xref: /openbmc/linux/arch/powerpc/sysdev/xive/common.c (revision 8365a898)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2016,2017 IBM Corporation.
4  */
5 
6 #define pr_fmt(fmt) "xive: " fmt
7 
8 #include <linux/types.h>
9 #include <linux/threads.h>
10 #include <linux/kernel.h>
11 #include <linux/irq.h>
12 #include <linux/debugfs.h>
13 #include <linux/smp.h>
14 #include <linux/interrupt.h>
15 #include <linux/seq_file.h>
16 #include <linux/init.h>
17 #include <linux/cpu.h>
18 #include <linux/of.h>
19 #include <linux/slab.h>
20 #include <linux/spinlock.h>
21 #include <linux/msi.h>
22 #include <linux/vmalloc.h>
23 
24 #include <asm/debugfs.h>
25 #include <asm/prom.h>
26 #include <asm/io.h>
27 #include <asm/smp.h>
28 #include <asm/machdep.h>
29 #include <asm/irq.h>
30 #include <asm/errno.h>
31 #include <asm/xive.h>
32 #include <asm/xive-regs.h>
33 #include <asm/xmon.h>
34 
35 #include "xive-internal.h"
36 
37 #undef DEBUG_FLUSH
38 #undef DEBUG_ALL
39 
40 #ifdef DEBUG_ALL
41 #define DBG_VERBOSE(fmt, ...)	pr_devel("cpu %d - " fmt, \
42 					 smp_processor_id(), ## __VA_ARGS__)
43 #else
44 #define DBG_VERBOSE(fmt...)	do { } while(0)
45 #endif
46 
47 bool __xive_enabled;
48 EXPORT_SYMBOL_GPL(__xive_enabled);
49 bool xive_cmdline_disabled;
50 
51 /* We use only one priority for now */
52 static u8 xive_irq_priority;
53 
54 /* TIMA exported to KVM */
55 void __iomem *xive_tima;
56 EXPORT_SYMBOL_GPL(xive_tima);
57 u32 xive_tima_offset;
58 
59 /* Backend ops */
60 static const struct xive_ops *xive_ops;
61 
62 /* Our global interrupt domain */
63 static struct irq_domain *xive_irq_domain;
64 
65 #ifdef CONFIG_SMP
66 /* The IPIs all use the same logical irq number */
67 static u32 xive_ipi_irq;
68 #endif
69 
70 /* Xive state for each CPU */
71 static DEFINE_PER_CPU(struct xive_cpu *, xive_cpu);
72 
73 /* An invalid CPU target */
74 #define XIVE_INVALID_TARGET	(-1)
75 
76 /*
77  * Read the next entry in a queue, return its content if it's valid
78  * or 0 if there is no new entry.
79  *
80  * The queue pointer is moved forward unless "just_peek" is set
81  */
82 static u32 xive_read_eq(struct xive_q *q, bool just_peek)
83 {
84 	u32 cur;
85 
86 	if (!q->qpage)
87 		return 0;
88 	cur = be32_to_cpup(q->qpage + q->idx);
89 
90 	/* Check valid bit (31) vs current toggle polarity */
91 	if ((cur >> 31) == q->toggle)
92 		return 0;
93 
94 	/* If consuming from the queue ... */
95 	if (!just_peek) {
96 		/* Next entry */
97 		q->idx = (q->idx + 1) & q->msk;
98 
99 		/* Wrap around: flip valid toggle */
100 		if (q->idx == 0)
101 			q->toggle ^= 1;
102 	}
103 	/* Mask out the valid bit (31) */
104 	return cur & 0x7fffffff;
105 }
106 
107 /*
108  * Scans all the queue that may have interrupts in them
109  * (based on "pending_prio") in priority order until an
110  * interrupt is found or all the queues are empty.
111  *
112  * Then updates the CPPR (Current Processor Priority
113  * Register) based on the most favored interrupt found
114  * (0xff if none) and return what was found (0 if none).
115  *
116  * If just_peek is set, return the most favored pending
117  * interrupt if any but don't update the queue pointers.
118  *
119  * Note: This function can operate generically on any number
120  * of queues (up to 8). The current implementation of the XIVE
121  * driver only uses a single queue however.
122  *
123  * Note2: This will also "flush" "the pending_count" of a queue
124  * into the "count" when that queue is observed to be empty.
125  * This is used to keep track of the amount of interrupts
126  * targetting a queue. When an interrupt is moved away from
127  * a queue, we only decrement that queue count once the queue
128  * has been observed empty to avoid races.
129  */
130 static u32 xive_scan_interrupts(struct xive_cpu *xc, bool just_peek)
131 {
132 	u32 irq = 0;
133 	u8 prio = 0;
134 
135 	/* Find highest pending priority */
136 	while (xc->pending_prio != 0) {
137 		struct xive_q *q;
138 
139 		prio = ffs(xc->pending_prio) - 1;
140 		DBG_VERBOSE("scan_irq: trying prio %d\n", prio);
141 
142 		/* Try to fetch */
143 		irq = xive_read_eq(&xc->queue[prio], just_peek);
144 
145 		/* Found something ? That's it */
146 		if (irq) {
147 			if (just_peek || irq_to_desc(irq))
148 				break;
149 			/*
150 			 * We should never get here; if we do then we must
151 			 * have failed to synchronize the interrupt properly
152 			 * when shutting it down.
153 			 */
154 			pr_crit("xive: got interrupt %d without descriptor, dropping\n",
155 				irq);
156 			WARN_ON(1);
157 			continue;
158 		}
159 
160 		/* Clear pending bits */
161 		xc->pending_prio &= ~(1 << prio);
162 
163 		/*
164 		 * Check if the queue count needs adjusting due to
165 		 * interrupts being moved away. See description of
166 		 * xive_dec_target_count()
167 		 */
168 		q = &xc->queue[prio];
169 		if (atomic_read(&q->pending_count)) {
170 			int p = atomic_xchg(&q->pending_count, 0);
171 			if (p) {
172 				WARN_ON(p > atomic_read(&q->count));
173 				atomic_sub(p, &q->count);
174 			}
175 		}
176 	}
177 
178 	/* If nothing was found, set CPPR to 0xff */
179 	if (irq == 0)
180 		prio = 0xff;
181 
182 	/* Update HW CPPR to match if necessary */
183 	if (prio != xc->cppr) {
184 		DBG_VERBOSE("scan_irq: adjusting CPPR to %d\n", prio);
185 		xc->cppr = prio;
186 		out_8(xive_tima + xive_tima_offset + TM_CPPR, prio);
187 	}
188 
189 	return irq;
190 }
191 
192 /*
193  * This is used to perform the magic loads from an ESB
194  * described in xive-regs.h
195  */
196 static notrace u8 xive_esb_read(struct xive_irq_data *xd, u32 offset)
197 {
198 	u64 val;
199 
200 	if (offset == XIVE_ESB_SET_PQ_10 && xd->flags & XIVE_IRQ_FLAG_STORE_EOI)
201 		offset |= XIVE_ESB_LD_ST_MO;
202 
203 	/* Handle HW errata */
204 	if (xd->flags & XIVE_IRQ_FLAG_SHIFT_BUG)
205 		offset |= offset << 4;
206 
207 	if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw)
208 		val = xive_ops->esb_rw(xd->hw_irq, offset, 0, 0);
209 	else
210 		val = in_be64(xd->eoi_mmio + offset);
211 
212 	return (u8)val;
213 }
214 
215 static void xive_esb_write(struct xive_irq_data *xd, u32 offset, u64 data)
216 {
217 	/* Handle HW errata */
218 	if (xd->flags & XIVE_IRQ_FLAG_SHIFT_BUG)
219 		offset |= offset << 4;
220 
221 	if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw)
222 		xive_ops->esb_rw(xd->hw_irq, offset, data, 1);
223 	else
224 		out_be64(xd->eoi_mmio + offset, data);
225 }
226 
227 #ifdef CONFIG_XMON
228 static notrace void xive_dump_eq(const char *name, struct xive_q *q)
229 {
230 	u32 i0, i1, idx;
231 
232 	if (!q->qpage)
233 		return;
234 	idx = q->idx;
235 	i0 = be32_to_cpup(q->qpage + idx);
236 	idx = (idx + 1) & q->msk;
237 	i1 = be32_to_cpup(q->qpage + idx);
238 	xmon_printf("%s idx=%d T=%d %08x %08x ...", name,
239 		     q->idx, q->toggle, i0, i1);
240 }
241 
242 notrace void xmon_xive_do_dump(int cpu)
243 {
244 	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
245 
246 	xmon_printf("CPU %d:", cpu);
247 	if (xc) {
248 		xmon_printf("pp=%02x CPPR=%02x ", xc->pending_prio, xc->cppr);
249 
250 #ifdef CONFIG_SMP
251 		{
252 			u64 val = xive_esb_read(&xc->ipi_data, XIVE_ESB_GET);
253 
254 			xmon_printf("IPI=0x%08x PQ=%c%c ", xc->hw_ipi,
255 				    val & XIVE_ESB_VAL_P ? 'P' : '-',
256 				    val & XIVE_ESB_VAL_Q ? 'Q' : '-');
257 		}
258 #endif
259 		xive_dump_eq("EQ", &xc->queue[xive_irq_priority]);
260 	}
261 	xmon_printf("\n");
262 }
263 
264 int xmon_xive_get_irq_config(u32 hw_irq, struct irq_data *d)
265 {
266 	struct irq_chip *chip = irq_data_get_irq_chip(d);
267 	int rc;
268 	u32 target;
269 	u8 prio;
270 	u32 lirq;
271 
272 	if (!is_xive_irq(chip))
273 		return -EINVAL;
274 
275 	rc = xive_ops->get_irq_config(hw_irq, &target, &prio, &lirq);
276 	if (rc) {
277 		xmon_printf("IRQ 0x%08x : no config rc=%d\n", hw_irq, rc);
278 		return rc;
279 	}
280 
281 	xmon_printf("IRQ 0x%08x : target=0x%x prio=%02x lirq=0x%x ",
282 		    hw_irq, target, prio, lirq);
283 
284 	if (d) {
285 		struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
286 		u64 val = xive_esb_read(xd, XIVE_ESB_GET);
287 
288 		xmon_printf("flags=%c%c%c PQ=%c%c",
289 			    xd->flags & XIVE_IRQ_FLAG_STORE_EOI ? 'S' : ' ',
290 			    xd->flags & XIVE_IRQ_FLAG_LSI ? 'L' : ' ',
291 			    xd->flags & XIVE_IRQ_FLAG_H_INT_ESB ? 'H' : ' ',
292 			    val & XIVE_ESB_VAL_P ? 'P' : '-',
293 			    val & XIVE_ESB_VAL_Q ? 'Q' : '-');
294 	}
295 
296 	xmon_printf("\n");
297 	return 0;
298 }
299 
300 #endif /* CONFIG_XMON */
301 
302 static unsigned int xive_get_irq(void)
303 {
304 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
305 	u32 irq;
306 
307 	/*
308 	 * This can be called either as a result of a HW interrupt or
309 	 * as a "replay" because EOI decided there was still something
310 	 * in one of the queues.
311 	 *
312 	 * First we perform an ACK cycle in order to update our mask
313 	 * of pending priorities. This will also have the effect of
314 	 * updating the CPPR to the most favored pending interrupts.
315 	 *
316 	 * In the future, if we have a way to differentiate a first
317 	 * entry (on HW interrupt) from a replay triggered by EOI,
318 	 * we could skip this on replays unless we soft-mask tells us
319 	 * that a new HW interrupt occurred.
320 	 */
321 	xive_ops->update_pending(xc);
322 
323 	DBG_VERBOSE("get_irq: pending=%02x\n", xc->pending_prio);
324 
325 	/* Scan our queue(s) for interrupts */
326 	irq = xive_scan_interrupts(xc, false);
327 
328 	DBG_VERBOSE("get_irq: got irq 0x%x, new pending=0x%02x\n",
329 	    irq, xc->pending_prio);
330 
331 	/* Return pending interrupt if any */
332 	if (irq == XIVE_BAD_IRQ)
333 		return 0;
334 	return irq;
335 }
336 
337 /*
338  * After EOI'ing an interrupt, we need to re-check the queue
339  * to see if another interrupt is pending since multiple
340  * interrupts can coalesce into a single notification to the
341  * CPU.
342  *
343  * If we find that there is indeed more in there, we call
344  * force_external_irq_replay() to make Linux synthetize an
345  * external interrupt on the next call to local_irq_restore().
346  */
347 static void xive_do_queue_eoi(struct xive_cpu *xc)
348 {
349 	if (xive_scan_interrupts(xc, true) != 0) {
350 		DBG_VERBOSE("eoi: pending=0x%02x\n", xc->pending_prio);
351 		force_external_irq_replay();
352 	}
353 }
354 
355 /*
356  * EOI an interrupt at the source. There are several methods
357  * to do this depending on the HW version and source type
358  */
359 static void xive_do_source_eoi(u32 hw_irq, struct xive_irq_data *xd)
360 {
361 	xd->stale_p = false;
362 	/* If the XIVE supports the new "store EOI facility, use it */
363 	if (xd->flags & XIVE_IRQ_FLAG_STORE_EOI)
364 		xive_esb_write(xd, XIVE_ESB_STORE_EOI, 0);
365 	else if (hw_irq && xd->flags & XIVE_IRQ_FLAG_EOI_FW) {
366 		/*
367 		 * The FW told us to call it. This happens for some
368 		 * interrupt sources that need additional HW whacking
369 		 * beyond the ESB manipulation. For example LPC interrupts
370 		 * on P9 DD1.0 needed a latch to be clared in the LPC bridge
371 		 * itself. The Firmware will take care of it.
372 		 */
373 		if (WARN_ON_ONCE(!xive_ops->eoi))
374 			return;
375 		xive_ops->eoi(hw_irq);
376 	} else {
377 		u8 eoi_val;
378 
379 		/*
380 		 * Otherwise for EOI, we use the special MMIO that does
381 		 * a clear of both P and Q and returns the old Q,
382 		 * except for LSIs where we use the "EOI cycle" special
383 		 * load.
384 		 *
385 		 * This allows us to then do a re-trigger if Q was set
386 		 * rather than synthesizing an interrupt in software
387 		 *
388 		 * For LSIs the HW EOI cycle is used rather than PQ bits,
389 		 * as they are automatically re-triggred in HW when still
390 		 * pending.
391 		 */
392 		if (xd->flags & XIVE_IRQ_FLAG_LSI)
393 			xive_esb_read(xd, XIVE_ESB_LOAD_EOI);
394 		else {
395 			eoi_val = xive_esb_read(xd, XIVE_ESB_SET_PQ_00);
396 			DBG_VERBOSE("eoi_val=%x\n", eoi_val);
397 
398 			/* Re-trigger if needed */
399 			if ((eoi_val & XIVE_ESB_VAL_Q) && xd->trig_mmio)
400 				out_be64(xd->trig_mmio, 0);
401 		}
402 	}
403 }
404 
405 /* irq_chip eoi callback, called with irq descriptor lock held */
406 static void xive_irq_eoi(struct irq_data *d)
407 {
408 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
409 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
410 
411 	DBG_VERBOSE("eoi_irq: irq=%d [0x%lx] pending=%02x\n",
412 		    d->irq, irqd_to_hwirq(d), xc->pending_prio);
413 
414 	/*
415 	 * EOI the source if it hasn't been disabled and hasn't
416 	 * been passed-through to a KVM guest
417 	 */
418 	if (!irqd_irq_disabled(d) && !irqd_is_forwarded_to_vcpu(d) &&
419 	    !(xd->flags & XIVE_IRQ_NO_EOI))
420 		xive_do_source_eoi(irqd_to_hwirq(d), xd);
421 	else
422 		xd->stale_p = true;
423 
424 	/*
425 	 * Clear saved_p to indicate that it's no longer occupying
426 	 * a queue slot on the target queue
427 	 */
428 	xd->saved_p = false;
429 
430 	/* Check for more work in the queue */
431 	xive_do_queue_eoi(xc);
432 }
433 
434 /*
435  * Helper used to mask and unmask an interrupt source. This
436  * is only called for normal interrupts that do not require
437  * masking/unmasking via firmware.
438  */
439 static void xive_do_source_set_mask(struct xive_irq_data *xd,
440 				    bool mask)
441 {
442 	u64 val;
443 
444 	/*
445 	 * If the interrupt had P set, it may be in a queue.
446 	 *
447 	 * We need to make sure we don't re-enable it until it
448 	 * has been fetched from that queue and EOId. We keep
449 	 * a copy of that P state and use it to restore the
450 	 * ESB accordingly on unmask.
451 	 */
452 	if (mask) {
453 		val = xive_esb_read(xd, XIVE_ESB_SET_PQ_01);
454 		if (!xd->stale_p && !!(val & XIVE_ESB_VAL_P))
455 			xd->saved_p = true;
456 		xd->stale_p = false;
457 	} else if (xd->saved_p) {
458 		xive_esb_read(xd, XIVE_ESB_SET_PQ_10);
459 		xd->saved_p = false;
460 	} else {
461 		xive_esb_read(xd, XIVE_ESB_SET_PQ_00);
462 		xd->stale_p = false;
463 	}
464 }
465 
466 /*
467  * Try to chose "cpu" as a new interrupt target. Increments
468  * the queue accounting for that target if it's not already
469  * full.
470  */
471 static bool xive_try_pick_target(int cpu)
472 {
473 	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
474 	struct xive_q *q = &xc->queue[xive_irq_priority];
475 	int max;
476 
477 	/*
478 	 * Calculate max number of interrupts in that queue.
479 	 *
480 	 * We leave a gap of 1 just in case...
481 	 */
482 	max = (q->msk + 1) - 1;
483 	return !!atomic_add_unless(&q->count, 1, max);
484 }
485 
486 /*
487  * Un-account an interrupt for a target CPU. We don't directly
488  * decrement q->count since the interrupt might still be present
489  * in the queue.
490  *
491  * Instead increment a separate counter "pending_count" which
492  * will be substracted from "count" later when that CPU observes
493  * the queue to be empty.
494  */
495 static void xive_dec_target_count(int cpu)
496 {
497 	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
498 	struct xive_q *q = &xc->queue[xive_irq_priority];
499 
500 	if (WARN_ON(cpu < 0 || !xc)) {
501 		pr_err("%s: cpu=%d xc=%p\n", __func__, cpu, xc);
502 		return;
503 	}
504 
505 	/*
506 	 * We increment the "pending count" which will be used
507 	 * to decrement the target queue count whenever it's next
508 	 * processed and found empty. This ensure that we don't
509 	 * decrement while we still have the interrupt there
510 	 * occupying a slot.
511 	 */
512 	atomic_inc(&q->pending_count);
513 }
514 
515 /* Find a tentative CPU target in a CPU mask */
516 static int xive_find_target_in_mask(const struct cpumask *mask,
517 				    unsigned int fuzz)
518 {
519 	int cpu, first, num, i;
520 
521 	/* Pick up a starting point CPU in the mask based on  fuzz */
522 	num = min_t(int, cpumask_weight(mask), nr_cpu_ids);
523 	first = fuzz % num;
524 
525 	/* Locate it */
526 	cpu = cpumask_first(mask);
527 	for (i = 0; i < first && cpu < nr_cpu_ids; i++)
528 		cpu = cpumask_next(cpu, mask);
529 
530 	/* Sanity check */
531 	if (WARN_ON(cpu >= nr_cpu_ids))
532 		cpu = cpumask_first(cpu_online_mask);
533 
534 	/* Remember first one to handle wrap-around */
535 	first = cpu;
536 
537 	/*
538 	 * Now go through the entire mask until we find a valid
539 	 * target.
540 	 */
541 	do {
542 		/*
543 		 * We re-check online as the fallback case passes us
544 		 * an untested affinity mask
545 		 */
546 		if (cpu_online(cpu) && xive_try_pick_target(cpu))
547 			return cpu;
548 		cpu = cpumask_next(cpu, mask);
549 		/* Wrap around */
550 		if (cpu >= nr_cpu_ids)
551 			cpu = cpumask_first(mask);
552 	} while (cpu != first);
553 
554 	return -1;
555 }
556 
557 /*
558  * Pick a target CPU for an interrupt. This is done at
559  * startup or if the affinity is changed in a way that
560  * invalidates the current target.
561  */
562 static int xive_pick_irq_target(struct irq_data *d,
563 				const struct cpumask *affinity)
564 {
565 	static unsigned int fuzz;
566 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
567 	cpumask_var_t mask;
568 	int cpu = -1;
569 
570 	/*
571 	 * If we have chip IDs, first we try to build a mask of
572 	 * CPUs matching the CPU and find a target in there
573 	 */
574 	if (xd->src_chip != XIVE_INVALID_CHIP_ID &&
575 		zalloc_cpumask_var(&mask, GFP_ATOMIC)) {
576 		/* Build a mask of matching chip IDs */
577 		for_each_cpu_and(cpu, affinity, cpu_online_mask) {
578 			struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
579 			if (xc->chip_id == xd->src_chip)
580 				cpumask_set_cpu(cpu, mask);
581 		}
582 		/* Try to find a target */
583 		if (cpumask_empty(mask))
584 			cpu = -1;
585 		else
586 			cpu = xive_find_target_in_mask(mask, fuzz++);
587 		free_cpumask_var(mask);
588 		if (cpu >= 0)
589 			return cpu;
590 		fuzz--;
591 	}
592 
593 	/* No chip IDs, fallback to using the affinity mask */
594 	return xive_find_target_in_mask(affinity, fuzz++);
595 }
596 
597 static unsigned int xive_irq_startup(struct irq_data *d)
598 {
599 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
600 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
601 	int target, rc;
602 
603 	xd->saved_p = false;
604 	xd->stale_p = false;
605 	pr_devel("xive_irq_startup: irq %d [0x%x] data @%p\n",
606 		 d->irq, hw_irq, d);
607 
608 #ifdef CONFIG_PCI_MSI
609 	/*
610 	 * The generic MSI code returns with the interrupt disabled on the
611 	 * card, using the MSI mask bits. Firmware doesn't appear to unmask
612 	 * at that level, so we do it here by hand.
613 	 */
614 	if (irq_data_get_msi_desc(d))
615 		pci_msi_unmask_irq(d);
616 #endif
617 
618 	/* Pick a target */
619 	target = xive_pick_irq_target(d, irq_data_get_affinity_mask(d));
620 	if (target == XIVE_INVALID_TARGET) {
621 		/* Try again breaking affinity */
622 		target = xive_pick_irq_target(d, cpu_online_mask);
623 		if (target == XIVE_INVALID_TARGET)
624 			return -ENXIO;
625 		pr_warn("irq %d started with broken affinity\n", d->irq);
626 	}
627 
628 	/* Sanity check */
629 	if (WARN_ON(target == XIVE_INVALID_TARGET ||
630 		    target >= nr_cpu_ids))
631 		target = smp_processor_id();
632 
633 	xd->target = target;
634 
635 	/*
636 	 * Configure the logical number to be the Linux IRQ number
637 	 * and set the target queue
638 	 */
639 	rc = xive_ops->configure_irq(hw_irq,
640 				     get_hard_smp_processor_id(target),
641 				     xive_irq_priority, d->irq);
642 	if (rc)
643 		return rc;
644 
645 	/* Unmask the ESB */
646 	xive_do_source_set_mask(xd, false);
647 
648 	return 0;
649 }
650 
651 /* called with irq descriptor lock held */
652 static void xive_irq_shutdown(struct irq_data *d)
653 {
654 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
655 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
656 
657 	pr_devel("xive_irq_shutdown: irq %d [0x%x] data @%p\n",
658 		 d->irq, hw_irq, d);
659 
660 	if (WARN_ON(xd->target == XIVE_INVALID_TARGET))
661 		return;
662 
663 	/* Mask the interrupt at the source */
664 	xive_do_source_set_mask(xd, true);
665 
666 	/*
667 	 * Mask the interrupt in HW in the IVT/EAS and set the number
668 	 * to be the "bad" IRQ number
669 	 */
670 	xive_ops->configure_irq(hw_irq,
671 				get_hard_smp_processor_id(xd->target),
672 				0xff, XIVE_BAD_IRQ);
673 
674 	xive_dec_target_count(xd->target);
675 	xd->target = XIVE_INVALID_TARGET;
676 }
677 
678 static void xive_irq_unmask(struct irq_data *d)
679 {
680 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
681 
682 	pr_devel("xive_irq_unmask: irq %d data @%p\n", d->irq, xd);
683 
684 	/*
685 	 * This is a workaround for PCI LSI problems on P9, for
686 	 * these, we call FW to set the mask. The problems might
687 	 * be fixed by P9 DD2.0, if that is the case, firmware
688 	 * will no longer set that flag.
689 	 */
690 	if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) {
691 		unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
692 		xive_ops->configure_irq(hw_irq,
693 					get_hard_smp_processor_id(xd->target),
694 					xive_irq_priority, d->irq);
695 		return;
696 	}
697 
698 	xive_do_source_set_mask(xd, false);
699 }
700 
701 static void xive_irq_mask(struct irq_data *d)
702 {
703 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
704 
705 	pr_devel("xive_irq_mask: irq %d data @%p\n", d->irq, xd);
706 
707 	/*
708 	 * This is a workaround for PCI LSI problems on P9, for
709 	 * these, we call OPAL to set the mask. The problems might
710 	 * be fixed by P9 DD2.0, if that is the case, firmware
711 	 * will no longer set that flag.
712 	 */
713 	if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) {
714 		unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
715 		xive_ops->configure_irq(hw_irq,
716 					get_hard_smp_processor_id(xd->target),
717 					0xff, d->irq);
718 		return;
719 	}
720 
721 	xive_do_source_set_mask(xd, true);
722 }
723 
724 static int xive_irq_set_affinity(struct irq_data *d,
725 				 const struct cpumask *cpumask,
726 				 bool force)
727 {
728 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
729 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
730 	u32 target, old_target;
731 	int rc = 0;
732 
733 	pr_devel("xive_irq_set_affinity: irq %d\n", d->irq);
734 
735 	/* Is this valid ? */
736 	if (cpumask_any_and(cpumask, cpu_online_mask) >= nr_cpu_ids)
737 		return -EINVAL;
738 
739 	/* Don't do anything if the interrupt isn't started */
740 	if (!irqd_is_started(d))
741 		return IRQ_SET_MASK_OK;
742 
743 	/*
744 	 * If existing target is already in the new mask, and is
745 	 * online then do nothing.
746 	 */
747 	if (xd->target != XIVE_INVALID_TARGET &&
748 	    cpu_online(xd->target) &&
749 	    cpumask_test_cpu(xd->target, cpumask))
750 		return IRQ_SET_MASK_OK;
751 
752 	/* Pick a new target */
753 	target = xive_pick_irq_target(d, cpumask);
754 
755 	/* No target found */
756 	if (target == XIVE_INVALID_TARGET)
757 		return -ENXIO;
758 
759 	/* Sanity check */
760 	if (WARN_ON(target >= nr_cpu_ids))
761 		target = smp_processor_id();
762 
763 	old_target = xd->target;
764 
765 	/*
766 	 * Only configure the irq if it's not currently passed-through to
767 	 * a KVM guest
768 	 */
769 	if (!irqd_is_forwarded_to_vcpu(d))
770 		rc = xive_ops->configure_irq(hw_irq,
771 					     get_hard_smp_processor_id(target),
772 					     xive_irq_priority, d->irq);
773 	if (rc < 0) {
774 		pr_err("Error %d reconfiguring irq %d\n", rc, d->irq);
775 		return rc;
776 	}
777 
778 	pr_devel("  target: 0x%x\n", target);
779 	xd->target = target;
780 
781 	/* Give up previous target */
782 	if (old_target != XIVE_INVALID_TARGET)
783 	    xive_dec_target_count(old_target);
784 
785 	return IRQ_SET_MASK_OK;
786 }
787 
788 static int xive_irq_set_type(struct irq_data *d, unsigned int flow_type)
789 {
790 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
791 
792 	/*
793 	 * We only support these. This has really no effect other than setting
794 	 * the corresponding descriptor bits mind you but those will in turn
795 	 * affect the resend function when re-enabling an edge interrupt.
796 	 *
797 	 * Set set the default to edge as explained in map().
798 	 */
799 	if (flow_type == IRQ_TYPE_DEFAULT || flow_type == IRQ_TYPE_NONE)
800 		flow_type = IRQ_TYPE_EDGE_RISING;
801 
802 	if (flow_type != IRQ_TYPE_EDGE_RISING &&
803 	    flow_type != IRQ_TYPE_LEVEL_LOW)
804 		return -EINVAL;
805 
806 	irqd_set_trigger_type(d, flow_type);
807 
808 	/*
809 	 * Double check it matches what the FW thinks
810 	 *
811 	 * NOTE: We don't know yet if the PAPR interface will provide
812 	 * the LSI vs MSI information apart from the device-tree so
813 	 * this check might have to move into an optional backend call
814 	 * that is specific to the native backend
815 	 */
816 	if ((flow_type == IRQ_TYPE_LEVEL_LOW) !=
817 	    !!(xd->flags & XIVE_IRQ_FLAG_LSI)) {
818 		pr_warn("Interrupt %d (HW 0x%x) type mismatch, Linux says %s, FW says %s\n",
819 			d->irq, (u32)irqd_to_hwirq(d),
820 			(flow_type == IRQ_TYPE_LEVEL_LOW) ? "Level" : "Edge",
821 			(xd->flags & XIVE_IRQ_FLAG_LSI) ? "Level" : "Edge");
822 	}
823 
824 	return IRQ_SET_MASK_OK_NOCOPY;
825 }
826 
827 static int xive_irq_retrigger(struct irq_data *d)
828 {
829 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
830 
831 	/* This should be only for MSIs */
832 	if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
833 		return 0;
834 
835 	/*
836 	 * To perform a retrigger, we first set the PQ bits to
837 	 * 11, then perform an EOI.
838 	 */
839 	xive_esb_read(xd, XIVE_ESB_SET_PQ_11);
840 
841 	/*
842 	 * Note: We pass "0" to the hw_irq argument in order to
843 	 * avoid calling into the backend EOI code which we don't
844 	 * want to do in the case of a re-trigger. Backends typically
845 	 * only do EOI for LSIs anyway.
846 	 */
847 	xive_do_source_eoi(0, xd);
848 
849 	return 1;
850 }
851 
852 /*
853  * Caller holds the irq descriptor lock, so this won't be called
854  * concurrently with xive_get_irqchip_state on the same interrupt.
855  */
856 static int xive_irq_set_vcpu_affinity(struct irq_data *d, void *state)
857 {
858 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
859 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
860 	int rc;
861 	u8 pq;
862 
863 	/*
864 	 * We only support this on interrupts that do not require
865 	 * firmware calls for masking and unmasking
866 	 */
867 	if (xd->flags & XIVE_IRQ_FLAG_MASK_FW)
868 		return -EIO;
869 
870 	/*
871 	 * This is called by KVM with state non-NULL for enabling
872 	 * pass-through or NULL for disabling it
873 	 */
874 	if (state) {
875 		irqd_set_forwarded_to_vcpu(d);
876 
877 		/* Set it to PQ=10 state to prevent further sends */
878 		pq = xive_esb_read(xd, XIVE_ESB_SET_PQ_10);
879 		if (!xd->stale_p) {
880 			xd->saved_p = !!(pq & XIVE_ESB_VAL_P);
881 			xd->stale_p = !xd->saved_p;
882 		}
883 
884 		/* No target ? nothing to do */
885 		if (xd->target == XIVE_INVALID_TARGET) {
886 			/*
887 			 * An untargetted interrupt should have been
888 			 * also masked at the source
889 			 */
890 			WARN_ON(xd->saved_p);
891 
892 			return 0;
893 		}
894 
895 		/*
896 		 * If P was set, adjust state to PQ=11 to indicate
897 		 * that a resend is needed for the interrupt to reach
898 		 * the guest. Also remember the value of P.
899 		 *
900 		 * This also tells us that it's in flight to a host queue
901 		 * or has already been fetched but hasn't been EOIed yet
902 		 * by the host. This it's potentially using up a host
903 		 * queue slot. This is important to know because as long
904 		 * as this is the case, we must not hard-unmask it when
905 		 * "returning" that interrupt to the host.
906 		 *
907 		 * This saved_p is cleared by the host EOI, when we know
908 		 * for sure the queue slot is no longer in use.
909 		 */
910 		if (xd->saved_p) {
911 			xive_esb_read(xd, XIVE_ESB_SET_PQ_11);
912 
913 			/*
914 			 * Sync the XIVE source HW to ensure the interrupt
915 			 * has gone through the EAS before we change its
916 			 * target to the guest. That should guarantee us
917 			 * that we *will* eventually get an EOI for it on
918 			 * the host. Otherwise there would be a small window
919 			 * for P to be seen here but the interrupt going
920 			 * to the guest queue.
921 			 */
922 			if (xive_ops->sync_source)
923 				xive_ops->sync_source(hw_irq);
924 		}
925 	} else {
926 		irqd_clr_forwarded_to_vcpu(d);
927 
928 		/* No host target ? hard mask and return */
929 		if (xd->target == XIVE_INVALID_TARGET) {
930 			xive_do_source_set_mask(xd, true);
931 			return 0;
932 		}
933 
934 		/*
935 		 * Sync the XIVE source HW to ensure the interrupt
936 		 * has gone through the EAS before we change its
937 		 * target to the host.
938 		 */
939 		if (xive_ops->sync_source)
940 			xive_ops->sync_source(hw_irq);
941 
942 		/*
943 		 * By convention we are called with the interrupt in
944 		 * a PQ=10 or PQ=11 state, ie, it won't fire and will
945 		 * have latched in Q whether there's a pending HW
946 		 * interrupt or not.
947 		 *
948 		 * First reconfigure the target.
949 		 */
950 		rc = xive_ops->configure_irq(hw_irq,
951 					     get_hard_smp_processor_id(xd->target),
952 					     xive_irq_priority, d->irq);
953 		if (rc)
954 			return rc;
955 
956 		/*
957 		 * Then if saved_p is not set, effectively re-enable the
958 		 * interrupt with an EOI. If it is set, we know there is
959 		 * still a message in a host queue somewhere that will be
960 		 * EOId eventually.
961 		 *
962 		 * Note: We don't check irqd_irq_disabled(). Effectively,
963 		 * we *will* let the irq get through even if masked if the
964 		 * HW is still firing it in order to deal with the whole
965 		 * saved_p business properly. If the interrupt triggers
966 		 * while masked, the generic code will re-mask it anyway.
967 		 */
968 		if (!xd->saved_p)
969 			xive_do_source_eoi(hw_irq, xd);
970 
971 	}
972 	return 0;
973 }
974 
975 /* Called with irq descriptor lock held. */
976 static int xive_get_irqchip_state(struct irq_data *data,
977 				  enum irqchip_irq_state which, bool *state)
978 {
979 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(data);
980 	u8 pq;
981 
982 	switch (which) {
983 	case IRQCHIP_STATE_ACTIVE:
984 		pq = xive_esb_read(xd, XIVE_ESB_GET);
985 
986 		/*
987 		 * The esb value being all 1's means we couldn't get
988 		 * the PQ state of the interrupt through mmio. It may
989 		 * happen, for example when querying a PHB interrupt
990 		 * while the PHB is in an error state. We consider the
991 		 * interrupt to be inactive in that case.
992 		 */
993 		*state = (pq != XIVE_ESB_INVALID) && !xd->stale_p &&
994 			(xd->saved_p || !!(pq & XIVE_ESB_VAL_P));
995 		return 0;
996 	default:
997 		return -EINVAL;
998 	}
999 }
1000 
1001 static struct irq_chip xive_irq_chip = {
1002 	.name = "XIVE-IRQ",
1003 	.irq_startup = xive_irq_startup,
1004 	.irq_shutdown = xive_irq_shutdown,
1005 	.irq_eoi = xive_irq_eoi,
1006 	.irq_mask = xive_irq_mask,
1007 	.irq_unmask = xive_irq_unmask,
1008 	.irq_set_affinity = xive_irq_set_affinity,
1009 	.irq_set_type = xive_irq_set_type,
1010 	.irq_retrigger = xive_irq_retrigger,
1011 	.irq_set_vcpu_affinity = xive_irq_set_vcpu_affinity,
1012 	.irq_get_irqchip_state = xive_get_irqchip_state,
1013 };
1014 
1015 bool is_xive_irq(struct irq_chip *chip)
1016 {
1017 	return chip == &xive_irq_chip;
1018 }
1019 EXPORT_SYMBOL_GPL(is_xive_irq);
1020 
1021 void xive_cleanup_irq_data(struct xive_irq_data *xd)
1022 {
1023 	if (xd->eoi_mmio) {
1024 		unmap_kernel_range((unsigned long)xd->eoi_mmio,
1025 				   1u << xd->esb_shift);
1026 		iounmap(xd->eoi_mmio);
1027 		if (xd->eoi_mmio == xd->trig_mmio)
1028 			xd->trig_mmio = NULL;
1029 		xd->eoi_mmio = NULL;
1030 	}
1031 	if (xd->trig_mmio) {
1032 		unmap_kernel_range((unsigned long)xd->trig_mmio,
1033 				   1u << xd->esb_shift);
1034 		iounmap(xd->trig_mmio);
1035 		xd->trig_mmio = NULL;
1036 	}
1037 }
1038 EXPORT_SYMBOL_GPL(xive_cleanup_irq_data);
1039 
1040 static int xive_irq_alloc_data(unsigned int virq, irq_hw_number_t hw)
1041 {
1042 	struct xive_irq_data *xd;
1043 	int rc;
1044 
1045 	xd = kzalloc(sizeof(struct xive_irq_data), GFP_KERNEL);
1046 	if (!xd)
1047 		return -ENOMEM;
1048 	rc = xive_ops->populate_irq_data(hw, xd);
1049 	if (rc) {
1050 		kfree(xd);
1051 		return rc;
1052 	}
1053 	xd->target = XIVE_INVALID_TARGET;
1054 	irq_set_handler_data(virq, xd);
1055 
1056 	/*
1057 	 * Turn OFF by default the interrupt being mapped. A side
1058 	 * effect of this check is the mapping the ESB page of the
1059 	 * interrupt in the Linux address space. This prevents page
1060 	 * fault issues in the crash handler which masks all
1061 	 * interrupts.
1062 	 */
1063 	xive_esb_read(xd, XIVE_ESB_SET_PQ_01);
1064 
1065 	return 0;
1066 }
1067 
1068 static void xive_irq_free_data(unsigned int virq)
1069 {
1070 	struct xive_irq_data *xd = irq_get_handler_data(virq);
1071 
1072 	if (!xd)
1073 		return;
1074 	irq_set_handler_data(virq, NULL);
1075 	xive_cleanup_irq_data(xd);
1076 	kfree(xd);
1077 }
1078 
1079 #ifdef CONFIG_SMP
1080 
1081 static void xive_cause_ipi(int cpu)
1082 {
1083 	struct xive_cpu *xc;
1084 	struct xive_irq_data *xd;
1085 
1086 	xc = per_cpu(xive_cpu, cpu);
1087 
1088 	DBG_VERBOSE("IPI CPU %d -> %d (HW IRQ 0x%x)\n",
1089 		    smp_processor_id(), cpu, xc->hw_ipi);
1090 
1091 	xd = &xc->ipi_data;
1092 	if (WARN_ON(!xd->trig_mmio))
1093 		return;
1094 	out_be64(xd->trig_mmio, 0);
1095 }
1096 
1097 static irqreturn_t xive_muxed_ipi_action(int irq, void *dev_id)
1098 {
1099 	return smp_ipi_demux();
1100 }
1101 
1102 static void xive_ipi_eoi(struct irq_data *d)
1103 {
1104 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1105 
1106 	/* Handle possible race with unplug and drop stale IPIs */
1107 	if (!xc)
1108 		return;
1109 
1110 	DBG_VERBOSE("IPI eoi: irq=%d [0x%lx] (HW IRQ 0x%x) pending=%02x\n",
1111 		    d->irq, irqd_to_hwirq(d), xc->hw_ipi, xc->pending_prio);
1112 
1113 	xive_do_source_eoi(xc->hw_ipi, &xc->ipi_data);
1114 	xive_do_queue_eoi(xc);
1115 }
1116 
1117 static void xive_ipi_do_nothing(struct irq_data *d)
1118 {
1119 	/*
1120 	 * Nothing to do, we never mask/unmask IPIs, but the callback
1121 	 * has to exist for the struct irq_chip.
1122 	 */
1123 }
1124 
1125 static struct irq_chip xive_ipi_chip = {
1126 	.name = "XIVE-IPI",
1127 	.irq_eoi = xive_ipi_eoi,
1128 	.irq_mask = xive_ipi_do_nothing,
1129 	.irq_unmask = xive_ipi_do_nothing,
1130 };
1131 
1132 static void __init xive_request_ipi(void)
1133 {
1134 	unsigned int virq;
1135 
1136 	/*
1137 	 * Initialization failed, move on, we might manage to
1138 	 * reach the point where we display our errors before
1139 	 * the system falls appart
1140 	 */
1141 	if (!xive_irq_domain)
1142 		return;
1143 
1144 	/* Initialize it */
1145 	virq = irq_create_mapping(xive_irq_domain, 0);
1146 	xive_ipi_irq = virq;
1147 
1148 	WARN_ON(request_irq(virq, xive_muxed_ipi_action,
1149 			    IRQF_PERCPU | IRQF_NO_THREAD, "IPI", NULL));
1150 }
1151 
1152 static int xive_setup_cpu_ipi(unsigned int cpu)
1153 {
1154 	struct xive_cpu *xc;
1155 	int rc;
1156 
1157 	pr_debug("Setting up IPI for CPU %d\n", cpu);
1158 
1159 	xc = per_cpu(xive_cpu, cpu);
1160 
1161 	/* Check if we are already setup */
1162 	if (xc->hw_ipi != XIVE_BAD_IRQ)
1163 		return 0;
1164 
1165 	/* Grab an IPI from the backend, this will populate xc->hw_ipi */
1166 	if (xive_ops->get_ipi(cpu, xc))
1167 		return -EIO;
1168 
1169 	/*
1170 	 * Populate the IRQ data in the xive_cpu structure and
1171 	 * configure the HW / enable the IPIs.
1172 	 */
1173 	rc = xive_ops->populate_irq_data(xc->hw_ipi, &xc->ipi_data);
1174 	if (rc) {
1175 		pr_err("Failed to populate IPI data on CPU %d\n", cpu);
1176 		return -EIO;
1177 	}
1178 	rc = xive_ops->configure_irq(xc->hw_ipi,
1179 				     get_hard_smp_processor_id(cpu),
1180 				     xive_irq_priority, xive_ipi_irq);
1181 	if (rc) {
1182 		pr_err("Failed to map IPI CPU %d\n", cpu);
1183 		return -EIO;
1184 	}
1185 	pr_devel("CPU %d HW IPI %x, virq %d, trig_mmio=%p\n", cpu,
1186 	    xc->hw_ipi, xive_ipi_irq, xc->ipi_data.trig_mmio);
1187 
1188 	/* Unmask it */
1189 	xive_do_source_set_mask(&xc->ipi_data, false);
1190 
1191 	return 0;
1192 }
1193 
1194 static void xive_cleanup_cpu_ipi(unsigned int cpu, struct xive_cpu *xc)
1195 {
1196 	/* Disable the IPI and free the IRQ data */
1197 
1198 	/* Already cleaned up ? */
1199 	if (xc->hw_ipi == XIVE_BAD_IRQ)
1200 		return;
1201 
1202 	/* Mask the IPI */
1203 	xive_do_source_set_mask(&xc->ipi_data, true);
1204 
1205 	/*
1206 	 * Note: We don't call xive_cleanup_irq_data() to free
1207 	 * the mappings as this is called from an IPI on kexec
1208 	 * which is not a safe environment to call iounmap()
1209 	 */
1210 
1211 	/* Deconfigure/mask in the backend */
1212 	xive_ops->configure_irq(xc->hw_ipi, hard_smp_processor_id(),
1213 				0xff, xive_ipi_irq);
1214 
1215 	/* Free the IPIs in the backend */
1216 	xive_ops->put_ipi(cpu, xc);
1217 }
1218 
1219 void __init xive_smp_probe(void)
1220 {
1221 	smp_ops->cause_ipi = xive_cause_ipi;
1222 
1223 	/* Register the IPI */
1224 	xive_request_ipi();
1225 
1226 	/* Allocate and setup IPI for the boot CPU */
1227 	xive_setup_cpu_ipi(smp_processor_id());
1228 }
1229 
1230 #endif /* CONFIG_SMP */
1231 
1232 static int xive_irq_domain_map(struct irq_domain *h, unsigned int virq,
1233 			       irq_hw_number_t hw)
1234 {
1235 	int rc;
1236 
1237 	/*
1238 	 * Mark interrupts as edge sensitive by default so that resend
1239 	 * actually works. Will fix that up below if needed.
1240 	 */
1241 	irq_clear_status_flags(virq, IRQ_LEVEL);
1242 
1243 #ifdef CONFIG_SMP
1244 	/* IPIs are special and come up with HW number 0 */
1245 	if (hw == 0) {
1246 		/*
1247 		 * IPIs are marked per-cpu. We use separate HW interrupts under
1248 		 * the hood but associated with the same "linux" interrupt
1249 		 */
1250 		irq_set_chip_and_handler(virq, &xive_ipi_chip,
1251 					 handle_percpu_irq);
1252 		return 0;
1253 	}
1254 #endif
1255 
1256 	rc = xive_irq_alloc_data(virq, hw);
1257 	if (rc)
1258 		return rc;
1259 
1260 	irq_set_chip_and_handler(virq, &xive_irq_chip, handle_fasteoi_irq);
1261 
1262 	return 0;
1263 }
1264 
1265 static void xive_irq_domain_unmap(struct irq_domain *d, unsigned int virq)
1266 {
1267 	struct irq_data *data = irq_get_irq_data(virq);
1268 	unsigned int hw_irq;
1269 
1270 	/* XXX Assign BAD number */
1271 	if (!data)
1272 		return;
1273 	hw_irq = (unsigned int)irqd_to_hwirq(data);
1274 	if (hw_irq)
1275 		xive_irq_free_data(virq);
1276 }
1277 
1278 static int xive_irq_domain_xlate(struct irq_domain *h, struct device_node *ct,
1279 				 const u32 *intspec, unsigned int intsize,
1280 				 irq_hw_number_t *out_hwirq, unsigned int *out_flags)
1281 
1282 {
1283 	*out_hwirq = intspec[0];
1284 
1285 	/*
1286 	 * If intsize is at least 2, we look for the type in the second cell,
1287 	 * we assume the LSB indicates a level interrupt.
1288 	 */
1289 	if (intsize > 1) {
1290 		if (intspec[1] & 1)
1291 			*out_flags = IRQ_TYPE_LEVEL_LOW;
1292 		else
1293 			*out_flags = IRQ_TYPE_EDGE_RISING;
1294 	} else
1295 		*out_flags = IRQ_TYPE_LEVEL_LOW;
1296 
1297 	return 0;
1298 }
1299 
1300 static int xive_irq_domain_match(struct irq_domain *h, struct device_node *node,
1301 				 enum irq_domain_bus_token bus_token)
1302 {
1303 	return xive_ops->match(node);
1304 }
1305 
1306 static const struct irq_domain_ops xive_irq_domain_ops = {
1307 	.match = xive_irq_domain_match,
1308 	.map = xive_irq_domain_map,
1309 	.unmap = xive_irq_domain_unmap,
1310 	.xlate = xive_irq_domain_xlate,
1311 };
1312 
1313 static void __init xive_init_host(void)
1314 {
1315 	xive_irq_domain = irq_domain_add_nomap(NULL, XIVE_MAX_IRQ,
1316 					       &xive_irq_domain_ops, NULL);
1317 	if (WARN_ON(xive_irq_domain == NULL))
1318 		return;
1319 	irq_set_default_host(xive_irq_domain);
1320 }
1321 
1322 static void xive_cleanup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1323 {
1324 	if (xc->queue[xive_irq_priority].qpage)
1325 		xive_ops->cleanup_queue(cpu, xc, xive_irq_priority);
1326 }
1327 
1328 static int xive_setup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1329 {
1330 	int rc = 0;
1331 
1332 	/* We setup 1 queues for now with a 64k page */
1333 	if (!xc->queue[xive_irq_priority].qpage)
1334 		rc = xive_ops->setup_queue(cpu, xc, xive_irq_priority);
1335 
1336 	return rc;
1337 }
1338 
1339 static int xive_prepare_cpu(unsigned int cpu)
1340 {
1341 	struct xive_cpu *xc;
1342 
1343 	xc = per_cpu(xive_cpu, cpu);
1344 	if (!xc) {
1345 		struct device_node *np;
1346 
1347 		xc = kzalloc_node(sizeof(struct xive_cpu),
1348 				  GFP_KERNEL, cpu_to_node(cpu));
1349 		if (!xc)
1350 			return -ENOMEM;
1351 		np = of_get_cpu_node(cpu, NULL);
1352 		if (np)
1353 			xc->chip_id = of_get_ibm_chip_id(np);
1354 		of_node_put(np);
1355 		xc->hw_ipi = XIVE_BAD_IRQ;
1356 
1357 		per_cpu(xive_cpu, cpu) = xc;
1358 	}
1359 
1360 	/* Setup EQs if not already */
1361 	return xive_setup_cpu_queues(cpu, xc);
1362 }
1363 
1364 static void xive_setup_cpu(void)
1365 {
1366 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1367 
1368 	/* The backend might have additional things to do */
1369 	if (xive_ops->setup_cpu)
1370 		xive_ops->setup_cpu(smp_processor_id(), xc);
1371 
1372 	/* Set CPPR to 0xff to enable flow of interrupts */
1373 	xc->cppr = 0xff;
1374 	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1375 }
1376 
1377 #ifdef CONFIG_SMP
1378 void xive_smp_setup_cpu(void)
1379 {
1380 	pr_devel("SMP setup CPU %d\n", smp_processor_id());
1381 
1382 	/* This will have already been done on the boot CPU */
1383 	if (smp_processor_id() != boot_cpuid)
1384 		xive_setup_cpu();
1385 
1386 }
1387 
1388 int xive_smp_prepare_cpu(unsigned int cpu)
1389 {
1390 	int rc;
1391 
1392 	/* Allocate per-CPU data and queues */
1393 	rc = xive_prepare_cpu(cpu);
1394 	if (rc)
1395 		return rc;
1396 
1397 	/* Allocate and setup IPI for the new CPU */
1398 	return xive_setup_cpu_ipi(cpu);
1399 }
1400 
1401 #ifdef CONFIG_HOTPLUG_CPU
1402 static void xive_flush_cpu_queue(unsigned int cpu, struct xive_cpu *xc)
1403 {
1404 	u32 irq;
1405 
1406 	/* We assume local irqs are disabled */
1407 	WARN_ON(!irqs_disabled());
1408 
1409 	/* Check what's already in the CPU queue */
1410 	while ((irq = xive_scan_interrupts(xc, false)) != 0) {
1411 		/*
1412 		 * We need to re-route that interrupt to its new destination.
1413 		 * First get and lock the descriptor
1414 		 */
1415 		struct irq_desc *desc = irq_to_desc(irq);
1416 		struct irq_data *d = irq_desc_get_irq_data(desc);
1417 		struct xive_irq_data *xd;
1418 		unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
1419 
1420 		/*
1421 		 * Ignore anything that isn't a XIVE irq and ignore
1422 		 * IPIs, so can just be dropped.
1423 		 */
1424 		if (d->domain != xive_irq_domain || hw_irq == 0)
1425 			continue;
1426 
1427 		/*
1428 		 * The IRQ should have already been re-routed, it's just a
1429 		 * stale in the old queue, so re-trigger it in order to make
1430 		 * it reach is new destination.
1431 		 */
1432 #ifdef DEBUG_FLUSH
1433 		pr_info("CPU %d: Got irq %d while offline, re-sending...\n",
1434 			cpu, irq);
1435 #endif
1436 		raw_spin_lock(&desc->lock);
1437 		xd = irq_desc_get_handler_data(desc);
1438 
1439 		/*
1440 		 * Clear saved_p to indicate that it's no longer pending
1441 		 */
1442 		xd->saved_p = false;
1443 
1444 		/*
1445 		 * For LSIs, we EOI, this will cause a resend if it's
1446 		 * still asserted. Otherwise do an MSI retrigger.
1447 		 */
1448 		if (xd->flags & XIVE_IRQ_FLAG_LSI)
1449 			xive_do_source_eoi(irqd_to_hwirq(d), xd);
1450 		else
1451 			xive_irq_retrigger(d);
1452 
1453 		raw_spin_unlock(&desc->lock);
1454 	}
1455 }
1456 
1457 void xive_smp_disable_cpu(void)
1458 {
1459 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1460 	unsigned int cpu = smp_processor_id();
1461 
1462 	/* Migrate interrupts away from the CPU */
1463 	irq_migrate_all_off_this_cpu();
1464 
1465 	/* Set CPPR to 0 to disable flow of interrupts */
1466 	xc->cppr = 0;
1467 	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1468 
1469 	/* Flush everything still in the queue */
1470 	xive_flush_cpu_queue(cpu, xc);
1471 
1472 	/* Re-enable CPPR  */
1473 	xc->cppr = 0xff;
1474 	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1475 }
1476 
1477 void xive_flush_interrupt(void)
1478 {
1479 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1480 	unsigned int cpu = smp_processor_id();
1481 
1482 	/* Called if an interrupt occurs while the CPU is hot unplugged */
1483 	xive_flush_cpu_queue(cpu, xc);
1484 }
1485 
1486 #endif /* CONFIG_HOTPLUG_CPU */
1487 
1488 #endif /* CONFIG_SMP */
1489 
1490 void xive_teardown_cpu(void)
1491 {
1492 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1493 	unsigned int cpu = smp_processor_id();
1494 
1495 	/* Set CPPR to 0 to disable flow of interrupts */
1496 	xc->cppr = 0;
1497 	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1498 
1499 	if (xive_ops->teardown_cpu)
1500 		xive_ops->teardown_cpu(cpu, xc);
1501 
1502 #ifdef CONFIG_SMP
1503 	/* Get rid of IPI */
1504 	xive_cleanup_cpu_ipi(cpu, xc);
1505 #endif
1506 
1507 	/* Disable and free the queues */
1508 	xive_cleanup_cpu_queues(cpu, xc);
1509 }
1510 
1511 void xive_shutdown(void)
1512 {
1513 	xive_ops->shutdown();
1514 }
1515 
1516 bool __init xive_core_init(const struct xive_ops *ops, void __iomem *area, u32 offset,
1517 			   u8 max_prio)
1518 {
1519 	xive_tima = area;
1520 	xive_tima_offset = offset;
1521 	xive_ops = ops;
1522 	xive_irq_priority = max_prio;
1523 
1524 	ppc_md.get_irq = xive_get_irq;
1525 	__xive_enabled = true;
1526 
1527 	pr_devel("Initializing host..\n");
1528 	xive_init_host();
1529 
1530 	pr_devel("Initializing boot CPU..\n");
1531 
1532 	/* Allocate per-CPU data and queues */
1533 	xive_prepare_cpu(smp_processor_id());
1534 
1535 	/* Get ready for interrupts */
1536 	xive_setup_cpu();
1537 
1538 	pr_info("Interrupt handling initialized with %s backend\n",
1539 		xive_ops->name);
1540 	pr_info("Using priority %d for all interrupts\n", max_prio);
1541 
1542 	return true;
1543 }
1544 
1545 __be32 *xive_queue_page_alloc(unsigned int cpu, u32 queue_shift)
1546 {
1547 	unsigned int alloc_order;
1548 	struct page *pages;
1549 	__be32 *qpage;
1550 
1551 	alloc_order = xive_alloc_order(queue_shift);
1552 	pages = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, alloc_order);
1553 	if (!pages)
1554 		return ERR_PTR(-ENOMEM);
1555 	qpage = (__be32 *)page_address(pages);
1556 	memset(qpage, 0, 1 << queue_shift);
1557 
1558 	return qpage;
1559 }
1560 
1561 static int __init xive_off(char *arg)
1562 {
1563 	xive_cmdline_disabled = true;
1564 	return 0;
1565 }
1566 __setup("xive=off", xive_off);
1567 
1568 void xive_debug_show_cpu(struct seq_file *m, int cpu)
1569 {
1570 	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
1571 
1572 	seq_printf(m, "CPU %d:", cpu);
1573 	if (xc) {
1574 		seq_printf(m, "pp=%02x CPPR=%02x ", xc->pending_prio, xc->cppr);
1575 
1576 #ifdef CONFIG_SMP
1577 		{
1578 			u64 val = xive_esb_read(&xc->ipi_data, XIVE_ESB_GET);
1579 
1580 			seq_printf(m, "IPI=0x%08x PQ=%c%c ", xc->hw_ipi,
1581 				   val & XIVE_ESB_VAL_P ? 'P' : '-',
1582 				   val & XIVE_ESB_VAL_Q ? 'Q' : '-');
1583 		}
1584 #endif
1585 		{
1586 			struct xive_q *q = &xc->queue[xive_irq_priority];
1587 			u32 i0, i1, idx;
1588 
1589 			if (q->qpage) {
1590 				idx = q->idx;
1591 				i0 = be32_to_cpup(q->qpage + idx);
1592 				idx = (idx + 1) & q->msk;
1593 				i1 = be32_to_cpup(q->qpage + idx);
1594 				seq_printf(m, "EQ idx=%d T=%d %08x %08x ...",
1595 					   q->idx, q->toggle, i0, i1);
1596 			}
1597 		}
1598 	}
1599 	seq_puts(m, "\n");
1600 }
1601 
1602 void xive_debug_show_irq(struct seq_file *m, u32 hw_irq, struct irq_data *d)
1603 {
1604 	struct irq_chip *chip = irq_data_get_irq_chip(d);
1605 	int rc;
1606 	u32 target;
1607 	u8 prio;
1608 	u32 lirq;
1609 
1610 	if (!is_xive_irq(chip))
1611 		return;
1612 
1613 	rc = xive_ops->get_irq_config(hw_irq, &target, &prio, &lirq);
1614 	if (rc) {
1615 		seq_printf(m, "IRQ 0x%08x : no config rc=%d\n", hw_irq, rc);
1616 		return;
1617 	}
1618 
1619 	seq_printf(m, "IRQ 0x%08x : target=0x%x prio=%02x lirq=0x%x ",
1620 		   hw_irq, target, prio, lirq);
1621 
1622 	if (d) {
1623 		struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
1624 		u64 val = xive_esb_read(xd, XIVE_ESB_GET);
1625 
1626 		seq_printf(m, "flags=%c%c%c PQ=%c%c",
1627 			   xd->flags & XIVE_IRQ_FLAG_STORE_EOI ? 'S' : ' ',
1628 			   xd->flags & XIVE_IRQ_FLAG_LSI ? 'L' : ' ',
1629 			   xd->flags & XIVE_IRQ_FLAG_H_INT_ESB ? 'H' : ' ',
1630 			   val & XIVE_ESB_VAL_P ? 'P' : '-',
1631 			   val & XIVE_ESB_VAL_Q ? 'Q' : '-');
1632 	}
1633 	seq_puts(m, "\n");
1634 }
1635 
1636 static int xive_core_debug_show(struct seq_file *m, void *private)
1637 {
1638 	unsigned int i;
1639 	struct irq_desc *desc;
1640 	int cpu;
1641 
1642 	if (xive_ops->debug_show)
1643 		xive_ops->debug_show(m, private);
1644 
1645 	for_each_possible_cpu(cpu)
1646 		xive_debug_show_cpu(m, cpu);
1647 
1648 	for_each_irq_desc(i, desc) {
1649 		struct irq_data *d = irq_desc_get_irq_data(desc);
1650 		unsigned int hw_irq;
1651 
1652 		if (!d)
1653 			continue;
1654 
1655 		hw_irq = (unsigned int)irqd_to_hwirq(d);
1656 
1657 		/* IPIs are special (HW number 0) */
1658 		if (hw_irq)
1659 			xive_debug_show_irq(m, hw_irq, d);
1660 	}
1661 	return 0;
1662 }
1663 DEFINE_SHOW_ATTRIBUTE(xive_core_debug);
1664 
1665 int xive_core_debug_init(void)
1666 {
1667 	if (xive_enabled())
1668 		debugfs_create_file("xive", 0400, powerpc_debugfs_root,
1669 				    NULL, &xive_core_debug_fops);
1670 	return 0;
1671 }
1672