1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright 2016,2017 IBM Corporation. 4 */ 5 6 #define pr_fmt(fmt) "xive: " fmt 7 8 #include <linux/types.h> 9 #include <linux/threads.h> 10 #include <linux/kernel.h> 11 #include <linux/irq.h> 12 #include <linux/debugfs.h> 13 #include <linux/smp.h> 14 #include <linux/interrupt.h> 15 #include <linux/seq_file.h> 16 #include <linux/init.h> 17 #include <linux/cpu.h> 18 #include <linux/of.h> 19 #include <linux/slab.h> 20 #include <linux/spinlock.h> 21 #include <linux/msi.h> 22 #include <linux/vmalloc.h> 23 24 #include <asm/debugfs.h> 25 #include <asm/prom.h> 26 #include <asm/io.h> 27 #include <asm/smp.h> 28 #include <asm/machdep.h> 29 #include <asm/irq.h> 30 #include <asm/errno.h> 31 #include <asm/xive.h> 32 #include <asm/xive-regs.h> 33 #include <asm/xmon.h> 34 35 #include "xive-internal.h" 36 37 #undef DEBUG_FLUSH 38 #undef DEBUG_ALL 39 40 #ifdef DEBUG_ALL 41 #define DBG_VERBOSE(fmt, ...) pr_devel("cpu %d - " fmt, \ 42 smp_processor_id(), ## __VA_ARGS__) 43 #else 44 #define DBG_VERBOSE(fmt...) do { } while(0) 45 #endif 46 47 bool __xive_enabled; 48 EXPORT_SYMBOL_GPL(__xive_enabled); 49 bool xive_cmdline_disabled; 50 51 /* We use only one priority for now */ 52 static u8 xive_irq_priority; 53 54 /* TIMA exported to KVM */ 55 void __iomem *xive_tima; 56 EXPORT_SYMBOL_GPL(xive_tima); 57 u32 xive_tima_offset; 58 59 /* Backend ops */ 60 static const struct xive_ops *xive_ops; 61 62 /* Our global interrupt domain */ 63 static struct irq_domain *xive_irq_domain; 64 65 #ifdef CONFIG_SMP 66 /* The IPIs all use the same logical irq number */ 67 static u32 xive_ipi_irq; 68 #endif 69 70 /* Xive state for each CPU */ 71 static DEFINE_PER_CPU(struct xive_cpu *, xive_cpu); 72 73 /* An invalid CPU target */ 74 #define XIVE_INVALID_TARGET (-1) 75 76 /* 77 * Read the next entry in a queue, return its content if it's valid 78 * or 0 if there is no new entry. 79 * 80 * The queue pointer is moved forward unless "just_peek" is set 81 */ 82 static u32 xive_read_eq(struct xive_q *q, bool just_peek) 83 { 84 u32 cur; 85 86 if (!q->qpage) 87 return 0; 88 cur = be32_to_cpup(q->qpage + q->idx); 89 90 /* Check valid bit (31) vs current toggle polarity */ 91 if ((cur >> 31) == q->toggle) 92 return 0; 93 94 /* If consuming from the queue ... */ 95 if (!just_peek) { 96 /* Next entry */ 97 q->idx = (q->idx + 1) & q->msk; 98 99 /* Wrap around: flip valid toggle */ 100 if (q->idx == 0) 101 q->toggle ^= 1; 102 } 103 /* Mask out the valid bit (31) */ 104 return cur & 0x7fffffff; 105 } 106 107 /* 108 * Scans all the queue that may have interrupts in them 109 * (based on "pending_prio") in priority order until an 110 * interrupt is found or all the queues are empty. 111 * 112 * Then updates the CPPR (Current Processor Priority 113 * Register) based on the most favored interrupt found 114 * (0xff if none) and return what was found (0 if none). 115 * 116 * If just_peek is set, return the most favored pending 117 * interrupt if any but don't update the queue pointers. 118 * 119 * Note: This function can operate generically on any number 120 * of queues (up to 8). The current implementation of the XIVE 121 * driver only uses a single queue however. 122 * 123 * Note2: This will also "flush" "the pending_count" of a queue 124 * into the "count" when that queue is observed to be empty. 125 * This is used to keep track of the amount of interrupts 126 * targetting a queue. When an interrupt is moved away from 127 * a queue, we only decrement that queue count once the queue 128 * has been observed empty to avoid races. 129 */ 130 static u32 xive_scan_interrupts(struct xive_cpu *xc, bool just_peek) 131 { 132 u32 irq = 0; 133 u8 prio = 0; 134 135 /* Find highest pending priority */ 136 while (xc->pending_prio != 0) { 137 struct xive_q *q; 138 139 prio = ffs(xc->pending_prio) - 1; 140 DBG_VERBOSE("scan_irq: trying prio %d\n", prio); 141 142 /* Try to fetch */ 143 irq = xive_read_eq(&xc->queue[prio], just_peek); 144 145 /* Found something ? That's it */ 146 if (irq) { 147 if (just_peek || irq_to_desc(irq)) 148 break; 149 /* 150 * We should never get here; if we do then we must 151 * have failed to synchronize the interrupt properly 152 * when shutting it down. 153 */ 154 pr_crit("xive: got interrupt %d without descriptor, dropping\n", 155 irq); 156 WARN_ON(1); 157 continue; 158 } 159 160 /* Clear pending bits */ 161 xc->pending_prio &= ~(1 << prio); 162 163 /* 164 * Check if the queue count needs adjusting due to 165 * interrupts being moved away. See description of 166 * xive_dec_target_count() 167 */ 168 q = &xc->queue[prio]; 169 if (atomic_read(&q->pending_count)) { 170 int p = atomic_xchg(&q->pending_count, 0); 171 if (p) { 172 WARN_ON(p > atomic_read(&q->count)); 173 atomic_sub(p, &q->count); 174 } 175 } 176 } 177 178 /* If nothing was found, set CPPR to 0xff */ 179 if (irq == 0) 180 prio = 0xff; 181 182 /* Update HW CPPR to match if necessary */ 183 if (prio != xc->cppr) { 184 DBG_VERBOSE("scan_irq: adjusting CPPR to %d\n", prio); 185 xc->cppr = prio; 186 out_8(xive_tima + xive_tima_offset + TM_CPPR, prio); 187 } 188 189 return irq; 190 } 191 192 /* 193 * This is used to perform the magic loads from an ESB 194 * described in xive-regs.h 195 */ 196 static notrace u8 xive_esb_read(struct xive_irq_data *xd, u32 offset) 197 { 198 u64 val; 199 200 if (offset == XIVE_ESB_SET_PQ_10 && xd->flags & XIVE_IRQ_FLAG_STORE_EOI) 201 offset |= XIVE_ESB_LD_ST_MO; 202 203 if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw) 204 val = xive_ops->esb_rw(xd->hw_irq, offset, 0, 0); 205 else 206 val = in_be64(xd->eoi_mmio + offset); 207 208 return (u8)val; 209 } 210 211 static void xive_esb_write(struct xive_irq_data *xd, u32 offset, u64 data) 212 { 213 if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw) 214 xive_ops->esb_rw(xd->hw_irq, offset, data, 1); 215 else 216 out_be64(xd->eoi_mmio + offset, data); 217 } 218 219 #ifdef CONFIG_XMON 220 static notrace void xive_dump_eq(const char *name, struct xive_q *q) 221 { 222 u32 i0, i1, idx; 223 224 if (!q->qpage) 225 return; 226 idx = q->idx; 227 i0 = be32_to_cpup(q->qpage + idx); 228 idx = (idx + 1) & q->msk; 229 i1 = be32_to_cpup(q->qpage + idx); 230 xmon_printf("%s idx=%d T=%d %08x %08x ...", name, 231 q->idx, q->toggle, i0, i1); 232 } 233 234 notrace void xmon_xive_do_dump(int cpu) 235 { 236 struct xive_cpu *xc = per_cpu(xive_cpu, cpu); 237 238 xmon_printf("CPU %d:", cpu); 239 if (xc) { 240 xmon_printf("pp=%02x CPPR=%02x ", xc->pending_prio, xc->cppr); 241 242 #ifdef CONFIG_SMP 243 { 244 u64 val = xive_esb_read(&xc->ipi_data, XIVE_ESB_GET); 245 246 xmon_printf("IPI=0x%08x PQ=%c%c ", xc->hw_ipi, 247 val & XIVE_ESB_VAL_P ? 'P' : '-', 248 val & XIVE_ESB_VAL_Q ? 'Q' : '-'); 249 } 250 #endif 251 xive_dump_eq("EQ", &xc->queue[xive_irq_priority]); 252 } 253 xmon_printf("\n"); 254 } 255 256 int xmon_xive_get_irq_config(u32 hw_irq, struct irq_data *d) 257 { 258 struct irq_chip *chip = irq_data_get_irq_chip(d); 259 int rc; 260 u32 target; 261 u8 prio; 262 u32 lirq; 263 264 if (!is_xive_irq(chip)) 265 return -EINVAL; 266 267 rc = xive_ops->get_irq_config(hw_irq, &target, &prio, &lirq); 268 if (rc) { 269 xmon_printf("IRQ 0x%08x : no config rc=%d\n", hw_irq, rc); 270 return rc; 271 } 272 273 xmon_printf("IRQ 0x%08x : target=0x%x prio=%02x lirq=0x%x ", 274 hw_irq, target, prio, lirq); 275 276 if (d) { 277 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 278 u64 val = xive_esb_read(xd, XIVE_ESB_GET); 279 280 xmon_printf("flags=%c%c%c PQ=%c%c", 281 xd->flags & XIVE_IRQ_FLAG_STORE_EOI ? 'S' : ' ', 282 xd->flags & XIVE_IRQ_FLAG_LSI ? 'L' : ' ', 283 xd->flags & XIVE_IRQ_FLAG_H_INT_ESB ? 'H' : ' ', 284 val & XIVE_ESB_VAL_P ? 'P' : '-', 285 val & XIVE_ESB_VAL_Q ? 'Q' : '-'); 286 } 287 288 xmon_printf("\n"); 289 return 0; 290 } 291 292 #endif /* CONFIG_XMON */ 293 294 static unsigned int xive_get_irq(void) 295 { 296 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 297 u32 irq; 298 299 /* 300 * This can be called either as a result of a HW interrupt or 301 * as a "replay" because EOI decided there was still something 302 * in one of the queues. 303 * 304 * First we perform an ACK cycle in order to update our mask 305 * of pending priorities. This will also have the effect of 306 * updating the CPPR to the most favored pending interrupts. 307 * 308 * In the future, if we have a way to differentiate a first 309 * entry (on HW interrupt) from a replay triggered by EOI, 310 * we could skip this on replays unless we soft-mask tells us 311 * that a new HW interrupt occurred. 312 */ 313 xive_ops->update_pending(xc); 314 315 DBG_VERBOSE("get_irq: pending=%02x\n", xc->pending_prio); 316 317 /* Scan our queue(s) for interrupts */ 318 irq = xive_scan_interrupts(xc, false); 319 320 DBG_VERBOSE("get_irq: got irq 0x%x, new pending=0x%02x\n", 321 irq, xc->pending_prio); 322 323 /* Return pending interrupt if any */ 324 if (irq == XIVE_BAD_IRQ) 325 return 0; 326 return irq; 327 } 328 329 /* 330 * After EOI'ing an interrupt, we need to re-check the queue 331 * to see if another interrupt is pending since multiple 332 * interrupts can coalesce into a single notification to the 333 * CPU. 334 * 335 * If we find that there is indeed more in there, we call 336 * force_external_irq_replay() to make Linux synthetize an 337 * external interrupt on the next call to local_irq_restore(). 338 */ 339 static void xive_do_queue_eoi(struct xive_cpu *xc) 340 { 341 if (xive_scan_interrupts(xc, true) != 0) { 342 DBG_VERBOSE("eoi: pending=0x%02x\n", xc->pending_prio); 343 force_external_irq_replay(); 344 } 345 } 346 347 /* 348 * EOI an interrupt at the source. There are several methods 349 * to do this depending on the HW version and source type 350 */ 351 static void xive_do_source_eoi(struct xive_irq_data *xd) 352 { 353 u8 eoi_val; 354 355 xd->stale_p = false; 356 357 /* If the XIVE supports the new "store EOI facility, use it */ 358 if (xd->flags & XIVE_IRQ_FLAG_STORE_EOI) { 359 xive_esb_write(xd, XIVE_ESB_STORE_EOI, 0); 360 return; 361 } 362 363 /* 364 * For LSIs, we use the "EOI cycle" special load rather than 365 * PQ bits, as they are automatically re-triggered in HW when 366 * still pending. 367 */ 368 if (xd->flags & XIVE_IRQ_FLAG_LSI) { 369 xive_esb_read(xd, XIVE_ESB_LOAD_EOI); 370 return; 371 } 372 373 /* 374 * Otherwise, we use the special MMIO that does a clear of 375 * both P and Q and returns the old Q. This allows us to then 376 * do a re-trigger if Q was set rather than synthesizing an 377 * interrupt in software 378 */ 379 eoi_val = xive_esb_read(xd, XIVE_ESB_SET_PQ_00); 380 DBG_VERBOSE("eoi_val=%x\n", eoi_val); 381 382 /* Re-trigger if needed */ 383 if ((eoi_val & XIVE_ESB_VAL_Q) && xd->trig_mmio) 384 out_be64(xd->trig_mmio, 0); 385 } 386 387 /* irq_chip eoi callback, called with irq descriptor lock held */ 388 static void xive_irq_eoi(struct irq_data *d) 389 { 390 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 391 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 392 393 DBG_VERBOSE("eoi_irq: irq=%d [0x%lx] pending=%02x\n", 394 d->irq, irqd_to_hwirq(d), xc->pending_prio); 395 396 /* 397 * EOI the source if it hasn't been disabled and hasn't 398 * been passed-through to a KVM guest 399 */ 400 if (!irqd_irq_disabled(d) && !irqd_is_forwarded_to_vcpu(d) && 401 !(xd->flags & XIVE_IRQ_FLAG_NO_EOI)) 402 xive_do_source_eoi(xd); 403 else 404 xd->stale_p = true; 405 406 /* 407 * Clear saved_p to indicate that it's no longer occupying 408 * a queue slot on the target queue 409 */ 410 xd->saved_p = false; 411 412 /* Check for more work in the queue */ 413 xive_do_queue_eoi(xc); 414 } 415 416 /* 417 * Helper used to mask and unmask an interrupt source. 418 */ 419 static void xive_do_source_set_mask(struct xive_irq_data *xd, 420 bool mask) 421 { 422 u64 val; 423 424 /* 425 * If the interrupt had P set, it may be in a queue. 426 * 427 * We need to make sure we don't re-enable it until it 428 * has been fetched from that queue and EOId. We keep 429 * a copy of that P state and use it to restore the 430 * ESB accordingly on unmask. 431 */ 432 if (mask) { 433 val = xive_esb_read(xd, XIVE_ESB_SET_PQ_01); 434 if (!xd->stale_p && !!(val & XIVE_ESB_VAL_P)) 435 xd->saved_p = true; 436 xd->stale_p = false; 437 } else if (xd->saved_p) { 438 xive_esb_read(xd, XIVE_ESB_SET_PQ_10); 439 xd->saved_p = false; 440 } else { 441 xive_esb_read(xd, XIVE_ESB_SET_PQ_00); 442 xd->stale_p = false; 443 } 444 } 445 446 /* 447 * Try to chose "cpu" as a new interrupt target. Increments 448 * the queue accounting for that target if it's not already 449 * full. 450 */ 451 static bool xive_try_pick_target(int cpu) 452 { 453 struct xive_cpu *xc = per_cpu(xive_cpu, cpu); 454 struct xive_q *q = &xc->queue[xive_irq_priority]; 455 int max; 456 457 /* 458 * Calculate max number of interrupts in that queue. 459 * 460 * We leave a gap of 1 just in case... 461 */ 462 max = (q->msk + 1) - 1; 463 return !!atomic_add_unless(&q->count, 1, max); 464 } 465 466 /* 467 * Un-account an interrupt for a target CPU. We don't directly 468 * decrement q->count since the interrupt might still be present 469 * in the queue. 470 * 471 * Instead increment a separate counter "pending_count" which 472 * will be substracted from "count" later when that CPU observes 473 * the queue to be empty. 474 */ 475 static void xive_dec_target_count(int cpu) 476 { 477 struct xive_cpu *xc = per_cpu(xive_cpu, cpu); 478 struct xive_q *q = &xc->queue[xive_irq_priority]; 479 480 if (WARN_ON(cpu < 0 || !xc)) { 481 pr_err("%s: cpu=%d xc=%p\n", __func__, cpu, xc); 482 return; 483 } 484 485 /* 486 * We increment the "pending count" which will be used 487 * to decrement the target queue count whenever it's next 488 * processed and found empty. This ensure that we don't 489 * decrement while we still have the interrupt there 490 * occupying a slot. 491 */ 492 atomic_inc(&q->pending_count); 493 } 494 495 /* Find a tentative CPU target in a CPU mask */ 496 static int xive_find_target_in_mask(const struct cpumask *mask, 497 unsigned int fuzz) 498 { 499 int cpu, first, num, i; 500 501 /* Pick up a starting point CPU in the mask based on fuzz */ 502 num = min_t(int, cpumask_weight(mask), nr_cpu_ids); 503 first = fuzz % num; 504 505 /* Locate it */ 506 cpu = cpumask_first(mask); 507 for (i = 0; i < first && cpu < nr_cpu_ids; i++) 508 cpu = cpumask_next(cpu, mask); 509 510 /* Sanity check */ 511 if (WARN_ON(cpu >= nr_cpu_ids)) 512 cpu = cpumask_first(cpu_online_mask); 513 514 /* Remember first one to handle wrap-around */ 515 first = cpu; 516 517 /* 518 * Now go through the entire mask until we find a valid 519 * target. 520 */ 521 do { 522 /* 523 * We re-check online as the fallback case passes us 524 * an untested affinity mask 525 */ 526 if (cpu_online(cpu) && xive_try_pick_target(cpu)) 527 return cpu; 528 cpu = cpumask_next(cpu, mask); 529 /* Wrap around */ 530 if (cpu >= nr_cpu_ids) 531 cpu = cpumask_first(mask); 532 } while (cpu != first); 533 534 return -1; 535 } 536 537 /* 538 * Pick a target CPU for an interrupt. This is done at 539 * startup or if the affinity is changed in a way that 540 * invalidates the current target. 541 */ 542 static int xive_pick_irq_target(struct irq_data *d, 543 const struct cpumask *affinity) 544 { 545 static unsigned int fuzz; 546 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 547 cpumask_var_t mask; 548 int cpu = -1; 549 550 /* 551 * If we have chip IDs, first we try to build a mask of 552 * CPUs matching the CPU and find a target in there 553 */ 554 if (xd->src_chip != XIVE_INVALID_CHIP_ID && 555 zalloc_cpumask_var(&mask, GFP_ATOMIC)) { 556 /* Build a mask of matching chip IDs */ 557 for_each_cpu_and(cpu, affinity, cpu_online_mask) { 558 struct xive_cpu *xc = per_cpu(xive_cpu, cpu); 559 if (xc->chip_id == xd->src_chip) 560 cpumask_set_cpu(cpu, mask); 561 } 562 /* Try to find a target */ 563 if (cpumask_empty(mask)) 564 cpu = -1; 565 else 566 cpu = xive_find_target_in_mask(mask, fuzz++); 567 free_cpumask_var(mask); 568 if (cpu >= 0) 569 return cpu; 570 fuzz--; 571 } 572 573 /* No chip IDs, fallback to using the affinity mask */ 574 return xive_find_target_in_mask(affinity, fuzz++); 575 } 576 577 static unsigned int xive_irq_startup(struct irq_data *d) 578 { 579 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 580 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 581 int target, rc; 582 583 xd->saved_p = false; 584 xd->stale_p = false; 585 pr_devel("xive_irq_startup: irq %d [0x%x] data @%p\n", 586 d->irq, hw_irq, d); 587 588 #ifdef CONFIG_PCI_MSI 589 /* 590 * The generic MSI code returns with the interrupt disabled on the 591 * card, using the MSI mask bits. Firmware doesn't appear to unmask 592 * at that level, so we do it here by hand. 593 */ 594 if (irq_data_get_msi_desc(d)) 595 pci_msi_unmask_irq(d); 596 #endif 597 598 /* Pick a target */ 599 target = xive_pick_irq_target(d, irq_data_get_affinity_mask(d)); 600 if (target == XIVE_INVALID_TARGET) { 601 /* Try again breaking affinity */ 602 target = xive_pick_irq_target(d, cpu_online_mask); 603 if (target == XIVE_INVALID_TARGET) 604 return -ENXIO; 605 pr_warn("irq %d started with broken affinity\n", d->irq); 606 } 607 608 /* Sanity check */ 609 if (WARN_ON(target == XIVE_INVALID_TARGET || 610 target >= nr_cpu_ids)) 611 target = smp_processor_id(); 612 613 xd->target = target; 614 615 /* 616 * Configure the logical number to be the Linux IRQ number 617 * and set the target queue 618 */ 619 rc = xive_ops->configure_irq(hw_irq, 620 get_hard_smp_processor_id(target), 621 xive_irq_priority, d->irq); 622 if (rc) 623 return rc; 624 625 /* Unmask the ESB */ 626 xive_do_source_set_mask(xd, false); 627 628 return 0; 629 } 630 631 /* called with irq descriptor lock held */ 632 static void xive_irq_shutdown(struct irq_data *d) 633 { 634 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 635 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 636 637 pr_devel("xive_irq_shutdown: irq %d [0x%x] data @%p\n", 638 d->irq, hw_irq, d); 639 640 if (WARN_ON(xd->target == XIVE_INVALID_TARGET)) 641 return; 642 643 /* Mask the interrupt at the source */ 644 xive_do_source_set_mask(xd, true); 645 646 /* 647 * Mask the interrupt in HW in the IVT/EAS and set the number 648 * to be the "bad" IRQ number 649 */ 650 xive_ops->configure_irq(hw_irq, 651 get_hard_smp_processor_id(xd->target), 652 0xff, XIVE_BAD_IRQ); 653 654 xive_dec_target_count(xd->target); 655 xd->target = XIVE_INVALID_TARGET; 656 } 657 658 static void xive_irq_unmask(struct irq_data *d) 659 { 660 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 661 662 pr_devel("xive_irq_unmask: irq %d data @%p\n", d->irq, xd); 663 664 xive_do_source_set_mask(xd, false); 665 } 666 667 static void xive_irq_mask(struct irq_data *d) 668 { 669 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 670 671 pr_devel("xive_irq_mask: irq %d data @%p\n", d->irq, xd); 672 673 xive_do_source_set_mask(xd, true); 674 } 675 676 static int xive_irq_set_affinity(struct irq_data *d, 677 const struct cpumask *cpumask, 678 bool force) 679 { 680 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 681 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 682 u32 target, old_target; 683 int rc = 0; 684 685 pr_devel("xive_irq_set_affinity: irq %d\n", d->irq); 686 687 /* Is this valid ? */ 688 if (cpumask_any_and(cpumask, cpu_online_mask) >= nr_cpu_ids) 689 return -EINVAL; 690 691 /* Don't do anything if the interrupt isn't started */ 692 if (!irqd_is_started(d)) 693 return IRQ_SET_MASK_OK; 694 695 /* 696 * If existing target is already in the new mask, and is 697 * online then do nothing. 698 */ 699 if (xd->target != XIVE_INVALID_TARGET && 700 cpu_online(xd->target) && 701 cpumask_test_cpu(xd->target, cpumask)) 702 return IRQ_SET_MASK_OK; 703 704 /* Pick a new target */ 705 target = xive_pick_irq_target(d, cpumask); 706 707 /* No target found */ 708 if (target == XIVE_INVALID_TARGET) 709 return -ENXIO; 710 711 /* Sanity check */ 712 if (WARN_ON(target >= nr_cpu_ids)) 713 target = smp_processor_id(); 714 715 old_target = xd->target; 716 717 /* 718 * Only configure the irq if it's not currently passed-through to 719 * a KVM guest 720 */ 721 if (!irqd_is_forwarded_to_vcpu(d)) 722 rc = xive_ops->configure_irq(hw_irq, 723 get_hard_smp_processor_id(target), 724 xive_irq_priority, d->irq); 725 if (rc < 0) { 726 pr_err("Error %d reconfiguring irq %d\n", rc, d->irq); 727 return rc; 728 } 729 730 pr_devel(" target: 0x%x\n", target); 731 xd->target = target; 732 733 /* Give up previous target */ 734 if (old_target != XIVE_INVALID_TARGET) 735 xive_dec_target_count(old_target); 736 737 return IRQ_SET_MASK_OK; 738 } 739 740 static int xive_irq_set_type(struct irq_data *d, unsigned int flow_type) 741 { 742 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 743 744 /* 745 * We only support these. This has really no effect other than setting 746 * the corresponding descriptor bits mind you but those will in turn 747 * affect the resend function when re-enabling an edge interrupt. 748 * 749 * Set set the default to edge as explained in map(). 750 */ 751 if (flow_type == IRQ_TYPE_DEFAULT || flow_type == IRQ_TYPE_NONE) 752 flow_type = IRQ_TYPE_EDGE_RISING; 753 754 if (flow_type != IRQ_TYPE_EDGE_RISING && 755 flow_type != IRQ_TYPE_LEVEL_LOW) 756 return -EINVAL; 757 758 irqd_set_trigger_type(d, flow_type); 759 760 /* 761 * Double check it matches what the FW thinks 762 * 763 * NOTE: We don't know yet if the PAPR interface will provide 764 * the LSI vs MSI information apart from the device-tree so 765 * this check might have to move into an optional backend call 766 * that is specific to the native backend 767 */ 768 if ((flow_type == IRQ_TYPE_LEVEL_LOW) != 769 !!(xd->flags & XIVE_IRQ_FLAG_LSI)) { 770 pr_warn("Interrupt %d (HW 0x%x) type mismatch, Linux says %s, FW says %s\n", 771 d->irq, (u32)irqd_to_hwirq(d), 772 (flow_type == IRQ_TYPE_LEVEL_LOW) ? "Level" : "Edge", 773 (xd->flags & XIVE_IRQ_FLAG_LSI) ? "Level" : "Edge"); 774 } 775 776 return IRQ_SET_MASK_OK_NOCOPY; 777 } 778 779 static int xive_irq_retrigger(struct irq_data *d) 780 { 781 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 782 783 /* This should be only for MSIs */ 784 if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI)) 785 return 0; 786 787 /* 788 * To perform a retrigger, we first set the PQ bits to 789 * 11, then perform an EOI. 790 */ 791 xive_esb_read(xd, XIVE_ESB_SET_PQ_11); 792 xive_do_source_eoi(xd); 793 794 return 1; 795 } 796 797 /* 798 * Caller holds the irq descriptor lock, so this won't be called 799 * concurrently with xive_get_irqchip_state on the same interrupt. 800 */ 801 static int xive_irq_set_vcpu_affinity(struct irq_data *d, void *state) 802 { 803 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 804 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 805 int rc; 806 u8 pq; 807 808 /* 809 * This is called by KVM with state non-NULL for enabling 810 * pass-through or NULL for disabling it 811 */ 812 if (state) { 813 irqd_set_forwarded_to_vcpu(d); 814 815 /* Set it to PQ=10 state to prevent further sends */ 816 pq = xive_esb_read(xd, XIVE_ESB_SET_PQ_10); 817 if (!xd->stale_p) { 818 xd->saved_p = !!(pq & XIVE_ESB_VAL_P); 819 xd->stale_p = !xd->saved_p; 820 } 821 822 /* No target ? nothing to do */ 823 if (xd->target == XIVE_INVALID_TARGET) { 824 /* 825 * An untargetted interrupt should have been 826 * also masked at the source 827 */ 828 WARN_ON(xd->saved_p); 829 830 return 0; 831 } 832 833 /* 834 * If P was set, adjust state to PQ=11 to indicate 835 * that a resend is needed for the interrupt to reach 836 * the guest. Also remember the value of P. 837 * 838 * This also tells us that it's in flight to a host queue 839 * or has already been fetched but hasn't been EOIed yet 840 * by the host. This it's potentially using up a host 841 * queue slot. This is important to know because as long 842 * as this is the case, we must not hard-unmask it when 843 * "returning" that interrupt to the host. 844 * 845 * This saved_p is cleared by the host EOI, when we know 846 * for sure the queue slot is no longer in use. 847 */ 848 if (xd->saved_p) { 849 xive_esb_read(xd, XIVE_ESB_SET_PQ_11); 850 851 /* 852 * Sync the XIVE source HW to ensure the interrupt 853 * has gone through the EAS before we change its 854 * target to the guest. That should guarantee us 855 * that we *will* eventually get an EOI for it on 856 * the host. Otherwise there would be a small window 857 * for P to be seen here but the interrupt going 858 * to the guest queue. 859 */ 860 if (xive_ops->sync_source) 861 xive_ops->sync_source(hw_irq); 862 } 863 } else { 864 irqd_clr_forwarded_to_vcpu(d); 865 866 /* No host target ? hard mask and return */ 867 if (xd->target == XIVE_INVALID_TARGET) { 868 xive_do_source_set_mask(xd, true); 869 return 0; 870 } 871 872 /* 873 * Sync the XIVE source HW to ensure the interrupt 874 * has gone through the EAS before we change its 875 * target to the host. 876 */ 877 if (xive_ops->sync_source) 878 xive_ops->sync_source(hw_irq); 879 880 /* 881 * By convention we are called with the interrupt in 882 * a PQ=10 or PQ=11 state, ie, it won't fire and will 883 * have latched in Q whether there's a pending HW 884 * interrupt or not. 885 * 886 * First reconfigure the target. 887 */ 888 rc = xive_ops->configure_irq(hw_irq, 889 get_hard_smp_processor_id(xd->target), 890 xive_irq_priority, d->irq); 891 if (rc) 892 return rc; 893 894 /* 895 * Then if saved_p is not set, effectively re-enable the 896 * interrupt with an EOI. If it is set, we know there is 897 * still a message in a host queue somewhere that will be 898 * EOId eventually. 899 * 900 * Note: We don't check irqd_irq_disabled(). Effectively, 901 * we *will* let the irq get through even if masked if the 902 * HW is still firing it in order to deal with the whole 903 * saved_p business properly. If the interrupt triggers 904 * while masked, the generic code will re-mask it anyway. 905 */ 906 if (!xd->saved_p) 907 xive_do_source_eoi(xd); 908 909 } 910 return 0; 911 } 912 913 /* Called with irq descriptor lock held. */ 914 static int xive_get_irqchip_state(struct irq_data *data, 915 enum irqchip_irq_state which, bool *state) 916 { 917 struct xive_irq_data *xd = irq_data_get_irq_handler_data(data); 918 u8 pq; 919 920 switch (which) { 921 case IRQCHIP_STATE_ACTIVE: 922 pq = xive_esb_read(xd, XIVE_ESB_GET); 923 924 /* 925 * The esb value being all 1's means we couldn't get 926 * the PQ state of the interrupt through mmio. It may 927 * happen, for example when querying a PHB interrupt 928 * while the PHB is in an error state. We consider the 929 * interrupt to be inactive in that case. 930 */ 931 *state = (pq != XIVE_ESB_INVALID) && !xd->stale_p && 932 (xd->saved_p || !!(pq & XIVE_ESB_VAL_P)); 933 return 0; 934 default: 935 return -EINVAL; 936 } 937 } 938 939 static struct irq_chip xive_irq_chip = { 940 .name = "XIVE-IRQ", 941 .irq_startup = xive_irq_startup, 942 .irq_shutdown = xive_irq_shutdown, 943 .irq_eoi = xive_irq_eoi, 944 .irq_mask = xive_irq_mask, 945 .irq_unmask = xive_irq_unmask, 946 .irq_set_affinity = xive_irq_set_affinity, 947 .irq_set_type = xive_irq_set_type, 948 .irq_retrigger = xive_irq_retrigger, 949 .irq_set_vcpu_affinity = xive_irq_set_vcpu_affinity, 950 .irq_get_irqchip_state = xive_get_irqchip_state, 951 }; 952 953 bool is_xive_irq(struct irq_chip *chip) 954 { 955 return chip == &xive_irq_chip; 956 } 957 EXPORT_SYMBOL_GPL(is_xive_irq); 958 959 void xive_cleanup_irq_data(struct xive_irq_data *xd) 960 { 961 if (xd->eoi_mmio) { 962 unmap_kernel_range((unsigned long)xd->eoi_mmio, 963 1u << xd->esb_shift); 964 iounmap(xd->eoi_mmio); 965 if (xd->eoi_mmio == xd->trig_mmio) 966 xd->trig_mmio = NULL; 967 xd->eoi_mmio = NULL; 968 } 969 if (xd->trig_mmio) { 970 unmap_kernel_range((unsigned long)xd->trig_mmio, 971 1u << xd->esb_shift); 972 iounmap(xd->trig_mmio); 973 xd->trig_mmio = NULL; 974 } 975 } 976 EXPORT_SYMBOL_GPL(xive_cleanup_irq_data); 977 978 static int xive_irq_alloc_data(unsigned int virq, irq_hw_number_t hw) 979 { 980 struct xive_irq_data *xd; 981 int rc; 982 983 xd = kzalloc(sizeof(struct xive_irq_data), GFP_KERNEL); 984 if (!xd) 985 return -ENOMEM; 986 rc = xive_ops->populate_irq_data(hw, xd); 987 if (rc) { 988 kfree(xd); 989 return rc; 990 } 991 xd->target = XIVE_INVALID_TARGET; 992 irq_set_handler_data(virq, xd); 993 994 /* 995 * Turn OFF by default the interrupt being mapped. A side 996 * effect of this check is the mapping the ESB page of the 997 * interrupt in the Linux address space. This prevents page 998 * fault issues in the crash handler which masks all 999 * interrupts. 1000 */ 1001 xive_esb_read(xd, XIVE_ESB_SET_PQ_01); 1002 1003 return 0; 1004 } 1005 1006 static void xive_irq_free_data(unsigned int virq) 1007 { 1008 struct xive_irq_data *xd = irq_get_handler_data(virq); 1009 1010 if (!xd) 1011 return; 1012 irq_set_handler_data(virq, NULL); 1013 xive_cleanup_irq_data(xd); 1014 kfree(xd); 1015 } 1016 1017 #ifdef CONFIG_SMP 1018 1019 static void xive_cause_ipi(int cpu) 1020 { 1021 struct xive_cpu *xc; 1022 struct xive_irq_data *xd; 1023 1024 xc = per_cpu(xive_cpu, cpu); 1025 1026 DBG_VERBOSE("IPI CPU %d -> %d (HW IRQ 0x%x)\n", 1027 smp_processor_id(), cpu, xc->hw_ipi); 1028 1029 xd = &xc->ipi_data; 1030 if (WARN_ON(!xd->trig_mmio)) 1031 return; 1032 out_be64(xd->trig_mmio, 0); 1033 } 1034 1035 static irqreturn_t xive_muxed_ipi_action(int irq, void *dev_id) 1036 { 1037 return smp_ipi_demux(); 1038 } 1039 1040 static void xive_ipi_eoi(struct irq_data *d) 1041 { 1042 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 1043 1044 /* Handle possible race with unplug and drop stale IPIs */ 1045 if (!xc) 1046 return; 1047 1048 DBG_VERBOSE("IPI eoi: irq=%d [0x%lx] (HW IRQ 0x%x) pending=%02x\n", 1049 d->irq, irqd_to_hwirq(d), xc->hw_ipi, xc->pending_prio); 1050 1051 xive_do_source_eoi(&xc->ipi_data); 1052 xive_do_queue_eoi(xc); 1053 } 1054 1055 static void xive_ipi_do_nothing(struct irq_data *d) 1056 { 1057 /* 1058 * Nothing to do, we never mask/unmask IPIs, but the callback 1059 * has to exist for the struct irq_chip. 1060 */ 1061 } 1062 1063 static struct irq_chip xive_ipi_chip = { 1064 .name = "XIVE-IPI", 1065 .irq_eoi = xive_ipi_eoi, 1066 .irq_mask = xive_ipi_do_nothing, 1067 .irq_unmask = xive_ipi_do_nothing, 1068 }; 1069 1070 static void __init xive_request_ipi(void) 1071 { 1072 unsigned int virq; 1073 1074 /* 1075 * Initialization failed, move on, we might manage to 1076 * reach the point where we display our errors before 1077 * the system falls appart 1078 */ 1079 if (!xive_irq_domain) 1080 return; 1081 1082 /* Initialize it */ 1083 virq = irq_create_mapping(xive_irq_domain, XIVE_IPI_HW_IRQ); 1084 xive_ipi_irq = virq; 1085 1086 WARN_ON(request_irq(virq, xive_muxed_ipi_action, 1087 IRQF_PERCPU | IRQF_NO_THREAD, "IPI", NULL)); 1088 } 1089 1090 static int xive_setup_cpu_ipi(unsigned int cpu) 1091 { 1092 struct xive_cpu *xc; 1093 int rc; 1094 1095 pr_debug("Setting up IPI for CPU %d\n", cpu); 1096 1097 xc = per_cpu(xive_cpu, cpu); 1098 1099 /* Check if we are already setup */ 1100 if (xc->hw_ipi != XIVE_BAD_IRQ) 1101 return 0; 1102 1103 /* Grab an IPI from the backend, this will populate xc->hw_ipi */ 1104 if (xive_ops->get_ipi(cpu, xc)) 1105 return -EIO; 1106 1107 /* 1108 * Populate the IRQ data in the xive_cpu structure and 1109 * configure the HW / enable the IPIs. 1110 */ 1111 rc = xive_ops->populate_irq_data(xc->hw_ipi, &xc->ipi_data); 1112 if (rc) { 1113 pr_err("Failed to populate IPI data on CPU %d\n", cpu); 1114 return -EIO; 1115 } 1116 rc = xive_ops->configure_irq(xc->hw_ipi, 1117 get_hard_smp_processor_id(cpu), 1118 xive_irq_priority, xive_ipi_irq); 1119 if (rc) { 1120 pr_err("Failed to map IPI CPU %d\n", cpu); 1121 return -EIO; 1122 } 1123 pr_devel("CPU %d HW IPI %x, virq %d, trig_mmio=%p\n", cpu, 1124 xc->hw_ipi, xive_ipi_irq, xc->ipi_data.trig_mmio); 1125 1126 /* Unmask it */ 1127 xive_do_source_set_mask(&xc->ipi_data, false); 1128 1129 return 0; 1130 } 1131 1132 static void xive_cleanup_cpu_ipi(unsigned int cpu, struct xive_cpu *xc) 1133 { 1134 /* Disable the IPI and free the IRQ data */ 1135 1136 /* Already cleaned up ? */ 1137 if (xc->hw_ipi == XIVE_BAD_IRQ) 1138 return; 1139 1140 /* Mask the IPI */ 1141 xive_do_source_set_mask(&xc->ipi_data, true); 1142 1143 /* 1144 * Note: We don't call xive_cleanup_irq_data() to free 1145 * the mappings as this is called from an IPI on kexec 1146 * which is not a safe environment to call iounmap() 1147 */ 1148 1149 /* Deconfigure/mask in the backend */ 1150 xive_ops->configure_irq(xc->hw_ipi, hard_smp_processor_id(), 1151 0xff, xive_ipi_irq); 1152 1153 /* Free the IPIs in the backend */ 1154 xive_ops->put_ipi(cpu, xc); 1155 } 1156 1157 void __init xive_smp_probe(void) 1158 { 1159 smp_ops->cause_ipi = xive_cause_ipi; 1160 1161 /* Register the IPI */ 1162 xive_request_ipi(); 1163 1164 /* Allocate and setup IPI for the boot CPU */ 1165 xive_setup_cpu_ipi(smp_processor_id()); 1166 } 1167 1168 #endif /* CONFIG_SMP */ 1169 1170 static int xive_irq_domain_map(struct irq_domain *h, unsigned int virq, 1171 irq_hw_number_t hw) 1172 { 1173 int rc; 1174 1175 /* 1176 * Mark interrupts as edge sensitive by default so that resend 1177 * actually works. Will fix that up below if needed. 1178 */ 1179 irq_clear_status_flags(virq, IRQ_LEVEL); 1180 1181 #ifdef CONFIG_SMP 1182 /* IPIs are special and come up with HW number 0 */ 1183 if (hw == XIVE_IPI_HW_IRQ) { 1184 /* 1185 * IPIs are marked per-cpu. We use separate HW interrupts under 1186 * the hood but associated with the same "linux" interrupt 1187 */ 1188 irq_set_chip_and_handler(virq, &xive_ipi_chip, 1189 handle_percpu_irq); 1190 return 0; 1191 } 1192 #endif 1193 1194 rc = xive_irq_alloc_data(virq, hw); 1195 if (rc) 1196 return rc; 1197 1198 irq_set_chip_and_handler(virq, &xive_irq_chip, handle_fasteoi_irq); 1199 1200 return 0; 1201 } 1202 1203 static void xive_irq_domain_unmap(struct irq_domain *d, unsigned int virq) 1204 { 1205 struct irq_data *data = irq_get_irq_data(virq); 1206 unsigned int hw_irq; 1207 1208 /* XXX Assign BAD number */ 1209 if (!data) 1210 return; 1211 hw_irq = (unsigned int)irqd_to_hwirq(data); 1212 if (hw_irq != XIVE_IPI_HW_IRQ) 1213 xive_irq_free_data(virq); 1214 } 1215 1216 static int xive_irq_domain_xlate(struct irq_domain *h, struct device_node *ct, 1217 const u32 *intspec, unsigned int intsize, 1218 irq_hw_number_t *out_hwirq, unsigned int *out_flags) 1219 1220 { 1221 *out_hwirq = intspec[0]; 1222 1223 /* 1224 * If intsize is at least 2, we look for the type in the second cell, 1225 * we assume the LSB indicates a level interrupt. 1226 */ 1227 if (intsize > 1) { 1228 if (intspec[1] & 1) 1229 *out_flags = IRQ_TYPE_LEVEL_LOW; 1230 else 1231 *out_flags = IRQ_TYPE_EDGE_RISING; 1232 } else 1233 *out_flags = IRQ_TYPE_LEVEL_LOW; 1234 1235 return 0; 1236 } 1237 1238 static int xive_irq_domain_match(struct irq_domain *h, struct device_node *node, 1239 enum irq_domain_bus_token bus_token) 1240 { 1241 return xive_ops->match(node); 1242 } 1243 1244 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS 1245 static const char * const esb_names[] = { "RESET", "OFF", "PENDING", "QUEUED" }; 1246 1247 static const struct { 1248 u64 mask; 1249 char *name; 1250 } xive_irq_flags[] = { 1251 { XIVE_IRQ_FLAG_STORE_EOI, "STORE_EOI" }, 1252 { XIVE_IRQ_FLAG_LSI, "LSI" }, 1253 { XIVE_IRQ_FLAG_H_INT_ESB, "H_INT_ESB" }, 1254 { XIVE_IRQ_FLAG_NO_EOI, "NO_EOI" }, 1255 }; 1256 1257 static void xive_irq_domain_debug_show(struct seq_file *m, struct irq_domain *d, 1258 struct irq_data *irqd, int ind) 1259 { 1260 struct xive_irq_data *xd; 1261 u64 val; 1262 int i; 1263 1264 /* No IRQ domain level information. To be done */ 1265 if (!irqd) 1266 return; 1267 1268 if (!is_xive_irq(irq_data_get_irq_chip(irqd))) 1269 return; 1270 1271 seq_printf(m, "%*sXIVE:\n", ind, ""); 1272 ind++; 1273 1274 xd = irq_data_get_irq_handler_data(irqd); 1275 if (!xd) { 1276 seq_printf(m, "%*snot assigned\n", ind, ""); 1277 return; 1278 } 1279 1280 val = xive_esb_read(xd, XIVE_ESB_GET); 1281 seq_printf(m, "%*sESB: %s\n", ind, "", esb_names[val & 0x3]); 1282 seq_printf(m, "%*sPstate: %s %s\n", ind, "", xd->stale_p ? "stale" : "", 1283 xd->saved_p ? "saved" : ""); 1284 seq_printf(m, "%*sTarget: %d\n", ind, "", xd->target); 1285 seq_printf(m, "%*sChip: %d\n", ind, "", xd->src_chip); 1286 seq_printf(m, "%*sTrigger: 0x%016llx\n", ind, "", xd->trig_page); 1287 seq_printf(m, "%*sEOI: 0x%016llx\n", ind, "", xd->eoi_page); 1288 seq_printf(m, "%*sFlags: 0x%llx\n", ind, "", xd->flags); 1289 for (i = 0; i < ARRAY_SIZE(xive_irq_flags); i++) { 1290 if (xd->flags & xive_irq_flags[i].mask) 1291 seq_printf(m, "%*s%s\n", ind + 12, "", xive_irq_flags[i].name); 1292 } 1293 } 1294 #endif 1295 1296 static const struct irq_domain_ops xive_irq_domain_ops = { 1297 .match = xive_irq_domain_match, 1298 .map = xive_irq_domain_map, 1299 .unmap = xive_irq_domain_unmap, 1300 .xlate = xive_irq_domain_xlate, 1301 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS 1302 .debug_show = xive_irq_domain_debug_show, 1303 #endif 1304 }; 1305 1306 static void __init xive_init_host(struct device_node *np) 1307 { 1308 xive_irq_domain = irq_domain_add_nomap(np, XIVE_MAX_IRQ, 1309 &xive_irq_domain_ops, NULL); 1310 if (WARN_ON(xive_irq_domain == NULL)) 1311 return; 1312 irq_set_default_host(xive_irq_domain); 1313 } 1314 1315 static void xive_cleanup_cpu_queues(unsigned int cpu, struct xive_cpu *xc) 1316 { 1317 if (xc->queue[xive_irq_priority].qpage) 1318 xive_ops->cleanup_queue(cpu, xc, xive_irq_priority); 1319 } 1320 1321 static int xive_setup_cpu_queues(unsigned int cpu, struct xive_cpu *xc) 1322 { 1323 int rc = 0; 1324 1325 /* We setup 1 queues for now with a 64k page */ 1326 if (!xc->queue[xive_irq_priority].qpage) 1327 rc = xive_ops->setup_queue(cpu, xc, xive_irq_priority); 1328 1329 return rc; 1330 } 1331 1332 static int xive_prepare_cpu(unsigned int cpu) 1333 { 1334 struct xive_cpu *xc; 1335 1336 xc = per_cpu(xive_cpu, cpu); 1337 if (!xc) { 1338 struct device_node *np; 1339 1340 xc = kzalloc_node(sizeof(struct xive_cpu), 1341 GFP_KERNEL, cpu_to_node(cpu)); 1342 if (!xc) 1343 return -ENOMEM; 1344 np = of_get_cpu_node(cpu, NULL); 1345 if (np) 1346 xc->chip_id = of_get_ibm_chip_id(np); 1347 of_node_put(np); 1348 xc->hw_ipi = XIVE_BAD_IRQ; 1349 1350 per_cpu(xive_cpu, cpu) = xc; 1351 } 1352 1353 /* Setup EQs if not already */ 1354 return xive_setup_cpu_queues(cpu, xc); 1355 } 1356 1357 static void xive_setup_cpu(void) 1358 { 1359 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 1360 1361 /* The backend might have additional things to do */ 1362 if (xive_ops->setup_cpu) 1363 xive_ops->setup_cpu(smp_processor_id(), xc); 1364 1365 /* Set CPPR to 0xff to enable flow of interrupts */ 1366 xc->cppr = 0xff; 1367 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff); 1368 } 1369 1370 #ifdef CONFIG_SMP 1371 void xive_smp_setup_cpu(void) 1372 { 1373 pr_devel("SMP setup CPU %d\n", smp_processor_id()); 1374 1375 /* This will have already been done on the boot CPU */ 1376 if (smp_processor_id() != boot_cpuid) 1377 xive_setup_cpu(); 1378 1379 } 1380 1381 int xive_smp_prepare_cpu(unsigned int cpu) 1382 { 1383 int rc; 1384 1385 /* Allocate per-CPU data and queues */ 1386 rc = xive_prepare_cpu(cpu); 1387 if (rc) 1388 return rc; 1389 1390 /* Allocate and setup IPI for the new CPU */ 1391 return xive_setup_cpu_ipi(cpu); 1392 } 1393 1394 #ifdef CONFIG_HOTPLUG_CPU 1395 static void xive_flush_cpu_queue(unsigned int cpu, struct xive_cpu *xc) 1396 { 1397 u32 irq; 1398 1399 /* We assume local irqs are disabled */ 1400 WARN_ON(!irqs_disabled()); 1401 1402 /* Check what's already in the CPU queue */ 1403 while ((irq = xive_scan_interrupts(xc, false)) != 0) { 1404 /* 1405 * We need to re-route that interrupt to its new destination. 1406 * First get and lock the descriptor 1407 */ 1408 struct irq_desc *desc = irq_to_desc(irq); 1409 struct irq_data *d = irq_desc_get_irq_data(desc); 1410 struct xive_irq_data *xd; 1411 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 1412 1413 /* 1414 * Ignore anything that isn't a XIVE irq and ignore 1415 * IPIs, so can just be dropped. 1416 */ 1417 if (d->domain != xive_irq_domain || hw_irq == XIVE_IPI_HW_IRQ) 1418 continue; 1419 1420 /* 1421 * The IRQ should have already been re-routed, it's just a 1422 * stale in the old queue, so re-trigger it in order to make 1423 * it reach is new destination. 1424 */ 1425 #ifdef DEBUG_FLUSH 1426 pr_info("CPU %d: Got irq %d while offline, re-sending...\n", 1427 cpu, irq); 1428 #endif 1429 raw_spin_lock(&desc->lock); 1430 xd = irq_desc_get_handler_data(desc); 1431 1432 /* 1433 * Clear saved_p to indicate that it's no longer pending 1434 */ 1435 xd->saved_p = false; 1436 1437 /* 1438 * For LSIs, we EOI, this will cause a resend if it's 1439 * still asserted. Otherwise do an MSI retrigger. 1440 */ 1441 if (xd->flags & XIVE_IRQ_FLAG_LSI) 1442 xive_do_source_eoi(xd); 1443 else 1444 xive_irq_retrigger(d); 1445 1446 raw_spin_unlock(&desc->lock); 1447 } 1448 } 1449 1450 void xive_smp_disable_cpu(void) 1451 { 1452 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 1453 unsigned int cpu = smp_processor_id(); 1454 1455 /* Migrate interrupts away from the CPU */ 1456 irq_migrate_all_off_this_cpu(); 1457 1458 /* Set CPPR to 0 to disable flow of interrupts */ 1459 xc->cppr = 0; 1460 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0); 1461 1462 /* Flush everything still in the queue */ 1463 xive_flush_cpu_queue(cpu, xc); 1464 1465 /* Re-enable CPPR */ 1466 xc->cppr = 0xff; 1467 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff); 1468 } 1469 1470 void xive_flush_interrupt(void) 1471 { 1472 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 1473 unsigned int cpu = smp_processor_id(); 1474 1475 /* Called if an interrupt occurs while the CPU is hot unplugged */ 1476 xive_flush_cpu_queue(cpu, xc); 1477 } 1478 1479 #endif /* CONFIG_HOTPLUG_CPU */ 1480 1481 #endif /* CONFIG_SMP */ 1482 1483 void xive_teardown_cpu(void) 1484 { 1485 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 1486 unsigned int cpu = smp_processor_id(); 1487 1488 /* Set CPPR to 0 to disable flow of interrupts */ 1489 xc->cppr = 0; 1490 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0); 1491 1492 if (xive_ops->teardown_cpu) 1493 xive_ops->teardown_cpu(cpu, xc); 1494 1495 #ifdef CONFIG_SMP 1496 /* Get rid of IPI */ 1497 xive_cleanup_cpu_ipi(cpu, xc); 1498 #endif 1499 1500 /* Disable and free the queues */ 1501 xive_cleanup_cpu_queues(cpu, xc); 1502 } 1503 1504 void xive_shutdown(void) 1505 { 1506 xive_ops->shutdown(); 1507 } 1508 1509 bool __init xive_core_init(struct device_node *np, const struct xive_ops *ops, 1510 void __iomem *area, u32 offset, u8 max_prio) 1511 { 1512 xive_tima = area; 1513 xive_tima_offset = offset; 1514 xive_ops = ops; 1515 xive_irq_priority = max_prio; 1516 1517 ppc_md.get_irq = xive_get_irq; 1518 __xive_enabled = true; 1519 1520 pr_devel("Initializing host..\n"); 1521 xive_init_host(np); 1522 1523 pr_devel("Initializing boot CPU..\n"); 1524 1525 /* Allocate per-CPU data and queues */ 1526 xive_prepare_cpu(smp_processor_id()); 1527 1528 /* Get ready for interrupts */ 1529 xive_setup_cpu(); 1530 1531 pr_info("Interrupt handling initialized with %s backend\n", 1532 xive_ops->name); 1533 pr_info("Using priority %d for all interrupts\n", max_prio); 1534 1535 return true; 1536 } 1537 1538 __be32 *xive_queue_page_alloc(unsigned int cpu, u32 queue_shift) 1539 { 1540 unsigned int alloc_order; 1541 struct page *pages; 1542 __be32 *qpage; 1543 1544 alloc_order = xive_alloc_order(queue_shift); 1545 pages = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, alloc_order); 1546 if (!pages) 1547 return ERR_PTR(-ENOMEM); 1548 qpage = (__be32 *)page_address(pages); 1549 memset(qpage, 0, 1 << queue_shift); 1550 1551 return qpage; 1552 } 1553 1554 static int __init xive_off(char *arg) 1555 { 1556 xive_cmdline_disabled = true; 1557 return 0; 1558 } 1559 __setup("xive=off", xive_off); 1560 1561 static void xive_debug_show_cpu(struct seq_file *m, int cpu) 1562 { 1563 struct xive_cpu *xc = per_cpu(xive_cpu, cpu); 1564 1565 seq_printf(m, "CPU %d:", cpu); 1566 if (xc) { 1567 seq_printf(m, "pp=%02x CPPR=%02x ", xc->pending_prio, xc->cppr); 1568 1569 #ifdef CONFIG_SMP 1570 { 1571 u64 val = xive_esb_read(&xc->ipi_data, XIVE_ESB_GET); 1572 1573 seq_printf(m, "IPI=0x%08x PQ=%c%c ", xc->hw_ipi, 1574 val & XIVE_ESB_VAL_P ? 'P' : '-', 1575 val & XIVE_ESB_VAL_Q ? 'Q' : '-'); 1576 } 1577 #endif 1578 { 1579 struct xive_q *q = &xc->queue[xive_irq_priority]; 1580 u32 i0, i1, idx; 1581 1582 if (q->qpage) { 1583 idx = q->idx; 1584 i0 = be32_to_cpup(q->qpage + idx); 1585 idx = (idx + 1) & q->msk; 1586 i1 = be32_to_cpup(q->qpage + idx); 1587 seq_printf(m, "EQ idx=%d T=%d %08x %08x ...", 1588 q->idx, q->toggle, i0, i1); 1589 } 1590 } 1591 } 1592 seq_puts(m, "\n"); 1593 } 1594 1595 static void xive_debug_show_irq(struct seq_file *m, u32 hw_irq, struct irq_data *d) 1596 { 1597 struct irq_chip *chip = irq_data_get_irq_chip(d); 1598 int rc; 1599 u32 target; 1600 u8 prio; 1601 u32 lirq; 1602 1603 if (!is_xive_irq(chip)) 1604 return; 1605 1606 rc = xive_ops->get_irq_config(hw_irq, &target, &prio, &lirq); 1607 if (rc) { 1608 seq_printf(m, "IRQ 0x%08x : no config rc=%d\n", hw_irq, rc); 1609 return; 1610 } 1611 1612 seq_printf(m, "IRQ 0x%08x : target=0x%x prio=%02x lirq=0x%x ", 1613 hw_irq, target, prio, lirq); 1614 1615 if (d) { 1616 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 1617 u64 val = xive_esb_read(xd, XIVE_ESB_GET); 1618 1619 seq_printf(m, "flags=%c%c%c PQ=%c%c", 1620 xd->flags & XIVE_IRQ_FLAG_STORE_EOI ? 'S' : ' ', 1621 xd->flags & XIVE_IRQ_FLAG_LSI ? 'L' : ' ', 1622 xd->flags & XIVE_IRQ_FLAG_H_INT_ESB ? 'H' : ' ', 1623 val & XIVE_ESB_VAL_P ? 'P' : '-', 1624 val & XIVE_ESB_VAL_Q ? 'Q' : '-'); 1625 } 1626 seq_puts(m, "\n"); 1627 } 1628 1629 static int xive_core_debug_show(struct seq_file *m, void *private) 1630 { 1631 unsigned int i; 1632 struct irq_desc *desc; 1633 int cpu; 1634 1635 if (xive_ops->debug_show) 1636 xive_ops->debug_show(m, private); 1637 1638 for_each_possible_cpu(cpu) 1639 xive_debug_show_cpu(m, cpu); 1640 1641 for_each_irq_desc(i, desc) { 1642 struct irq_data *d = irq_desc_get_irq_data(desc); 1643 unsigned int hw_irq; 1644 1645 if (!d) 1646 continue; 1647 1648 hw_irq = (unsigned int)irqd_to_hwirq(d); 1649 1650 /* IPIs are special (HW number 0) */ 1651 if (hw_irq != XIVE_IPI_HW_IRQ) 1652 xive_debug_show_irq(m, hw_irq, d); 1653 } 1654 return 0; 1655 } 1656 DEFINE_SHOW_ATTRIBUTE(xive_core_debug); 1657 1658 int xive_core_debug_init(void) 1659 { 1660 if (xive_enabled()) 1661 debugfs_create_file("xive", 0400, powerpc_debugfs_root, 1662 NULL, &xive_core_debug_fops); 1663 return 0; 1664 } 1665