xref: /openbmc/linux/arch/powerpc/sysdev/xive/common.c (revision b5277d18)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2016,2017 IBM Corporation.
4  */
5 
6 #define pr_fmt(fmt) "xive: " fmt
7 
8 #include <linux/types.h>
9 #include <linux/threads.h>
10 #include <linux/kernel.h>
11 #include <linux/irq.h>
12 #include <linux/debugfs.h>
13 #include <linux/smp.h>
14 #include <linux/interrupt.h>
15 #include <linux/seq_file.h>
16 #include <linux/init.h>
17 #include <linux/cpu.h>
18 #include <linux/of.h>
19 #include <linux/slab.h>
20 #include <linux/spinlock.h>
21 #include <linux/msi.h>
22 #include <linux/vmalloc.h>
23 
24 #include <asm/debugfs.h>
25 #include <asm/prom.h>
26 #include <asm/io.h>
27 #include <asm/smp.h>
28 #include <asm/machdep.h>
29 #include <asm/irq.h>
30 #include <asm/errno.h>
31 #include <asm/xive.h>
32 #include <asm/xive-regs.h>
33 #include <asm/xmon.h>
34 
35 #include "xive-internal.h"
36 
37 #undef DEBUG_FLUSH
38 #undef DEBUG_ALL
39 
40 #ifdef DEBUG_ALL
41 #define DBG_VERBOSE(fmt, ...)	pr_devel("cpu %d - " fmt, \
42 					 smp_processor_id(), ## __VA_ARGS__)
43 #else
44 #define DBG_VERBOSE(fmt...)	do { } while(0)
45 #endif
46 
47 bool __xive_enabled;
48 EXPORT_SYMBOL_GPL(__xive_enabled);
49 bool xive_cmdline_disabled;
50 
51 /* We use only one priority for now */
52 static u8 xive_irq_priority;
53 
54 /* TIMA exported to KVM */
55 void __iomem *xive_tima;
56 EXPORT_SYMBOL_GPL(xive_tima);
57 u32 xive_tima_offset;
58 
59 /* Backend ops */
60 static const struct xive_ops *xive_ops;
61 
62 /* Our global interrupt domain */
63 static struct irq_domain *xive_irq_domain;
64 
65 #ifdef CONFIG_SMP
66 /* The IPIs all use the same logical irq number */
67 static u32 xive_ipi_irq;
68 #endif
69 
70 /* Xive state for each CPU */
71 static DEFINE_PER_CPU(struct xive_cpu *, xive_cpu);
72 
73 /* An invalid CPU target */
74 #define XIVE_INVALID_TARGET	(-1)
75 
76 /*
77  * Read the next entry in a queue, return its content if it's valid
78  * or 0 if there is no new entry.
79  *
80  * The queue pointer is moved forward unless "just_peek" is set
81  */
82 static u32 xive_read_eq(struct xive_q *q, bool just_peek)
83 {
84 	u32 cur;
85 
86 	if (!q->qpage)
87 		return 0;
88 	cur = be32_to_cpup(q->qpage + q->idx);
89 
90 	/* Check valid bit (31) vs current toggle polarity */
91 	if ((cur >> 31) == q->toggle)
92 		return 0;
93 
94 	/* If consuming from the queue ... */
95 	if (!just_peek) {
96 		/* Next entry */
97 		q->idx = (q->idx + 1) & q->msk;
98 
99 		/* Wrap around: flip valid toggle */
100 		if (q->idx == 0)
101 			q->toggle ^= 1;
102 	}
103 	/* Mask out the valid bit (31) */
104 	return cur & 0x7fffffff;
105 }
106 
107 /*
108  * Scans all the queue that may have interrupts in them
109  * (based on "pending_prio") in priority order until an
110  * interrupt is found or all the queues are empty.
111  *
112  * Then updates the CPPR (Current Processor Priority
113  * Register) based on the most favored interrupt found
114  * (0xff if none) and return what was found (0 if none).
115  *
116  * If just_peek is set, return the most favored pending
117  * interrupt if any but don't update the queue pointers.
118  *
119  * Note: This function can operate generically on any number
120  * of queues (up to 8). The current implementation of the XIVE
121  * driver only uses a single queue however.
122  *
123  * Note2: This will also "flush" "the pending_count" of a queue
124  * into the "count" when that queue is observed to be empty.
125  * This is used to keep track of the amount of interrupts
126  * targetting a queue. When an interrupt is moved away from
127  * a queue, we only decrement that queue count once the queue
128  * has been observed empty to avoid races.
129  */
130 static u32 xive_scan_interrupts(struct xive_cpu *xc, bool just_peek)
131 {
132 	u32 irq = 0;
133 	u8 prio = 0;
134 
135 	/* Find highest pending priority */
136 	while (xc->pending_prio != 0) {
137 		struct xive_q *q;
138 
139 		prio = ffs(xc->pending_prio) - 1;
140 		DBG_VERBOSE("scan_irq: trying prio %d\n", prio);
141 
142 		/* Try to fetch */
143 		irq = xive_read_eq(&xc->queue[prio], just_peek);
144 
145 		/* Found something ? That's it */
146 		if (irq) {
147 			if (just_peek || irq_to_desc(irq))
148 				break;
149 			/*
150 			 * We should never get here; if we do then we must
151 			 * have failed to synchronize the interrupt properly
152 			 * when shutting it down.
153 			 */
154 			pr_crit("xive: got interrupt %d without descriptor, dropping\n",
155 				irq);
156 			WARN_ON(1);
157 			continue;
158 		}
159 
160 		/* Clear pending bits */
161 		xc->pending_prio &= ~(1 << prio);
162 
163 		/*
164 		 * Check if the queue count needs adjusting due to
165 		 * interrupts being moved away. See description of
166 		 * xive_dec_target_count()
167 		 */
168 		q = &xc->queue[prio];
169 		if (atomic_read(&q->pending_count)) {
170 			int p = atomic_xchg(&q->pending_count, 0);
171 			if (p) {
172 				WARN_ON(p > atomic_read(&q->count));
173 				atomic_sub(p, &q->count);
174 			}
175 		}
176 	}
177 
178 	/* If nothing was found, set CPPR to 0xff */
179 	if (irq == 0)
180 		prio = 0xff;
181 
182 	/* Update HW CPPR to match if necessary */
183 	if (prio != xc->cppr) {
184 		DBG_VERBOSE("scan_irq: adjusting CPPR to %d\n", prio);
185 		xc->cppr = prio;
186 		out_8(xive_tima + xive_tima_offset + TM_CPPR, prio);
187 	}
188 
189 	return irq;
190 }
191 
192 /*
193  * This is used to perform the magic loads from an ESB
194  * described in xive-regs.h
195  */
196 static notrace u8 xive_esb_read(struct xive_irq_data *xd, u32 offset)
197 {
198 	u64 val;
199 
200 	if (offset == XIVE_ESB_SET_PQ_10 && xd->flags & XIVE_IRQ_FLAG_STORE_EOI)
201 		offset |= XIVE_ESB_LD_ST_MO;
202 
203 	if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw)
204 		val = xive_ops->esb_rw(xd->hw_irq, offset, 0, 0);
205 	else
206 		val = in_be64(xd->eoi_mmio + offset);
207 
208 	return (u8)val;
209 }
210 
211 static void xive_esb_write(struct xive_irq_data *xd, u32 offset, u64 data)
212 {
213 	if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw)
214 		xive_ops->esb_rw(xd->hw_irq, offset, data, 1);
215 	else
216 		out_be64(xd->eoi_mmio + offset, data);
217 }
218 
219 #ifdef CONFIG_XMON
220 static notrace void xive_dump_eq(const char *name, struct xive_q *q)
221 {
222 	u32 i0, i1, idx;
223 
224 	if (!q->qpage)
225 		return;
226 	idx = q->idx;
227 	i0 = be32_to_cpup(q->qpage + idx);
228 	idx = (idx + 1) & q->msk;
229 	i1 = be32_to_cpup(q->qpage + idx);
230 	xmon_printf("%s idx=%d T=%d %08x %08x ...", name,
231 		     q->idx, q->toggle, i0, i1);
232 }
233 
234 notrace void xmon_xive_do_dump(int cpu)
235 {
236 	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
237 
238 	xmon_printf("CPU %d:", cpu);
239 	if (xc) {
240 		xmon_printf("pp=%02x CPPR=%02x ", xc->pending_prio, xc->cppr);
241 
242 #ifdef CONFIG_SMP
243 		{
244 			u64 val = xive_esb_read(&xc->ipi_data, XIVE_ESB_GET);
245 
246 			xmon_printf("IPI=0x%08x PQ=%c%c ", xc->hw_ipi,
247 				    val & XIVE_ESB_VAL_P ? 'P' : '-',
248 				    val & XIVE_ESB_VAL_Q ? 'Q' : '-');
249 		}
250 #endif
251 		xive_dump_eq("EQ", &xc->queue[xive_irq_priority]);
252 	}
253 	xmon_printf("\n");
254 }
255 
256 int xmon_xive_get_irq_config(u32 hw_irq, struct irq_data *d)
257 {
258 	struct irq_chip *chip = irq_data_get_irq_chip(d);
259 	int rc;
260 	u32 target;
261 	u8 prio;
262 	u32 lirq;
263 
264 	if (!is_xive_irq(chip))
265 		return -EINVAL;
266 
267 	rc = xive_ops->get_irq_config(hw_irq, &target, &prio, &lirq);
268 	if (rc) {
269 		xmon_printf("IRQ 0x%08x : no config rc=%d\n", hw_irq, rc);
270 		return rc;
271 	}
272 
273 	xmon_printf("IRQ 0x%08x : target=0x%x prio=%02x lirq=0x%x ",
274 		    hw_irq, target, prio, lirq);
275 
276 	if (d) {
277 		struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
278 		u64 val = xive_esb_read(xd, XIVE_ESB_GET);
279 
280 		xmon_printf("flags=%c%c%c PQ=%c%c",
281 			    xd->flags & XIVE_IRQ_FLAG_STORE_EOI ? 'S' : ' ',
282 			    xd->flags & XIVE_IRQ_FLAG_LSI ? 'L' : ' ',
283 			    xd->flags & XIVE_IRQ_FLAG_H_INT_ESB ? 'H' : ' ',
284 			    val & XIVE_ESB_VAL_P ? 'P' : '-',
285 			    val & XIVE_ESB_VAL_Q ? 'Q' : '-');
286 	}
287 
288 	xmon_printf("\n");
289 	return 0;
290 }
291 
292 #endif /* CONFIG_XMON */
293 
294 static unsigned int xive_get_irq(void)
295 {
296 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
297 	u32 irq;
298 
299 	/*
300 	 * This can be called either as a result of a HW interrupt or
301 	 * as a "replay" because EOI decided there was still something
302 	 * in one of the queues.
303 	 *
304 	 * First we perform an ACK cycle in order to update our mask
305 	 * of pending priorities. This will also have the effect of
306 	 * updating the CPPR to the most favored pending interrupts.
307 	 *
308 	 * In the future, if we have a way to differentiate a first
309 	 * entry (on HW interrupt) from a replay triggered by EOI,
310 	 * we could skip this on replays unless we soft-mask tells us
311 	 * that a new HW interrupt occurred.
312 	 */
313 	xive_ops->update_pending(xc);
314 
315 	DBG_VERBOSE("get_irq: pending=%02x\n", xc->pending_prio);
316 
317 	/* Scan our queue(s) for interrupts */
318 	irq = xive_scan_interrupts(xc, false);
319 
320 	DBG_VERBOSE("get_irq: got irq 0x%x, new pending=0x%02x\n",
321 	    irq, xc->pending_prio);
322 
323 	/* Return pending interrupt if any */
324 	if (irq == XIVE_BAD_IRQ)
325 		return 0;
326 	return irq;
327 }
328 
329 /*
330  * After EOI'ing an interrupt, we need to re-check the queue
331  * to see if another interrupt is pending since multiple
332  * interrupts can coalesce into a single notification to the
333  * CPU.
334  *
335  * If we find that there is indeed more in there, we call
336  * force_external_irq_replay() to make Linux synthetize an
337  * external interrupt on the next call to local_irq_restore().
338  */
339 static void xive_do_queue_eoi(struct xive_cpu *xc)
340 {
341 	if (xive_scan_interrupts(xc, true) != 0) {
342 		DBG_VERBOSE("eoi: pending=0x%02x\n", xc->pending_prio);
343 		force_external_irq_replay();
344 	}
345 }
346 
347 /*
348  * EOI an interrupt at the source. There are several methods
349  * to do this depending on the HW version and source type
350  */
351 static void xive_do_source_eoi(u32 hw_irq, struct xive_irq_data *xd)
352 {
353 	xd->stale_p = false;
354 	/* If the XIVE supports the new "store EOI facility, use it */
355 	if (xd->flags & XIVE_IRQ_FLAG_STORE_EOI)
356 		xive_esb_write(xd, XIVE_ESB_STORE_EOI, 0);
357 	else if (hw_irq && xd->flags & XIVE_IRQ_FLAG_EOI_FW) {
358 		/*
359 		 * The FW told us to call it. This happens for some
360 		 * interrupt sources that need additional HW whacking
361 		 * beyond the ESB manipulation. For example LPC interrupts
362 		 * on P9 DD1.0 needed a latch to be clared in the LPC bridge
363 		 * itself. The Firmware will take care of it.
364 		 */
365 		if (WARN_ON_ONCE(!xive_ops->eoi))
366 			return;
367 		xive_ops->eoi(hw_irq);
368 	} else {
369 		u8 eoi_val;
370 
371 		/*
372 		 * Otherwise for EOI, we use the special MMIO that does
373 		 * a clear of both P and Q and returns the old Q,
374 		 * except for LSIs where we use the "EOI cycle" special
375 		 * load.
376 		 *
377 		 * This allows us to then do a re-trigger if Q was set
378 		 * rather than synthesizing an interrupt in software
379 		 *
380 		 * For LSIs the HW EOI cycle is used rather than PQ bits,
381 		 * as they are automatically re-triggred in HW when still
382 		 * pending.
383 		 */
384 		if (xd->flags & XIVE_IRQ_FLAG_LSI)
385 			xive_esb_read(xd, XIVE_ESB_LOAD_EOI);
386 		else {
387 			eoi_val = xive_esb_read(xd, XIVE_ESB_SET_PQ_00);
388 			DBG_VERBOSE("eoi_val=%x\n", eoi_val);
389 
390 			/* Re-trigger if needed */
391 			if ((eoi_val & XIVE_ESB_VAL_Q) && xd->trig_mmio)
392 				out_be64(xd->trig_mmio, 0);
393 		}
394 	}
395 }
396 
397 /* irq_chip eoi callback, called with irq descriptor lock held */
398 static void xive_irq_eoi(struct irq_data *d)
399 {
400 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
401 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
402 
403 	DBG_VERBOSE("eoi_irq: irq=%d [0x%lx] pending=%02x\n",
404 		    d->irq, irqd_to_hwirq(d), xc->pending_prio);
405 
406 	/*
407 	 * EOI the source if it hasn't been disabled and hasn't
408 	 * been passed-through to a KVM guest
409 	 */
410 	if (!irqd_irq_disabled(d) && !irqd_is_forwarded_to_vcpu(d) &&
411 	    !(xd->flags & XIVE_IRQ_FLAG_NO_EOI))
412 		xive_do_source_eoi(irqd_to_hwirq(d), xd);
413 	else
414 		xd->stale_p = true;
415 
416 	/*
417 	 * Clear saved_p to indicate that it's no longer occupying
418 	 * a queue slot on the target queue
419 	 */
420 	xd->saved_p = false;
421 
422 	/* Check for more work in the queue */
423 	xive_do_queue_eoi(xc);
424 }
425 
426 /*
427  * Helper used to mask and unmask an interrupt source.
428  */
429 static void xive_do_source_set_mask(struct xive_irq_data *xd,
430 				    bool mask)
431 {
432 	u64 val;
433 
434 	/*
435 	 * If the interrupt had P set, it may be in a queue.
436 	 *
437 	 * We need to make sure we don't re-enable it until it
438 	 * has been fetched from that queue and EOId. We keep
439 	 * a copy of that P state and use it to restore the
440 	 * ESB accordingly on unmask.
441 	 */
442 	if (mask) {
443 		val = xive_esb_read(xd, XIVE_ESB_SET_PQ_01);
444 		if (!xd->stale_p && !!(val & XIVE_ESB_VAL_P))
445 			xd->saved_p = true;
446 		xd->stale_p = false;
447 	} else if (xd->saved_p) {
448 		xive_esb_read(xd, XIVE_ESB_SET_PQ_10);
449 		xd->saved_p = false;
450 	} else {
451 		xive_esb_read(xd, XIVE_ESB_SET_PQ_00);
452 		xd->stale_p = false;
453 	}
454 }
455 
456 /*
457  * Try to chose "cpu" as a new interrupt target. Increments
458  * the queue accounting for that target if it's not already
459  * full.
460  */
461 static bool xive_try_pick_target(int cpu)
462 {
463 	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
464 	struct xive_q *q = &xc->queue[xive_irq_priority];
465 	int max;
466 
467 	/*
468 	 * Calculate max number of interrupts in that queue.
469 	 *
470 	 * We leave a gap of 1 just in case...
471 	 */
472 	max = (q->msk + 1) - 1;
473 	return !!atomic_add_unless(&q->count, 1, max);
474 }
475 
476 /*
477  * Un-account an interrupt for a target CPU. We don't directly
478  * decrement q->count since the interrupt might still be present
479  * in the queue.
480  *
481  * Instead increment a separate counter "pending_count" which
482  * will be substracted from "count" later when that CPU observes
483  * the queue to be empty.
484  */
485 static void xive_dec_target_count(int cpu)
486 {
487 	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
488 	struct xive_q *q = &xc->queue[xive_irq_priority];
489 
490 	if (WARN_ON(cpu < 0 || !xc)) {
491 		pr_err("%s: cpu=%d xc=%p\n", __func__, cpu, xc);
492 		return;
493 	}
494 
495 	/*
496 	 * We increment the "pending count" which will be used
497 	 * to decrement the target queue count whenever it's next
498 	 * processed and found empty. This ensure that we don't
499 	 * decrement while we still have the interrupt there
500 	 * occupying a slot.
501 	 */
502 	atomic_inc(&q->pending_count);
503 }
504 
505 /* Find a tentative CPU target in a CPU mask */
506 static int xive_find_target_in_mask(const struct cpumask *mask,
507 				    unsigned int fuzz)
508 {
509 	int cpu, first, num, i;
510 
511 	/* Pick up a starting point CPU in the mask based on  fuzz */
512 	num = min_t(int, cpumask_weight(mask), nr_cpu_ids);
513 	first = fuzz % num;
514 
515 	/* Locate it */
516 	cpu = cpumask_first(mask);
517 	for (i = 0; i < first && cpu < nr_cpu_ids; i++)
518 		cpu = cpumask_next(cpu, mask);
519 
520 	/* Sanity check */
521 	if (WARN_ON(cpu >= nr_cpu_ids))
522 		cpu = cpumask_first(cpu_online_mask);
523 
524 	/* Remember first one to handle wrap-around */
525 	first = cpu;
526 
527 	/*
528 	 * Now go through the entire mask until we find a valid
529 	 * target.
530 	 */
531 	do {
532 		/*
533 		 * We re-check online as the fallback case passes us
534 		 * an untested affinity mask
535 		 */
536 		if (cpu_online(cpu) && xive_try_pick_target(cpu))
537 			return cpu;
538 		cpu = cpumask_next(cpu, mask);
539 		/* Wrap around */
540 		if (cpu >= nr_cpu_ids)
541 			cpu = cpumask_first(mask);
542 	} while (cpu != first);
543 
544 	return -1;
545 }
546 
547 /*
548  * Pick a target CPU for an interrupt. This is done at
549  * startup or if the affinity is changed in a way that
550  * invalidates the current target.
551  */
552 static int xive_pick_irq_target(struct irq_data *d,
553 				const struct cpumask *affinity)
554 {
555 	static unsigned int fuzz;
556 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
557 	cpumask_var_t mask;
558 	int cpu = -1;
559 
560 	/*
561 	 * If we have chip IDs, first we try to build a mask of
562 	 * CPUs matching the CPU and find a target in there
563 	 */
564 	if (xd->src_chip != XIVE_INVALID_CHIP_ID &&
565 		zalloc_cpumask_var(&mask, GFP_ATOMIC)) {
566 		/* Build a mask of matching chip IDs */
567 		for_each_cpu_and(cpu, affinity, cpu_online_mask) {
568 			struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
569 			if (xc->chip_id == xd->src_chip)
570 				cpumask_set_cpu(cpu, mask);
571 		}
572 		/* Try to find a target */
573 		if (cpumask_empty(mask))
574 			cpu = -1;
575 		else
576 			cpu = xive_find_target_in_mask(mask, fuzz++);
577 		free_cpumask_var(mask);
578 		if (cpu >= 0)
579 			return cpu;
580 		fuzz--;
581 	}
582 
583 	/* No chip IDs, fallback to using the affinity mask */
584 	return xive_find_target_in_mask(affinity, fuzz++);
585 }
586 
587 static unsigned int xive_irq_startup(struct irq_data *d)
588 {
589 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
590 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
591 	int target, rc;
592 
593 	xd->saved_p = false;
594 	xd->stale_p = false;
595 	pr_devel("xive_irq_startup: irq %d [0x%x] data @%p\n",
596 		 d->irq, hw_irq, d);
597 
598 #ifdef CONFIG_PCI_MSI
599 	/*
600 	 * The generic MSI code returns with the interrupt disabled on the
601 	 * card, using the MSI mask bits. Firmware doesn't appear to unmask
602 	 * at that level, so we do it here by hand.
603 	 */
604 	if (irq_data_get_msi_desc(d))
605 		pci_msi_unmask_irq(d);
606 #endif
607 
608 	/* Pick a target */
609 	target = xive_pick_irq_target(d, irq_data_get_affinity_mask(d));
610 	if (target == XIVE_INVALID_TARGET) {
611 		/* Try again breaking affinity */
612 		target = xive_pick_irq_target(d, cpu_online_mask);
613 		if (target == XIVE_INVALID_TARGET)
614 			return -ENXIO;
615 		pr_warn("irq %d started with broken affinity\n", d->irq);
616 	}
617 
618 	/* Sanity check */
619 	if (WARN_ON(target == XIVE_INVALID_TARGET ||
620 		    target >= nr_cpu_ids))
621 		target = smp_processor_id();
622 
623 	xd->target = target;
624 
625 	/*
626 	 * Configure the logical number to be the Linux IRQ number
627 	 * and set the target queue
628 	 */
629 	rc = xive_ops->configure_irq(hw_irq,
630 				     get_hard_smp_processor_id(target),
631 				     xive_irq_priority, d->irq);
632 	if (rc)
633 		return rc;
634 
635 	/* Unmask the ESB */
636 	xive_do_source_set_mask(xd, false);
637 
638 	return 0;
639 }
640 
641 /* called with irq descriptor lock held */
642 static void xive_irq_shutdown(struct irq_data *d)
643 {
644 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
645 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
646 
647 	pr_devel("xive_irq_shutdown: irq %d [0x%x] data @%p\n",
648 		 d->irq, hw_irq, d);
649 
650 	if (WARN_ON(xd->target == XIVE_INVALID_TARGET))
651 		return;
652 
653 	/* Mask the interrupt at the source */
654 	xive_do_source_set_mask(xd, true);
655 
656 	/*
657 	 * Mask the interrupt in HW in the IVT/EAS and set the number
658 	 * to be the "bad" IRQ number
659 	 */
660 	xive_ops->configure_irq(hw_irq,
661 				get_hard_smp_processor_id(xd->target),
662 				0xff, XIVE_BAD_IRQ);
663 
664 	xive_dec_target_count(xd->target);
665 	xd->target = XIVE_INVALID_TARGET;
666 }
667 
668 static void xive_irq_unmask(struct irq_data *d)
669 {
670 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
671 
672 	pr_devel("xive_irq_unmask: irq %d data @%p\n", d->irq, xd);
673 
674 	xive_do_source_set_mask(xd, false);
675 }
676 
677 static void xive_irq_mask(struct irq_data *d)
678 {
679 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
680 
681 	pr_devel("xive_irq_mask: irq %d data @%p\n", d->irq, xd);
682 
683 	xive_do_source_set_mask(xd, true);
684 }
685 
686 static int xive_irq_set_affinity(struct irq_data *d,
687 				 const struct cpumask *cpumask,
688 				 bool force)
689 {
690 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
691 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
692 	u32 target, old_target;
693 	int rc = 0;
694 
695 	pr_devel("xive_irq_set_affinity: irq %d\n", d->irq);
696 
697 	/* Is this valid ? */
698 	if (cpumask_any_and(cpumask, cpu_online_mask) >= nr_cpu_ids)
699 		return -EINVAL;
700 
701 	/* Don't do anything if the interrupt isn't started */
702 	if (!irqd_is_started(d))
703 		return IRQ_SET_MASK_OK;
704 
705 	/*
706 	 * If existing target is already in the new mask, and is
707 	 * online then do nothing.
708 	 */
709 	if (xd->target != XIVE_INVALID_TARGET &&
710 	    cpu_online(xd->target) &&
711 	    cpumask_test_cpu(xd->target, cpumask))
712 		return IRQ_SET_MASK_OK;
713 
714 	/* Pick a new target */
715 	target = xive_pick_irq_target(d, cpumask);
716 
717 	/* No target found */
718 	if (target == XIVE_INVALID_TARGET)
719 		return -ENXIO;
720 
721 	/* Sanity check */
722 	if (WARN_ON(target >= nr_cpu_ids))
723 		target = smp_processor_id();
724 
725 	old_target = xd->target;
726 
727 	/*
728 	 * Only configure the irq if it's not currently passed-through to
729 	 * a KVM guest
730 	 */
731 	if (!irqd_is_forwarded_to_vcpu(d))
732 		rc = xive_ops->configure_irq(hw_irq,
733 					     get_hard_smp_processor_id(target),
734 					     xive_irq_priority, d->irq);
735 	if (rc < 0) {
736 		pr_err("Error %d reconfiguring irq %d\n", rc, d->irq);
737 		return rc;
738 	}
739 
740 	pr_devel("  target: 0x%x\n", target);
741 	xd->target = target;
742 
743 	/* Give up previous target */
744 	if (old_target != XIVE_INVALID_TARGET)
745 	    xive_dec_target_count(old_target);
746 
747 	return IRQ_SET_MASK_OK;
748 }
749 
750 static int xive_irq_set_type(struct irq_data *d, unsigned int flow_type)
751 {
752 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
753 
754 	/*
755 	 * We only support these. This has really no effect other than setting
756 	 * the corresponding descriptor bits mind you but those will in turn
757 	 * affect the resend function when re-enabling an edge interrupt.
758 	 *
759 	 * Set set the default to edge as explained in map().
760 	 */
761 	if (flow_type == IRQ_TYPE_DEFAULT || flow_type == IRQ_TYPE_NONE)
762 		flow_type = IRQ_TYPE_EDGE_RISING;
763 
764 	if (flow_type != IRQ_TYPE_EDGE_RISING &&
765 	    flow_type != IRQ_TYPE_LEVEL_LOW)
766 		return -EINVAL;
767 
768 	irqd_set_trigger_type(d, flow_type);
769 
770 	/*
771 	 * Double check it matches what the FW thinks
772 	 *
773 	 * NOTE: We don't know yet if the PAPR interface will provide
774 	 * the LSI vs MSI information apart from the device-tree so
775 	 * this check might have to move into an optional backend call
776 	 * that is specific to the native backend
777 	 */
778 	if ((flow_type == IRQ_TYPE_LEVEL_LOW) !=
779 	    !!(xd->flags & XIVE_IRQ_FLAG_LSI)) {
780 		pr_warn("Interrupt %d (HW 0x%x) type mismatch, Linux says %s, FW says %s\n",
781 			d->irq, (u32)irqd_to_hwirq(d),
782 			(flow_type == IRQ_TYPE_LEVEL_LOW) ? "Level" : "Edge",
783 			(xd->flags & XIVE_IRQ_FLAG_LSI) ? "Level" : "Edge");
784 	}
785 
786 	return IRQ_SET_MASK_OK_NOCOPY;
787 }
788 
789 static int xive_irq_retrigger(struct irq_data *d)
790 {
791 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
792 
793 	/* This should be only for MSIs */
794 	if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
795 		return 0;
796 
797 	/*
798 	 * To perform a retrigger, we first set the PQ bits to
799 	 * 11, then perform an EOI.
800 	 */
801 	xive_esb_read(xd, XIVE_ESB_SET_PQ_11);
802 
803 	/*
804 	 * Note: We pass "0" to the hw_irq argument in order to
805 	 * avoid calling into the backend EOI code which we don't
806 	 * want to do in the case of a re-trigger. Backends typically
807 	 * only do EOI for LSIs anyway.
808 	 */
809 	xive_do_source_eoi(0, xd);
810 
811 	return 1;
812 }
813 
814 /*
815  * Caller holds the irq descriptor lock, so this won't be called
816  * concurrently with xive_get_irqchip_state on the same interrupt.
817  */
818 static int xive_irq_set_vcpu_affinity(struct irq_data *d, void *state)
819 {
820 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
821 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
822 	int rc;
823 	u8 pq;
824 
825 	/*
826 	 * This is called by KVM with state non-NULL for enabling
827 	 * pass-through or NULL for disabling it
828 	 */
829 	if (state) {
830 		irqd_set_forwarded_to_vcpu(d);
831 
832 		/* Set it to PQ=10 state to prevent further sends */
833 		pq = xive_esb_read(xd, XIVE_ESB_SET_PQ_10);
834 		if (!xd->stale_p) {
835 			xd->saved_p = !!(pq & XIVE_ESB_VAL_P);
836 			xd->stale_p = !xd->saved_p;
837 		}
838 
839 		/* No target ? nothing to do */
840 		if (xd->target == XIVE_INVALID_TARGET) {
841 			/*
842 			 * An untargetted interrupt should have been
843 			 * also masked at the source
844 			 */
845 			WARN_ON(xd->saved_p);
846 
847 			return 0;
848 		}
849 
850 		/*
851 		 * If P was set, adjust state to PQ=11 to indicate
852 		 * that a resend is needed for the interrupt to reach
853 		 * the guest. Also remember the value of P.
854 		 *
855 		 * This also tells us that it's in flight to a host queue
856 		 * or has already been fetched but hasn't been EOIed yet
857 		 * by the host. This it's potentially using up a host
858 		 * queue slot. This is important to know because as long
859 		 * as this is the case, we must not hard-unmask it when
860 		 * "returning" that interrupt to the host.
861 		 *
862 		 * This saved_p is cleared by the host EOI, when we know
863 		 * for sure the queue slot is no longer in use.
864 		 */
865 		if (xd->saved_p) {
866 			xive_esb_read(xd, XIVE_ESB_SET_PQ_11);
867 
868 			/*
869 			 * Sync the XIVE source HW to ensure the interrupt
870 			 * has gone through the EAS before we change its
871 			 * target to the guest. That should guarantee us
872 			 * that we *will* eventually get an EOI for it on
873 			 * the host. Otherwise there would be a small window
874 			 * for P to be seen here but the interrupt going
875 			 * to the guest queue.
876 			 */
877 			if (xive_ops->sync_source)
878 				xive_ops->sync_source(hw_irq);
879 		}
880 	} else {
881 		irqd_clr_forwarded_to_vcpu(d);
882 
883 		/* No host target ? hard mask and return */
884 		if (xd->target == XIVE_INVALID_TARGET) {
885 			xive_do_source_set_mask(xd, true);
886 			return 0;
887 		}
888 
889 		/*
890 		 * Sync the XIVE source HW to ensure the interrupt
891 		 * has gone through the EAS before we change its
892 		 * target to the host.
893 		 */
894 		if (xive_ops->sync_source)
895 			xive_ops->sync_source(hw_irq);
896 
897 		/*
898 		 * By convention we are called with the interrupt in
899 		 * a PQ=10 or PQ=11 state, ie, it won't fire and will
900 		 * have latched in Q whether there's a pending HW
901 		 * interrupt or not.
902 		 *
903 		 * First reconfigure the target.
904 		 */
905 		rc = xive_ops->configure_irq(hw_irq,
906 					     get_hard_smp_processor_id(xd->target),
907 					     xive_irq_priority, d->irq);
908 		if (rc)
909 			return rc;
910 
911 		/*
912 		 * Then if saved_p is not set, effectively re-enable the
913 		 * interrupt with an EOI. If it is set, we know there is
914 		 * still a message in a host queue somewhere that will be
915 		 * EOId eventually.
916 		 *
917 		 * Note: We don't check irqd_irq_disabled(). Effectively,
918 		 * we *will* let the irq get through even if masked if the
919 		 * HW is still firing it in order to deal with the whole
920 		 * saved_p business properly. If the interrupt triggers
921 		 * while masked, the generic code will re-mask it anyway.
922 		 */
923 		if (!xd->saved_p)
924 			xive_do_source_eoi(hw_irq, xd);
925 
926 	}
927 	return 0;
928 }
929 
930 /* Called with irq descriptor lock held. */
931 static int xive_get_irqchip_state(struct irq_data *data,
932 				  enum irqchip_irq_state which, bool *state)
933 {
934 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(data);
935 	u8 pq;
936 
937 	switch (which) {
938 	case IRQCHIP_STATE_ACTIVE:
939 		pq = xive_esb_read(xd, XIVE_ESB_GET);
940 
941 		/*
942 		 * The esb value being all 1's means we couldn't get
943 		 * the PQ state of the interrupt through mmio. It may
944 		 * happen, for example when querying a PHB interrupt
945 		 * while the PHB is in an error state. We consider the
946 		 * interrupt to be inactive in that case.
947 		 */
948 		*state = (pq != XIVE_ESB_INVALID) && !xd->stale_p &&
949 			(xd->saved_p || !!(pq & XIVE_ESB_VAL_P));
950 		return 0;
951 	default:
952 		return -EINVAL;
953 	}
954 }
955 
956 static struct irq_chip xive_irq_chip = {
957 	.name = "XIVE-IRQ",
958 	.irq_startup = xive_irq_startup,
959 	.irq_shutdown = xive_irq_shutdown,
960 	.irq_eoi = xive_irq_eoi,
961 	.irq_mask = xive_irq_mask,
962 	.irq_unmask = xive_irq_unmask,
963 	.irq_set_affinity = xive_irq_set_affinity,
964 	.irq_set_type = xive_irq_set_type,
965 	.irq_retrigger = xive_irq_retrigger,
966 	.irq_set_vcpu_affinity = xive_irq_set_vcpu_affinity,
967 	.irq_get_irqchip_state = xive_get_irqchip_state,
968 };
969 
970 bool is_xive_irq(struct irq_chip *chip)
971 {
972 	return chip == &xive_irq_chip;
973 }
974 EXPORT_SYMBOL_GPL(is_xive_irq);
975 
976 void xive_cleanup_irq_data(struct xive_irq_data *xd)
977 {
978 	if (xd->eoi_mmio) {
979 		unmap_kernel_range((unsigned long)xd->eoi_mmio,
980 				   1u << xd->esb_shift);
981 		iounmap(xd->eoi_mmio);
982 		if (xd->eoi_mmio == xd->trig_mmio)
983 			xd->trig_mmio = NULL;
984 		xd->eoi_mmio = NULL;
985 	}
986 	if (xd->trig_mmio) {
987 		unmap_kernel_range((unsigned long)xd->trig_mmio,
988 				   1u << xd->esb_shift);
989 		iounmap(xd->trig_mmio);
990 		xd->trig_mmio = NULL;
991 	}
992 }
993 EXPORT_SYMBOL_GPL(xive_cleanup_irq_data);
994 
995 static int xive_irq_alloc_data(unsigned int virq, irq_hw_number_t hw)
996 {
997 	struct xive_irq_data *xd;
998 	int rc;
999 
1000 	xd = kzalloc(sizeof(struct xive_irq_data), GFP_KERNEL);
1001 	if (!xd)
1002 		return -ENOMEM;
1003 	rc = xive_ops->populate_irq_data(hw, xd);
1004 	if (rc) {
1005 		kfree(xd);
1006 		return rc;
1007 	}
1008 	xd->target = XIVE_INVALID_TARGET;
1009 	irq_set_handler_data(virq, xd);
1010 
1011 	/*
1012 	 * Turn OFF by default the interrupt being mapped. A side
1013 	 * effect of this check is the mapping the ESB page of the
1014 	 * interrupt in the Linux address space. This prevents page
1015 	 * fault issues in the crash handler which masks all
1016 	 * interrupts.
1017 	 */
1018 	xive_esb_read(xd, XIVE_ESB_SET_PQ_01);
1019 
1020 	return 0;
1021 }
1022 
1023 static void xive_irq_free_data(unsigned int virq)
1024 {
1025 	struct xive_irq_data *xd = irq_get_handler_data(virq);
1026 
1027 	if (!xd)
1028 		return;
1029 	irq_set_handler_data(virq, NULL);
1030 	xive_cleanup_irq_data(xd);
1031 	kfree(xd);
1032 }
1033 
1034 #ifdef CONFIG_SMP
1035 
1036 static void xive_cause_ipi(int cpu)
1037 {
1038 	struct xive_cpu *xc;
1039 	struct xive_irq_data *xd;
1040 
1041 	xc = per_cpu(xive_cpu, cpu);
1042 
1043 	DBG_VERBOSE("IPI CPU %d -> %d (HW IRQ 0x%x)\n",
1044 		    smp_processor_id(), cpu, xc->hw_ipi);
1045 
1046 	xd = &xc->ipi_data;
1047 	if (WARN_ON(!xd->trig_mmio))
1048 		return;
1049 	out_be64(xd->trig_mmio, 0);
1050 }
1051 
1052 static irqreturn_t xive_muxed_ipi_action(int irq, void *dev_id)
1053 {
1054 	return smp_ipi_demux();
1055 }
1056 
1057 static void xive_ipi_eoi(struct irq_data *d)
1058 {
1059 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1060 
1061 	/* Handle possible race with unplug and drop stale IPIs */
1062 	if (!xc)
1063 		return;
1064 
1065 	DBG_VERBOSE("IPI eoi: irq=%d [0x%lx] (HW IRQ 0x%x) pending=%02x\n",
1066 		    d->irq, irqd_to_hwirq(d), xc->hw_ipi, xc->pending_prio);
1067 
1068 	xive_do_source_eoi(xc->hw_ipi, &xc->ipi_data);
1069 	xive_do_queue_eoi(xc);
1070 }
1071 
1072 static void xive_ipi_do_nothing(struct irq_data *d)
1073 {
1074 	/*
1075 	 * Nothing to do, we never mask/unmask IPIs, but the callback
1076 	 * has to exist for the struct irq_chip.
1077 	 */
1078 }
1079 
1080 static struct irq_chip xive_ipi_chip = {
1081 	.name = "XIVE-IPI",
1082 	.irq_eoi = xive_ipi_eoi,
1083 	.irq_mask = xive_ipi_do_nothing,
1084 	.irq_unmask = xive_ipi_do_nothing,
1085 };
1086 
1087 static void __init xive_request_ipi(void)
1088 {
1089 	unsigned int virq;
1090 
1091 	/*
1092 	 * Initialization failed, move on, we might manage to
1093 	 * reach the point where we display our errors before
1094 	 * the system falls appart
1095 	 */
1096 	if (!xive_irq_domain)
1097 		return;
1098 
1099 	/* Initialize it */
1100 	virq = irq_create_mapping(xive_irq_domain, XIVE_IPI_HW_IRQ);
1101 	xive_ipi_irq = virq;
1102 
1103 	WARN_ON(request_irq(virq, xive_muxed_ipi_action,
1104 			    IRQF_PERCPU | IRQF_NO_THREAD, "IPI", NULL));
1105 }
1106 
1107 static int xive_setup_cpu_ipi(unsigned int cpu)
1108 {
1109 	struct xive_cpu *xc;
1110 	int rc;
1111 
1112 	pr_debug("Setting up IPI for CPU %d\n", cpu);
1113 
1114 	xc = per_cpu(xive_cpu, cpu);
1115 
1116 	/* Check if we are already setup */
1117 	if (xc->hw_ipi != XIVE_BAD_IRQ)
1118 		return 0;
1119 
1120 	/* Grab an IPI from the backend, this will populate xc->hw_ipi */
1121 	if (xive_ops->get_ipi(cpu, xc))
1122 		return -EIO;
1123 
1124 	/*
1125 	 * Populate the IRQ data in the xive_cpu structure and
1126 	 * configure the HW / enable the IPIs.
1127 	 */
1128 	rc = xive_ops->populate_irq_data(xc->hw_ipi, &xc->ipi_data);
1129 	if (rc) {
1130 		pr_err("Failed to populate IPI data on CPU %d\n", cpu);
1131 		return -EIO;
1132 	}
1133 	rc = xive_ops->configure_irq(xc->hw_ipi,
1134 				     get_hard_smp_processor_id(cpu),
1135 				     xive_irq_priority, xive_ipi_irq);
1136 	if (rc) {
1137 		pr_err("Failed to map IPI CPU %d\n", cpu);
1138 		return -EIO;
1139 	}
1140 	pr_devel("CPU %d HW IPI %x, virq %d, trig_mmio=%p\n", cpu,
1141 	    xc->hw_ipi, xive_ipi_irq, xc->ipi_data.trig_mmio);
1142 
1143 	/* Unmask it */
1144 	xive_do_source_set_mask(&xc->ipi_data, false);
1145 
1146 	return 0;
1147 }
1148 
1149 static void xive_cleanup_cpu_ipi(unsigned int cpu, struct xive_cpu *xc)
1150 {
1151 	/* Disable the IPI and free the IRQ data */
1152 
1153 	/* Already cleaned up ? */
1154 	if (xc->hw_ipi == XIVE_BAD_IRQ)
1155 		return;
1156 
1157 	/* Mask the IPI */
1158 	xive_do_source_set_mask(&xc->ipi_data, true);
1159 
1160 	/*
1161 	 * Note: We don't call xive_cleanup_irq_data() to free
1162 	 * the mappings as this is called from an IPI on kexec
1163 	 * which is not a safe environment to call iounmap()
1164 	 */
1165 
1166 	/* Deconfigure/mask in the backend */
1167 	xive_ops->configure_irq(xc->hw_ipi, hard_smp_processor_id(),
1168 				0xff, xive_ipi_irq);
1169 
1170 	/* Free the IPIs in the backend */
1171 	xive_ops->put_ipi(cpu, xc);
1172 }
1173 
1174 void __init xive_smp_probe(void)
1175 {
1176 	smp_ops->cause_ipi = xive_cause_ipi;
1177 
1178 	/* Register the IPI */
1179 	xive_request_ipi();
1180 
1181 	/* Allocate and setup IPI for the boot CPU */
1182 	xive_setup_cpu_ipi(smp_processor_id());
1183 }
1184 
1185 #endif /* CONFIG_SMP */
1186 
1187 static int xive_irq_domain_map(struct irq_domain *h, unsigned int virq,
1188 			       irq_hw_number_t hw)
1189 {
1190 	int rc;
1191 
1192 	/*
1193 	 * Mark interrupts as edge sensitive by default so that resend
1194 	 * actually works. Will fix that up below if needed.
1195 	 */
1196 	irq_clear_status_flags(virq, IRQ_LEVEL);
1197 
1198 #ifdef CONFIG_SMP
1199 	/* IPIs are special and come up with HW number 0 */
1200 	if (hw == XIVE_IPI_HW_IRQ) {
1201 		/*
1202 		 * IPIs are marked per-cpu. We use separate HW interrupts under
1203 		 * the hood but associated with the same "linux" interrupt
1204 		 */
1205 		irq_set_chip_and_handler(virq, &xive_ipi_chip,
1206 					 handle_percpu_irq);
1207 		return 0;
1208 	}
1209 #endif
1210 
1211 	rc = xive_irq_alloc_data(virq, hw);
1212 	if (rc)
1213 		return rc;
1214 
1215 	irq_set_chip_and_handler(virq, &xive_irq_chip, handle_fasteoi_irq);
1216 
1217 	return 0;
1218 }
1219 
1220 static void xive_irq_domain_unmap(struct irq_domain *d, unsigned int virq)
1221 {
1222 	struct irq_data *data = irq_get_irq_data(virq);
1223 	unsigned int hw_irq;
1224 
1225 	/* XXX Assign BAD number */
1226 	if (!data)
1227 		return;
1228 	hw_irq = (unsigned int)irqd_to_hwirq(data);
1229 	if (hw_irq != XIVE_IPI_HW_IRQ)
1230 		xive_irq_free_data(virq);
1231 }
1232 
1233 static int xive_irq_domain_xlate(struct irq_domain *h, struct device_node *ct,
1234 				 const u32 *intspec, unsigned int intsize,
1235 				 irq_hw_number_t *out_hwirq, unsigned int *out_flags)
1236 
1237 {
1238 	*out_hwirq = intspec[0];
1239 
1240 	/*
1241 	 * If intsize is at least 2, we look for the type in the second cell,
1242 	 * we assume the LSB indicates a level interrupt.
1243 	 */
1244 	if (intsize > 1) {
1245 		if (intspec[1] & 1)
1246 			*out_flags = IRQ_TYPE_LEVEL_LOW;
1247 		else
1248 			*out_flags = IRQ_TYPE_EDGE_RISING;
1249 	} else
1250 		*out_flags = IRQ_TYPE_LEVEL_LOW;
1251 
1252 	return 0;
1253 }
1254 
1255 static int xive_irq_domain_match(struct irq_domain *h, struct device_node *node,
1256 				 enum irq_domain_bus_token bus_token)
1257 {
1258 	return xive_ops->match(node);
1259 }
1260 
1261 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS
1262 static const char * const esb_names[] = { "RESET", "OFF", "PENDING", "QUEUED" };
1263 
1264 static const struct {
1265 	u64  mask;
1266 	char *name;
1267 } xive_irq_flags[] = {
1268 	{ XIVE_IRQ_FLAG_STORE_EOI, "STORE_EOI" },
1269 	{ XIVE_IRQ_FLAG_LSI,       "LSI"       },
1270 	{ XIVE_IRQ_FLAG_EOI_FW,    "EOI_FW"    },
1271 	{ XIVE_IRQ_FLAG_H_INT_ESB, "H_INT_ESB" },
1272 	{ XIVE_IRQ_FLAG_NO_EOI,    "NO_EOI"    },
1273 };
1274 
1275 static void xive_irq_domain_debug_show(struct seq_file *m, struct irq_domain *d,
1276 				       struct irq_data *irqd, int ind)
1277 {
1278 	struct xive_irq_data *xd;
1279 	u64 val;
1280 	int i;
1281 
1282 	/* No IRQ domain level information. To be done */
1283 	if (!irqd)
1284 		return;
1285 
1286 	if (!is_xive_irq(irq_data_get_irq_chip(irqd)))
1287 		return;
1288 
1289 	seq_printf(m, "%*sXIVE:\n", ind, "");
1290 	ind++;
1291 
1292 	xd = irq_data_get_irq_handler_data(irqd);
1293 	if (!xd) {
1294 		seq_printf(m, "%*snot assigned\n", ind, "");
1295 		return;
1296 	}
1297 
1298 	val = xive_esb_read(xd, XIVE_ESB_GET);
1299 	seq_printf(m, "%*sESB:      %s\n", ind, "", esb_names[val & 0x3]);
1300 	seq_printf(m, "%*sPstate:   %s %s\n", ind, "", xd->stale_p ? "stale" : "",
1301 		   xd->saved_p ? "saved" : "");
1302 	seq_printf(m, "%*sTarget:   %d\n", ind, "", xd->target);
1303 	seq_printf(m, "%*sChip:     %d\n", ind, "", xd->src_chip);
1304 	seq_printf(m, "%*sTrigger:  0x%016llx\n", ind, "", xd->trig_page);
1305 	seq_printf(m, "%*sEOI:      0x%016llx\n", ind, "", xd->eoi_page);
1306 	seq_printf(m, "%*sFlags:    0x%llx\n", ind, "", xd->flags);
1307 	for (i = 0; i < ARRAY_SIZE(xive_irq_flags); i++) {
1308 		if (xd->flags & xive_irq_flags[i].mask)
1309 			seq_printf(m, "%*s%s\n", ind + 12, "", xive_irq_flags[i].name);
1310 	}
1311 }
1312 #endif
1313 
1314 static const struct irq_domain_ops xive_irq_domain_ops = {
1315 	.match = xive_irq_domain_match,
1316 	.map = xive_irq_domain_map,
1317 	.unmap = xive_irq_domain_unmap,
1318 	.xlate = xive_irq_domain_xlate,
1319 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS
1320 	.debug_show = xive_irq_domain_debug_show,
1321 #endif
1322 };
1323 
1324 static void __init xive_init_host(struct device_node *np)
1325 {
1326 	xive_irq_domain = irq_domain_add_nomap(np, XIVE_MAX_IRQ,
1327 					       &xive_irq_domain_ops, NULL);
1328 	if (WARN_ON(xive_irq_domain == NULL))
1329 		return;
1330 	irq_set_default_host(xive_irq_domain);
1331 }
1332 
1333 static void xive_cleanup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1334 {
1335 	if (xc->queue[xive_irq_priority].qpage)
1336 		xive_ops->cleanup_queue(cpu, xc, xive_irq_priority);
1337 }
1338 
1339 static int xive_setup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1340 {
1341 	int rc = 0;
1342 
1343 	/* We setup 1 queues for now with a 64k page */
1344 	if (!xc->queue[xive_irq_priority].qpage)
1345 		rc = xive_ops->setup_queue(cpu, xc, xive_irq_priority);
1346 
1347 	return rc;
1348 }
1349 
1350 static int xive_prepare_cpu(unsigned int cpu)
1351 {
1352 	struct xive_cpu *xc;
1353 
1354 	xc = per_cpu(xive_cpu, cpu);
1355 	if (!xc) {
1356 		struct device_node *np;
1357 
1358 		xc = kzalloc_node(sizeof(struct xive_cpu),
1359 				  GFP_KERNEL, cpu_to_node(cpu));
1360 		if (!xc)
1361 			return -ENOMEM;
1362 		np = of_get_cpu_node(cpu, NULL);
1363 		if (np)
1364 			xc->chip_id = of_get_ibm_chip_id(np);
1365 		of_node_put(np);
1366 		xc->hw_ipi = XIVE_BAD_IRQ;
1367 
1368 		per_cpu(xive_cpu, cpu) = xc;
1369 	}
1370 
1371 	/* Setup EQs if not already */
1372 	return xive_setup_cpu_queues(cpu, xc);
1373 }
1374 
1375 static void xive_setup_cpu(void)
1376 {
1377 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1378 
1379 	/* The backend might have additional things to do */
1380 	if (xive_ops->setup_cpu)
1381 		xive_ops->setup_cpu(smp_processor_id(), xc);
1382 
1383 	/* Set CPPR to 0xff to enable flow of interrupts */
1384 	xc->cppr = 0xff;
1385 	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1386 }
1387 
1388 #ifdef CONFIG_SMP
1389 void xive_smp_setup_cpu(void)
1390 {
1391 	pr_devel("SMP setup CPU %d\n", smp_processor_id());
1392 
1393 	/* This will have already been done on the boot CPU */
1394 	if (smp_processor_id() != boot_cpuid)
1395 		xive_setup_cpu();
1396 
1397 }
1398 
1399 int xive_smp_prepare_cpu(unsigned int cpu)
1400 {
1401 	int rc;
1402 
1403 	/* Allocate per-CPU data and queues */
1404 	rc = xive_prepare_cpu(cpu);
1405 	if (rc)
1406 		return rc;
1407 
1408 	/* Allocate and setup IPI for the new CPU */
1409 	return xive_setup_cpu_ipi(cpu);
1410 }
1411 
1412 #ifdef CONFIG_HOTPLUG_CPU
1413 static void xive_flush_cpu_queue(unsigned int cpu, struct xive_cpu *xc)
1414 {
1415 	u32 irq;
1416 
1417 	/* We assume local irqs are disabled */
1418 	WARN_ON(!irqs_disabled());
1419 
1420 	/* Check what's already in the CPU queue */
1421 	while ((irq = xive_scan_interrupts(xc, false)) != 0) {
1422 		/*
1423 		 * We need to re-route that interrupt to its new destination.
1424 		 * First get and lock the descriptor
1425 		 */
1426 		struct irq_desc *desc = irq_to_desc(irq);
1427 		struct irq_data *d = irq_desc_get_irq_data(desc);
1428 		struct xive_irq_data *xd;
1429 		unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
1430 
1431 		/*
1432 		 * Ignore anything that isn't a XIVE irq and ignore
1433 		 * IPIs, so can just be dropped.
1434 		 */
1435 		if (d->domain != xive_irq_domain || hw_irq == XIVE_IPI_HW_IRQ)
1436 			continue;
1437 
1438 		/*
1439 		 * The IRQ should have already been re-routed, it's just a
1440 		 * stale in the old queue, so re-trigger it in order to make
1441 		 * it reach is new destination.
1442 		 */
1443 #ifdef DEBUG_FLUSH
1444 		pr_info("CPU %d: Got irq %d while offline, re-sending...\n",
1445 			cpu, irq);
1446 #endif
1447 		raw_spin_lock(&desc->lock);
1448 		xd = irq_desc_get_handler_data(desc);
1449 
1450 		/*
1451 		 * Clear saved_p to indicate that it's no longer pending
1452 		 */
1453 		xd->saved_p = false;
1454 
1455 		/*
1456 		 * For LSIs, we EOI, this will cause a resend if it's
1457 		 * still asserted. Otherwise do an MSI retrigger.
1458 		 */
1459 		if (xd->flags & XIVE_IRQ_FLAG_LSI)
1460 			xive_do_source_eoi(irqd_to_hwirq(d), xd);
1461 		else
1462 			xive_irq_retrigger(d);
1463 
1464 		raw_spin_unlock(&desc->lock);
1465 	}
1466 }
1467 
1468 void xive_smp_disable_cpu(void)
1469 {
1470 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1471 	unsigned int cpu = smp_processor_id();
1472 
1473 	/* Migrate interrupts away from the CPU */
1474 	irq_migrate_all_off_this_cpu();
1475 
1476 	/* Set CPPR to 0 to disable flow of interrupts */
1477 	xc->cppr = 0;
1478 	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1479 
1480 	/* Flush everything still in the queue */
1481 	xive_flush_cpu_queue(cpu, xc);
1482 
1483 	/* Re-enable CPPR  */
1484 	xc->cppr = 0xff;
1485 	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1486 }
1487 
1488 void xive_flush_interrupt(void)
1489 {
1490 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1491 	unsigned int cpu = smp_processor_id();
1492 
1493 	/* Called if an interrupt occurs while the CPU is hot unplugged */
1494 	xive_flush_cpu_queue(cpu, xc);
1495 }
1496 
1497 #endif /* CONFIG_HOTPLUG_CPU */
1498 
1499 #endif /* CONFIG_SMP */
1500 
1501 void xive_teardown_cpu(void)
1502 {
1503 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1504 	unsigned int cpu = smp_processor_id();
1505 
1506 	/* Set CPPR to 0 to disable flow of interrupts */
1507 	xc->cppr = 0;
1508 	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1509 
1510 	if (xive_ops->teardown_cpu)
1511 		xive_ops->teardown_cpu(cpu, xc);
1512 
1513 #ifdef CONFIG_SMP
1514 	/* Get rid of IPI */
1515 	xive_cleanup_cpu_ipi(cpu, xc);
1516 #endif
1517 
1518 	/* Disable and free the queues */
1519 	xive_cleanup_cpu_queues(cpu, xc);
1520 }
1521 
1522 void xive_shutdown(void)
1523 {
1524 	xive_ops->shutdown();
1525 }
1526 
1527 bool __init xive_core_init(struct device_node *np, const struct xive_ops *ops,
1528 			   void __iomem *area, u32 offset, u8 max_prio)
1529 {
1530 	xive_tima = area;
1531 	xive_tima_offset = offset;
1532 	xive_ops = ops;
1533 	xive_irq_priority = max_prio;
1534 
1535 	ppc_md.get_irq = xive_get_irq;
1536 	__xive_enabled = true;
1537 
1538 	pr_devel("Initializing host..\n");
1539 	xive_init_host(np);
1540 
1541 	pr_devel("Initializing boot CPU..\n");
1542 
1543 	/* Allocate per-CPU data and queues */
1544 	xive_prepare_cpu(smp_processor_id());
1545 
1546 	/* Get ready for interrupts */
1547 	xive_setup_cpu();
1548 
1549 	pr_info("Interrupt handling initialized with %s backend\n",
1550 		xive_ops->name);
1551 	pr_info("Using priority %d for all interrupts\n", max_prio);
1552 
1553 	return true;
1554 }
1555 
1556 __be32 *xive_queue_page_alloc(unsigned int cpu, u32 queue_shift)
1557 {
1558 	unsigned int alloc_order;
1559 	struct page *pages;
1560 	__be32 *qpage;
1561 
1562 	alloc_order = xive_alloc_order(queue_shift);
1563 	pages = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, alloc_order);
1564 	if (!pages)
1565 		return ERR_PTR(-ENOMEM);
1566 	qpage = (__be32 *)page_address(pages);
1567 	memset(qpage, 0, 1 << queue_shift);
1568 
1569 	return qpage;
1570 }
1571 
1572 static int __init xive_off(char *arg)
1573 {
1574 	xive_cmdline_disabled = true;
1575 	return 0;
1576 }
1577 __setup("xive=off", xive_off);
1578 
1579 static void xive_debug_show_cpu(struct seq_file *m, int cpu)
1580 {
1581 	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
1582 
1583 	seq_printf(m, "CPU %d:", cpu);
1584 	if (xc) {
1585 		seq_printf(m, "pp=%02x CPPR=%02x ", xc->pending_prio, xc->cppr);
1586 
1587 #ifdef CONFIG_SMP
1588 		{
1589 			u64 val = xive_esb_read(&xc->ipi_data, XIVE_ESB_GET);
1590 
1591 			seq_printf(m, "IPI=0x%08x PQ=%c%c ", xc->hw_ipi,
1592 				   val & XIVE_ESB_VAL_P ? 'P' : '-',
1593 				   val & XIVE_ESB_VAL_Q ? 'Q' : '-');
1594 		}
1595 #endif
1596 		{
1597 			struct xive_q *q = &xc->queue[xive_irq_priority];
1598 			u32 i0, i1, idx;
1599 
1600 			if (q->qpage) {
1601 				idx = q->idx;
1602 				i0 = be32_to_cpup(q->qpage + idx);
1603 				idx = (idx + 1) & q->msk;
1604 				i1 = be32_to_cpup(q->qpage + idx);
1605 				seq_printf(m, "EQ idx=%d T=%d %08x %08x ...",
1606 					   q->idx, q->toggle, i0, i1);
1607 			}
1608 		}
1609 	}
1610 	seq_puts(m, "\n");
1611 }
1612 
1613 static void xive_debug_show_irq(struct seq_file *m, u32 hw_irq, struct irq_data *d)
1614 {
1615 	struct irq_chip *chip = irq_data_get_irq_chip(d);
1616 	int rc;
1617 	u32 target;
1618 	u8 prio;
1619 	u32 lirq;
1620 
1621 	if (!is_xive_irq(chip))
1622 		return;
1623 
1624 	rc = xive_ops->get_irq_config(hw_irq, &target, &prio, &lirq);
1625 	if (rc) {
1626 		seq_printf(m, "IRQ 0x%08x : no config rc=%d\n", hw_irq, rc);
1627 		return;
1628 	}
1629 
1630 	seq_printf(m, "IRQ 0x%08x : target=0x%x prio=%02x lirq=0x%x ",
1631 		   hw_irq, target, prio, lirq);
1632 
1633 	if (d) {
1634 		struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
1635 		u64 val = xive_esb_read(xd, XIVE_ESB_GET);
1636 
1637 		seq_printf(m, "flags=%c%c%c PQ=%c%c",
1638 			   xd->flags & XIVE_IRQ_FLAG_STORE_EOI ? 'S' : ' ',
1639 			   xd->flags & XIVE_IRQ_FLAG_LSI ? 'L' : ' ',
1640 			   xd->flags & XIVE_IRQ_FLAG_H_INT_ESB ? 'H' : ' ',
1641 			   val & XIVE_ESB_VAL_P ? 'P' : '-',
1642 			   val & XIVE_ESB_VAL_Q ? 'Q' : '-');
1643 	}
1644 	seq_puts(m, "\n");
1645 }
1646 
1647 static int xive_core_debug_show(struct seq_file *m, void *private)
1648 {
1649 	unsigned int i;
1650 	struct irq_desc *desc;
1651 	int cpu;
1652 
1653 	if (xive_ops->debug_show)
1654 		xive_ops->debug_show(m, private);
1655 
1656 	for_each_possible_cpu(cpu)
1657 		xive_debug_show_cpu(m, cpu);
1658 
1659 	for_each_irq_desc(i, desc) {
1660 		struct irq_data *d = irq_desc_get_irq_data(desc);
1661 		unsigned int hw_irq;
1662 
1663 		if (!d)
1664 			continue;
1665 
1666 		hw_irq = (unsigned int)irqd_to_hwirq(d);
1667 
1668 		/* IPIs are special (HW number 0) */
1669 		if (hw_irq != XIVE_IPI_HW_IRQ)
1670 			xive_debug_show_irq(m, hw_irq, d);
1671 	}
1672 	return 0;
1673 }
1674 DEFINE_SHOW_ATTRIBUTE(xive_core_debug);
1675 
1676 int xive_core_debug_init(void)
1677 {
1678 	if (xive_enabled())
1679 		debugfs_create_file("xive", 0400, powerpc_debugfs_root,
1680 				    NULL, &xive_core_debug_fops);
1681 	return 0;
1682 }
1683