 if (cpu >= 0) 531 return cpu; 532 fuzz--; 533 } 534 535 /* No chip IDs, fallback to using the affinity mask */ 536 return xive_find_target_in_mask(affinity, fuzz++); 537 } 538 539 static unsigned int xive_irq_startup(struct irq_data *d) 540 { 541 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 542 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 543 int target, rc; 544 545 pr_devel("xive_irq_startup: irq %d [0x%x] data @%p\n", 546 d->irq, hw_irq, d); 547 548 #ifdef CONFIG_PCI_MSI 549 /* 550 * The generic MSI code returns with the interrupt disabled on the 551 * card, using the MSI mask bits. Firmware doesn't appear to unmask 552 * at that level, so we do it here by hand. 553 */ 554 if (irq_data_get_msi_desc(d)) 555 pci_msi_unmask_irq(d); 556 #endif 557 558 /* Pick a target */ 559 target = xive_pick_irq_target(d, irq_data_get_affinity_mask(d)); 560 if (target == XIVE_INVALID_TARGET) { 561 /* Try again breaking affinity */ 562 target = xive_pick_irq_target(d, cpu_online_mask); 563 if (target == XIVE_INVALID_TARGET) 564 return -ENXIO; 565 pr_warn("irq %d started with broken affinity\n", d->irq); 566 } 567 568 /* Sanity check */ 569 if (WARN_ON(target == XIVE_INVALID_TARGET || 570 target >= nr_cpu_ids)) 571 target = smp_processor_id(); 572 573 xd->target = target; 574 575 /* 576 * Configure the logical number to be the Linux IRQ number 577 * and set the target queue 578 */ 579 rc = xive_ops->configure_irq(hw_irq, 580 get_hard_smp_processor_id(target), 581 xive_irq_priority, d->irq); 582 if (rc) 583 return rc; 584 585 /* Unmask the ESB */ 586 xive_do_source_set_mask(xd, false); 587 588 return 0; 589 } 590 591 static void xive_irq_shutdown(struct irq_data *d) 592 { 593 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 594 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 595 596 pr_devel("xive_irq_shutdown: irq %d [0x%x] data @%p\n", 597 d->irq, hw_irq, d); 598 599 if (WARN_ON(xd->target == XIVE_INVALID_TARGET)) 600 return; 601 602 /* Mask the interrupt at the source */ 603 xive_do_source_set_mask(xd, true); 604 605 /* 606 * The above may have set saved_p. We clear it otherwise it 607 * will prevent re-enabling later on. It is ok to forget the 608 * fact that the interrupt might be in a queue because we are 609 * accounting that already in xive_dec_target_count() and will 610 * be re-routing it to a new queue with proper accounting when 611 * it's started up again 612 */ 613 xd->saved_p = false; 614 615 /* 616 * Mask the interrupt in HW in the IVT/EAS and set the number 617 * to be the "bad" IRQ number 618 */ 619 xive_ops->configure_irq(hw_irq, 620 get_hard_smp_processor_id(xd->target), 621 0xff, XIVE_BAD_IRQ); 622 623 xive_dec_target_count(xd->target); 624 xd->target = XIVE_INVALID_TARGET; 625 } 626 627 static void xive_irq_unmask(struct irq_data *d) 628 { 629 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 630 631 pr_devel("xive_irq_unmask: irq %d data @%p\n", d->irq, xd); 632 633 /* 634 * This is a workaround for PCI LSI problems on P9, for 635 * these, we call FW to set the mask. The problems might 636 * be fixed by P9 DD2.0, if that is the case, firmware 637 * will no longer set that flag. 638 */ 639 if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) { 640 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 641 xive_ops->configure_irq(hw_irq, 642 get_hard_smp_processor_id(xd->target), 643 xive_irq_priority, d->irq); 644 return; 645 } 646 647 xive_do_source_set_mask(xd, false); 648 } 649 650 static void xive_irq_mask(struct irq_data *d) 651 { 652 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 653 654 pr_devel("xive_irq_mask: irq %d data @%p\n", d->irq, xd); 655 656 /* 657 * This is a workaround for PCI LSI problems on P9, for 658 * these, we call OPAL to set the mask. The problems might 659 * be fixed by P9 DD2.0, if that is the case, firmware 660 * will no longer set that flag. 661 */ 662 if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) { 663 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 664 xive_ops->configure_irq(hw_irq, 665 get_hard_smp_processor_id(xd->target), 666 0xff, d->irq); 667 return; 668 } 669 670 xive_do_source_set_mask(xd, true); 671 } 672 673 static int xive_irq_set_affinity(struct irq_data *d, 674 const struct cpumask *cpumask, 675 bool force) 676 { 677 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 678 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 679 u32 target, old_target; 680 int rc = 0; 681 682 pr_devel("xive_irq_set_affinity: irq %d\n", d->irq); 683 684 /* Is this valid ? */ 685 if (cpumask_any_and(cpumask, cpu_online_mask) >= nr_cpu_ids) 686 return -EINVAL; 687 688 /* Don't do anything if the interrupt isn't started */ 689 if (!irqd_is_started(d)) 690 return IRQ_SET_MASK_OK; 691 692 /* 693 * If existing target is already in the new mask, and is 694 * online then do nothing. 695 */ 696 if (xd->target != XIVE_INVALID_TARGET && 697 cpu_online(xd->target) && 698 cpumask_test_cpu(xd->target, cpumask)) 699 return IRQ_SET_MASK_OK; 700 701 /* Pick a new target */ 702 target = xive_pick_irq_target(d, cpumask); 703 704 /* No target found */ 705 if (target == XIVE_INVALID_TARGET) 706 return -ENXIO; 707 708 /* Sanity check */ 709 if (WARN_ON(target >= nr_cpu_ids)) 710 target = smp_processor_id(); 711 712 old_target = xd->target; 713 714 /* 715 * Only configure the irq if it's not currently passed-through to 716 * a KVM guest 717 */ 718 if (!irqd_is_forwarded_to_vcpu(d)) 719 rc = xive_ops->configure_irq(hw_irq, 720 get_hard_smp_processor_id(target), 721 xive_irq_priority, d->irq); 722 if (rc < 0) { 723 pr_err("Error %d reconfiguring irq %d\n", rc, d->irq); 724 return rc; 725 } 726 727 pr_devel(" target: 0x%x\n", target); 728 xd->target = target; 729 730 /* Give up previous target */ 731 if (old_target != XIVE_INVALID_TARGET) 732 xive_dec_target_count(old_target); 733 734 return IRQ_SET_MASK_OK; 735 } 736 737 static int xive_irq_set_type(struct irq_data *d, unsigned int flow_type) 738 { 739 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 740 741 /* 742 * We only support these. This has really no effect other than setting 743 * the corresponding descriptor bits mind you but those will in turn 744 * affect the resend function when re-enabling an edge interrupt. 745 * 746 * Set set the default to edge as explained in map(). 747 */ 748 if (flow_type == IRQ_TYPE_DEFAULT || flow_type == IRQ_TYPE_NONE) 749 flow_type = IRQ_TYPE_EDGE_RISING; 750 751 if (flow_type != IRQ_TYPE_EDGE_RISING && 752 flow_type != IRQ_TYPE_LEVEL_LOW) 753 return -EINVAL; 754 755 irqd_set_trigger_type(d, flow_type); 756 757 /* 758 * Double check it matches what the FW thinks 759 * 760 * NOTE: We don't know yet if the PAPR interface will provide 761 * the LSI vs MSI information apart from the device-tree so 762 * this check might have to move into an optional backend call 763 * that is specific to the native backend 764 */ 765 if ((flow_type == IRQ_TYPE_LEVEL_LOW) != 766 !!(xd->flags & XIVE_IRQ_FLAG_LSI)) { 767 pr_warn("Interrupt %d (HW 0x%x) type mismatch, Linux says %s, FW says %s\n", 768 d->irq, (u32)irqd_to_hwirq(d), 769 (flow_type == IRQ_TYPE_LEVEL_LOW) ? "Level" : "Edge", 770 (xd->flags & XIVE_IRQ_FLAG_LSI) ? "Level" : "Edge"); 771 } 772 773 return IRQ_SET_MASK_OK_NOCOPY; 774 } 775 776 static int xive_irq_retrigger(struct irq_data *d) 777 { 778 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 779 780 /* This should be only for MSIs */ 781 if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI)) 782 return 0; 783 784 /* 785 * To perform a retrigger, we first set the PQ bits to 786 * 11, then perform an EOI. 787 */ 788 xive_esb_read(xd, XIVE_ESB_SET_PQ_11); 789 790 /* 791 * Note: We pass "0" to the hw_irq argument in order to 792 * avoid calling into the backend EOI code which we don't 793 * want to do in the case of a re-trigger. Backends typically 794 * only do EOI for LSIs anyway. 795 */ 796 xive_do_source_eoi(0, xd); 797 798 return 1; 799 } 800 801 static int xive_irq_set_vcpu_affinity(struct irq_data *d, void *state) 802 { 803 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 804 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 805 int rc; 806 u8 pq; 807 808 /* 809 * We only support this on interrupts that do not require 810 * firmware calls for masking and unmasking 811 */ 812 if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) 813 return -EIO; 814 815 /* 816 * This is called by KVM with state non-NULL for enabling 817 * pass-through or NULL for disabling it 818 */ 819 if (state) { 820 irqd_set_forwarded_to_vcpu(d); 821 822 /* Set it to PQ=10 state to prevent further sends */ 823 pq = xive_esb_read(xd, XIVE_ESB_SET_PQ_10); 824 825 /* No target ? nothing to do */ 826 if (xd->target == XIVE_INVALID_TARGET) { 827 /* 828 * An untargetted interrupt should have been 829 * also masked at the source 830 */ 831 WARN_ON(pq & 2); 832 833 return 0; 834 } 835 836 /* 837 * If P was set, adjust state to PQ=11 to indicate 838 * that a resend is needed for the interrupt to reach 839 * the guest. Also remember the value of P. 840 * 841 * This also tells us that it's in flight to a host queue 842 * or has already been fetched but hasn't been EOIed yet 843 * by the host. This it's potentially using up a host 844 * queue slot. This is important to know because as long 845 * as this is the case, we must not hard-unmask it when 846 * "returning" that interrupt to the host. 847 * 848 * This saved_p is cleared by the host EOI, when we know 849 * for sure the queue slot is no longer in use. 850 */ 851 if (pq & 2) { 852 pq = xive_esb_read(xd, XIVE_ESB_SET_PQ_11); 853 xd->saved_p = true; 854 855 /* 856 * Sync the XIVE source HW to ensure the interrupt 857 * has gone through the EAS before we change its 858 * target to the guest. That should guarantee us 859 * that we *will* eventually get an EOI for it on 860 * the host. Otherwise there would be a small window 861 * for P to be seen here but the interrupt going 862 * to the guest queue. 863 */ 864 if (xive_ops->sync_source) 865 xive_ops->sync_source(hw_irq); 866 } else 867 xd->saved_p = false; 868 } else { 869 irqd_clr_forwarded_to_vcpu(d); 870 871 /* No host target ? hard mask and return */ 872 if (xd->target == XIVE_INVALID_TARGET) { 873 xive_do_source_set_mask(xd, true); 874 return 0; 875 } 876 877 /* 878 * Sync the XIVE source HW to ensure the interrupt 879 * has gone through the EAS before we change its 880 * target to the host. 881 */ 882 if (xive_ops->sync_source) 883 xive_ops->sync_source(hw_irq); 884 885 /* 886 * By convention we are called with the interrupt in 887 * a PQ=10 or PQ=11 state, ie, it won't fire and will 888 * have latched in Q whether there's a pending HW 889 * interrupt or not. 890 * 891 * First reconfigure the target. 892 */ 893 rc = xive_ops->configure_irq(hw_irq, 894 get_hard_smp_processor_id(xd->target), 895 xive_irq_priority, d->irq); 896 if (rc) 897 return rc; 898 899 /* 900 * Then if saved_p is not set, effectively re-enable the 901 * interrupt with an EOI. If it is set, we know there is 902 * still a message in a host queue somewhere that will be 903 * EOId eventually. 904 * 905 * Note: We don't check irqd_irq_disabled(). Effectively, 906 * we *will* let the irq get through even if masked if the 907 * HW is still firing it in order to deal with the whole 908 * saved_p business properly. If the interrupt triggers 909 * while masked, the generic code will re-mask it anyway. 910 */ 911 if (!xd->saved_p) 912 xive_do_source_eoi(hw_irq, xd); 913 914 } 915 return 0; 916 } 917 918 static struct irq_chip xive_irq_chip = { 919 .name = "XIVE-IRQ", 920 .irq_startup = xive_irq_startup, 921 .irq_shutdown = xive_irq_shutdown, 922 .irq_eoi = xive_irq_eoi, 923 .irq_mask = xive_irq_mask, 924 .irq_unmask = xive_irq_unmask, 925 .irq_set_affinity = xive_irq_set_affinity, 926 .irq_set_type = xive_irq_set_type, 927 .irq_retrigger = xive_irq_retrigger, 928 .irq_set_vcpu_affinity = xive_irq_set_vcpu_affinity, 929 }; 930 931 bool is_xive_irq(struct irq_chip *chip) 932 { 933 return chip == &xive_irq_chip; 934 } 935 EXPORT_SYMBOL_GPL(is_xive_irq); 936 937 void xive_cleanup_irq_data(struct xive_irq_data *xd) 938 { 939 if (xd->eoi_mmio) { 940 iounmap(xd->eoi_mmio); 941 if (xd->eoi_mmio == xd->trig_mmio) 942 xd->trig_mmio = NULL; 943 xd->eoi_mmio = NULL; 944 } 945 if (xd->trig_mmio) { 946 iounmap(xd->trig_mmio); 947 xd->trig_mmio = NULL; 948 } 949 } 950 EXPORT_SYMBOL_GPL(xive_cleanup_irq_data); 951 952 static int xive_irq_alloc_data(unsigned int virq, irq_hw_number_t hw) 953 { 954 struct xive_irq_data *xd; 955 int rc; 956 957 xd = kzalloc(sizeof(struct xive_irq_data), GFP_KERNEL); 958 if (!xd) 959 return -ENOMEM; 960 rc = xive_ops->populate_irq_data(hw, xd); 961 if (rc) { 962 kfree(xd); 963 return rc; 964 } 965 xd->target = XIVE_INVALID_TARGET; 966 irq_set_handler_data(virq, xd); 967 968 return 0; 969 } 970 971 static void xive_irq_free_data(unsigned int virq) 972 { 973 struct xive_irq_data *xd = irq_get_handler_data(virq); 974 975 if (!xd) 976 return; 977 irq_set_handler_data(virq, NULL); 978 xive_cleanup_irq_data(xd); 979 kfree(xd); 980 } 981 982 #ifdef CONFIG_SMP 983 984 static void xive_cause_ipi(int cpu) 985 { 986 struct xive_cpu *xc; 987 struct xive_irq_data *xd; 988 989 xc = per_cpu(xive_cpu, cpu); 990 991 DBG_VERBOSE("IPI CPU %d -> %d (HW IRQ 0x%x)\n", 992 smp_processor_id(), cpu, xc->hw_ipi); 993 994 xd = &xc->ipi_data; 995 if (WARN_ON(!xd->trig_mmio)) 996 return; 997 out_be64(xd->trig_mmio, 0); 998 } 999 1000 static irqreturn_t xive_muxed_ipi_action(int irq, void *dev_id) 1001 { 1002 return smp_ipi_demux(); 1003 } 1004 1005 static void xive_ipi_eoi(struct irq_data *d) 1006 { 1007 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 1008 1009 /* Handle possible race with unplug and drop stale IPIs */ 1010 if (!xc) 1011 return; 1012 1013 DBG_VERBOSE("IPI eoi: irq=%d [0x%lx] (HW IRQ 0x%x) pending=%02x\n", 1014 d->irq, irqd_to_hwirq(d), xc->hw_ipi, xc->pending_prio); 1015 1016 xive_do_source_eoi(xc->hw_ipi, &xc->ipi_data); 1017 xive_do_queue_eoi(xc); 1018 } 1019 1020 static void xive_ipi_do_nothing(struct irq_data *d) 1021 { 1022 /* 1023 * Nothing to do, we never mask/unmask IPIs, but the callback 1024 * has to exist for the struct irq_chip. 1025 */ 1026 } 1027 1028 static struct irq_chip xive_ipi_chip = { 1029 .name = "XIVE-IPI", 1030 .irq_eoi = xive_ipi_eoi, 1031 .irq_mask = xive_ipi_do_nothing, 1032 .irq_unmask = xive_ipi_do_nothing, 1033 }; 1034 1035 static void __init xive_request_ipi(void) 1036 { 1037 unsigned int virq; 1038 1039 /* 1040 * Initialization failed, move on, we might manage to 1041 * reach the point where we display our errors before 1042 * the system falls appart 1043 */ 1044 if (!xive_irq_domain) 1045 return; 1046 1047 /* Initialize it */ 1048 virq = irq_create_mapping(xive_irq_domain, 0); 1049 xive_ipi_irq = virq; 1050 1051 WARN_ON(request_irq(virq, xive_muxed_ipi_action, 1052 IRQF_PERCPU | IRQF_NO_THREAD, "IPI", NULL)); 1053 } 1054 1055 static int xive_setup_cpu_ipi(unsigned int cpu) 1056 { 1057 struct xive_cpu *xc; 1058 int rc; 1059 1060 pr_debug("Setting up IPI for CPU %d\n", cpu); 1061 1062 xc = per_cpu(xive_cpu, cpu); 1063 1064 /* Check if we are already setup */ 1065 if (xc->hw_ipi != 0) 1066 return 0; 1067 1068 /* Grab an IPI from the backend, this will populate xc->hw_ipi */ 1069 if (xive_ops->get_ipi(cpu, xc)) 1070 return -EIO; 1071 1072 /* 1073 * Populate the IRQ data in the xive_cpu structure and 1074 * configure the HW / enable the IPIs. 1075 */ 1076 rc = xive_ops->populate_irq_data(xc->hw_ipi, &xc->ipi_data); 1077 if (rc) { 1078 pr_err("Failed to populate IPI data on CPU %d\n", cpu); 1079 return -EIO; 1080 } 1081 rc = xive_ops->configure_irq(xc->hw_ipi, 1082 get_hard_smp_processor_id(cpu), 1083 xive_irq_priority, xive_ipi_irq); 1084 if (rc) { 1085 pr_err("Failed to map IPI CPU %d\n", cpu); 1086 return -EIO; 1087 } 1088 pr_devel("CPU %d HW IPI %x, virq %d, trig_mmio=%p\n", cpu, 1089 xc->hw_ipi, xive_ipi_irq, xc->ipi_data.trig_mmio); 1090 1091 /* Unmask it */ 1092 xive_do_source_set_mask(&xc->ipi_data, false); 1093 1094 return 0; 1095 } 1096 1097 static void xive_cleanup_cpu_ipi(unsigned int cpu, struct xive_cpu *xc) 1098 { 1099 /* Disable the IPI and free the IRQ data */ 1100 1101 /* Already cleaned up ? */ 1102 if (xc->hw_ipi == 0) 1103 return; 1104 1105 /* Mask the IPI */ 1106 xive_do_source_set_mask(&xc->ipi_data, true); 1107 1108 /* 1109 * Note: We don't call xive_cleanup_irq_data() to free 1110 * the mappings as this is called from an IPI on kexec 1111 * which is not a safe environment to call iounmap() 1112 */ 1113 1114 /* Deconfigure/mask in the backend */ 1115 xive_ops->configure_irq(xc->hw_ipi, hard_smp_processor_id(), 1116 0xff, xive_ipi_irq); 1117 1118 /* Free the IPIs in the backend */ 1119 xive_ops->put_ipi(cpu, xc); 1120 } 1121 1122 void __init xive_smp_probe(void) 1123 { 1124 smp_ops->cause_ipi = xive_cause_ipi; 1125 1126 /* Register the IPI */ 1127 xive_request_ipi(); 1128 1129 /* Allocate and setup IPI for the boot CPU */ 1130 xive_setup_cpu_ipi(smp_processor_id()); 1131 } 1132 1133 #endif /* CONFIG_SMP */ 1134 1135 static int xive_irq_domain_map(struct irq_domain *h, unsigned int virq, 1136 irq_hw_number_t hw) 1137 { 1138 int rc; 1139 1140 /* 1141 * Mark interrupts as edge sensitive by default so that resend 1142 * actually works. Will fix that up below if needed. 1143 */ 1144 irq_clear_status_flags(virq, IRQ_LEVEL); 1145 1146 #ifdef CONFIG_SMP 1147 /* IPIs are special and come up with HW number 0 */ 1148 if (hw == 0) { 1149 /* 1150 * IPIs are marked per-cpu. We use separate HW interrupts under 1151 * the hood but associated with the same "linux" interrupt 1152 */ 1153 irq_set_chip_and_handler(virq, &xive_ipi_chip, 1154 handle_percpu_irq); 1155 return 0; 1156 } 1157 #endif 1158 1159 rc = xive_irq_alloc_data(virq, hw); 1160 if (rc) 1161 return rc; 1162 1163 irq_set_chip_and_handler(virq, &xive_irq_chip, handle_fasteoi_irq); 1164 1165 return 0; 1166 } 1167 1168 static void xive_irq_domain_unmap(struct irq_domain *d, unsigned int virq) 1169 { 1170 struct irq_data *data = irq_get_irq_data(virq); 1171 unsigned int hw_irq; 1172 1173 /* XXX Assign BAD number */ 1174 if (!data) 1175 return; 1176 hw_irq = (unsigned int)irqd_to_hwirq(data); 1177 if (hw_irq) 1178 xive_irq_free_data(virq); 1179 } 1180 1181 static int xive_irq_domain_xlate(struct irq_domain *h, struct device_node *ct, 1182 const u32 *intspec, unsigned int intsize, 1183 irq_hw_number_t *out_hwirq, unsigned int *out_flags) 1184 1185 { 1186 *out_hwirq = intspec[0]; 1187 1188 /* 1189 * If intsize is at least 2, we look for the type in the second cell, 1190 * we assume the LSB indicates a level interrupt. 1191 */ 1192 if (intsize > 1) { 1193 if (intspec[1] & 1) 1194 *out_flags = IRQ_TYPE_LEVEL_LOW; 1195 else 1196 *out_flags = IRQ_TYPE_EDGE_RISING; 1197 } else 1198 *out_flags = IRQ_TYPE_LEVEL_LOW; 1199 1200 return 0; 1201 } 1202 1203 static int xive_irq_domain_match(struct irq_domain *h, struct device_node *node, 1204 enum irq_domain_bus_token bus_token) 1205 { 1206 return xive_ops->match(node); 1207 } 1208 1209 static const struct irq_domain_ops xive_irq_domain_ops = { 1210 .match = xive_irq_domain_match, 1211 .map = xive_irq_domain_map, 1212 .unmap = xive_irq_domain_unmap, 1213 .xlate = xive_irq_domain_xlate, 1214 }; 1215 1216 static void __init xive_init_host(void) 1217 { 1218 xive_irq_domain = irq_domain_add_nomap(NULL, XIVE_MAX_IRQ, 1219 &xive_irq_domain_ops, NULL); 1220 if (WARN_ON(xive_irq_domain == NULL)) 1221 return; 1222 irq_set_default_host(xive_irq_domain); 1223 } 1224 1225 static void xive_cleanup_cpu_queues(unsigned int cpu, struct xive_cpu *xc) 1226 { 1227 if (xc->queue[xive_irq_priority].qpage) 1228 xive_ops->cleanup_queue(cpu, xc, xive_irq_priority); 1229 } 1230 1231 static int xive_setup_cpu_queues(unsigned int cpu, struct xive_cpu *xc) 1232 { 1233 int rc = 0; 1234 1235 /* We setup 1 queues for now with a 64k page */ 1236 if (!xc->queue[xive_irq_priority].qpage) 1237 rc = xive_ops->setup_queue(cpu, xc, xive_irq_priority); 1238 1239 return rc; 1240 } 1241 1242 static int xive_prepare_cpu(unsigned int cpu) 1243 { 1244 struct xive_cpu *xc; 1245 1246 xc = per_cpu(xive_cpu, cpu); 1247 if (!xc) { 1248 struct device_node *np; 1249 1250 xc = kzalloc_node(sizeof(struct xive_cpu), 1251 GFP_KERNEL, cpu_to_node(cpu)); 1252 if (!xc) 1253 return -ENOMEM; 1254 np = of_get_cpu_node(cpu, NULL); 1255 if (np) 1256 xc->chip_id = of_get_ibm_chip_id(np); 1257 of_node_put(np); 1258 1259 per_cpu(xive_cpu, cpu) = xc; 1260 } 1261 1262 /* Setup EQs if not already */ 1263 return xive_setup_cpu_queues(cpu, xc); 1264 } 1265 1266 static void xive_setup_cpu(void) 1267 { 1268 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 1269 1270 /* The backend might have additional things to do */ 1271 if (xive_ops->setup_cpu) 1272 xive_ops->setup_cpu(smp_processor_id(), xc); 1273 1274 /* Set CPPR to 0xff to enable flow of interrupts */ 1275 xc->cppr = 0xff; 1276 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff); 1277 } 1278 1279 #ifdef CONFIG_SMP 1280 void xive_smp_setup_cpu(void) 1281 { 1282 pr_devel("SMP setup CPU %d\n", smp_processor_id()); 1283 1284 /* This will have already been done on the boot CPU */ 1285 if (smp_processor_id() != boot_cpuid) 1286 xive_setup_cpu(); 1287 1288 } 1289 1290 int xive_smp_prepare_cpu(unsigned int cpu) 1291 { 1292 int rc; 1293 1294 /* Allocate per-CPU data and queues */ 1295 rc = xive_prepare_cpu(cpu); 1296 if (rc) 1297 return rc; 1298 1299 /* Allocate and setup IPI for the new CPU */ 1300 return xive_setup_cpu_ipi(cpu); 1301 } 1302 1303 #ifdef CONFIG_HOTPLUG_CPU 1304 static void xive_flush_cpu_queue(unsigned int cpu, struct xive_cpu *xc) 1305 { 1306 u32 irq; 1307 1308 /* We assume local irqs are disabled */ 1309 WARN_ON(!irqs_disabled()); 1310 1311 /* Check what's already in the CPU queue */ 1312 while ((irq = xive_scan_interrupts(xc, false)) != 0) { 1313 /* 1314 * We need to re-route that interrupt to its new destination. 1315 * First get and lock the descriptor 1316 */ 1317 struct irq_desc *desc = irq_to_desc(irq); 1318 struct irq_data *d = irq_desc_get_irq_data(desc); 1319 struct xive_irq_data *xd; 1320 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 1321 1322 /* 1323 * Ignore anything that isn't a XIVE irq and ignore 1324 * IPIs, so can just be dropped. 1325 */ 1326 if (d->domain != xive_irq_domain || hw_irq == 0) 1327 continue; 1328 1329 /* 1330 * The IRQ should have already been re-routed, it's just a 1331 * stale in the old queue, so re-trigger it in order to make 1332 * it reach is new destination. 1333 */ 1334 #ifdef DEBUG_FLUSH 1335 pr_info("CPU %d: Got irq %d while offline, re-sending...\n", 1336 cpu, irq); 1337 #endif 1338 raw_spin_lock(&desc->lock); 1339 xd = irq_desc_get_handler_data(desc); 1340 1341 /* 1342 * For LSIs, we EOI, this will cause a resend if it's 1343 * still asserted. Otherwise do an MSI retrigger. 1344 */ 1345 if (xd->flags & XIVE_IRQ_FLAG_LSI) 1346 xive_do_source_eoi(irqd_to_hwirq(d), xd); 1347 else 1348 xive_irq_retrigger(d); 1349 1350 raw_spin_unlock(&desc->lock); 1351 } 1352 } 1353 1354 void xive_smp_disable_cpu(void) 1355 { 1356 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 1357 unsigned int cpu = smp_processor_id(); 1358 1359 /* Migrate interrupts away from the CPU */ 1360 irq_migrate_all_off_this_cpu(); 1361 1362 /* Set CPPR to 0 to disable flow of interrupts */ 1363 xc->cppr = 0; 1364 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0); 1365 1366 /* Flush everything still in the queue */ 1367 xive_flush_cpu_queue(cpu, xc); 1368 1369 /* Re-enable CPPR */ 1370 xc->cppr = 0xff; 1371 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff); 1372 } 1373 1374 void xive_flush_interrupt(void) 1375 { 1376 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 1377 unsigned int cpu = smp_processor_id(); 1378 1379 /* Called if an interrupt occurs while the CPU is hot unplugged */ 1380 xive_flush_cpu_queue(cpu, xc); 1381 } 1382 1383 #endif /* CONFIG_HOTPLUG_CPU */ 1384 1385 #endif /* CONFIG_SMP */ 1386 1387 void xive_teardown_cpu(void) 1388 { 1389 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 1390 unsigned int cpu = smp_processor_id(); 1391 1392 /* Set CPPR to 0 to disable flow of interrupts */ 1393 xc->cppr = 0; 1394 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0); 1395 1396 if (xive_ops->teardown_cpu) 1397 xive_ops->teardown_cpu(cpu, xc); 1398 1399 #ifdef CONFIG_SMP 1400 /* Get rid of IPI */ 1401 xive_cleanup_cpu_ipi(cpu, xc); 1402 #endif 1403 1404 /* Disable and free the queues */ 1405 xive_cleanup_cpu_queues(cpu, xc); 1406 } 1407 1408 void xive_shutdown(void) 1409 { 1410 xive_ops->shutdown(); 1411 } 1412 1413 bool __init xive_core_init(const struct xive_ops *ops, void __iomem *area, u32 offset, 1414 u8 max_prio) 1415 { 1416 xive_tima = area; 1417 xive_tima_offset = offset; 1418 xive_ops = ops; 1419 xive_irq_priority = max_prio; 1420 1421 ppc_md.get_irq = xive_get_irq; 1422 __xive_enabled = true; 1423 1424 pr_devel("Initializing host..\n"); 1425 xive_init_host(); 1426 1427 pr_devel("Initializing boot CPU..\n"); 1428 1429 /* Allocate per-CPU data and queues */ 1430 xive_prepare_cpu(smp_processor_id()); 1431 1432 /* Get ready for interrupts */ 1433 xive_setup_cpu(); 1434 1435 pr_info("Interrupt handling initialized with %s backend\n", 1436 xive_ops->name); 1437 pr_info("Using priority %d for all interrupts\n", max_prio); 1438 1439 return true; 1440 } 1441 1442 __be32 *xive_queue_page_alloc(unsigned int cpu, u32 queue_shift) 1443 { 1444 unsigned int alloc_order; 1445 struct page *pages; 1446 __be32 *qpage; 1447 1448 alloc_order = xive_alloc_order(queue_shift); 1449 pages = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, alloc_order); 1450 if (!pages) 1451 return ERR_PTR(-ENOMEM); 1452 qpage = (__be32 *)page_address(pages); 1453 memset(qpage, 0, 1 << queue_shift); 1454 1455 return qpage; 1456 } 1457 1458 static int __init xive_off(char *arg) 1459 { 1460 xive_cmdline_disabled = true; 1461 return 0; 1462 } 1463 __setup("xive=off", xive_off); 1464