1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright 2016,2017 IBM Corporation. 4 */ 5 6 #define pr_fmt(fmt) "xive: " fmt 7 8 #include <linux/types.h> 9 #include <linux/threads.h> 10 #include <linux/kernel.h> 11 #include <linux/irq.h> 12 #include <linux/debugfs.h> 13 #include <linux/smp.h> 14 #include <linux/interrupt.h> 15 #include <linux/seq_file.h> 16 #include <linux/init.h> 17 #include <linux/cpu.h> 18 #include <linux/of.h> 19 #include <linux/slab.h> 20 #include <linux/spinlock.h> 21 #include <linux/msi.h> 22 #include <linux/vmalloc.h> 23 24 #include <asm/debugfs.h> 25 #include <asm/prom.h> 26 #include <asm/io.h> 27 #include <asm/smp.h> 28 #include <asm/machdep.h> 29 #include <asm/irq.h> 30 #include <asm/errno.h> 31 #include <asm/xive.h> 32 #include <asm/xive-regs.h> 33 #include <asm/xmon.h> 34 35 #include "xive-internal.h" 36 37 #undef DEBUG_FLUSH 38 #undef DEBUG_ALL 39 40 #ifdef DEBUG_ALL 41 #define DBG_VERBOSE(fmt, ...) pr_devel("cpu %d - " fmt, \ 42 smp_processor_id(), ## __VA_ARGS__) 43 #else 44 #define DBG_VERBOSE(fmt...) do { } while(0) 45 #endif 46 47 bool __xive_enabled; 48 EXPORT_SYMBOL_GPL(__xive_enabled); 49 bool xive_cmdline_disabled; 50 51 /* We use only one priority for now */ 52 static u8 xive_irq_priority; 53 54 /* TIMA exported to KVM */ 55 void __iomem *xive_tima; 56 EXPORT_SYMBOL_GPL(xive_tima); 57 u32 xive_tima_offset; 58 59 /* Backend ops */ 60 static const struct xive_ops *xive_ops; 61 62 /* Our global interrupt domain */ 63 static struct irq_domain *xive_irq_domain; 64 65 #ifdef CONFIG_SMP 66 /* The IPIs all use the same logical irq number */ 67 static u32 xive_ipi_irq; 68 #endif 69 70 /* Xive state for each CPU */ 71 static DEFINE_PER_CPU(struct xive_cpu *, xive_cpu); 72 73 /* An invalid CPU target */ 74 #define XIVE_INVALID_TARGET (-1) 75 76 /* 77 * Read the next entry in a queue, return its content if it's valid 78 * or 0 if there is no new entry. 79 * 80 * The queue pointer is moved forward unless "just_peek" is set 81 */ 82 static u32 xive_read_eq(struct xive_q *q, bool just_peek) 83 { 84 u32 cur; 85 86 if (!q->qpage) 87 return 0; 88 cur = be32_to_cpup(q->qpage + q->idx); 89 90 /* Check valid bit (31) vs current toggle polarity */ 91 if ((cur >> 31) == q->toggle) 92 return 0; 93 94 /* If consuming from the queue ... */ 95 if (!just_peek) { 96 /* Next entry */ 97 q->idx = (q->idx + 1) & q->msk; 98 99 /* Wrap around: flip valid toggle */ 100 if (q->idx == 0) 101 q->toggle ^= 1; 102 } 103 /* Mask out the valid bit (31) */ 104 return cur & 0x7fffffff; 105 } 106 107 /* 108 * Scans all the queue that may have interrupts in them 109 * (based on "pending_prio") in priority order until an 110 * interrupt is found or all the queues are empty. 111 * 112 * Then updates the CPPR (Current Processor Priority 113 * Register) based on the most favored interrupt found 114 * (0xff if none) and return what was found (0 if none). 115 * 116 * If just_peek is set, return the most favored pending 117 * interrupt if any but don't update the queue pointers. 118 * 119 * Note: This function can operate generically on any number 120 * of queues (up to 8). The current implementation of the XIVE 121 * driver only uses a single queue however. 122 * 123 * Note2: This will also "flush" "the pending_count" of a queue 124 * into the "count" when that queue is observed to be empty. 125 * This is used to keep track of the amount of interrupts 126 * targetting a queue. When an interrupt is moved away from 127 * a queue, we only decrement that queue count once the queue 128 * has been observed empty to avoid races. 129 */ 130 static u32 xive_scan_interrupts(struct xive_cpu *xc, bool just_peek) 131 { 132 u32 irq = 0; 133 u8 prio = 0; 134 135 /* Find highest pending priority */ 136 while (xc->pending_prio != 0) { 137 struct xive_q *q; 138 139 prio = ffs(xc->pending_prio) - 1; 140 DBG_VERBOSE("scan_irq: trying prio %d\n", prio); 141 142 /* Try to fetch */ 143 irq = xive_read_eq(&xc->queue[prio], just_peek); 144 145 /* Found something ? That's it */ 146 if (irq) { 147 if (just_peek || irq_to_desc(irq)) 148 break; 149 /* 150 * We should never get here; if we do then we must 151 * have failed to synchronize the interrupt properly 152 * when shutting it down. 153 */ 154 pr_crit("xive: got interrupt %d without descriptor, dropping\n", 155 irq); 156 WARN_ON(1); 157 continue; 158 } 159 160 /* Clear pending bits */ 161 xc->pending_prio &= ~(1 << prio); 162 163 /* 164 * Check if the queue count needs adjusting due to 165 * interrupts being moved away. See description of 166 * xive_dec_target_count() 167 */ 168 q = &xc->queue[prio]; 169 if (atomic_read(&q->pending_count)) { 170 int p = atomic_xchg(&q->pending_count, 0); 171 if (p) { 172 WARN_ON(p > atomic_read(&q->count)); 173 atomic_sub(p, &q->count); 174 } 175 } 176 } 177 178 /* If nothing was found, set CPPR to 0xff */ 179 if (irq == 0) 180 prio = 0xff; 181 182 /* Update HW CPPR to match if necessary */ 183 if (prio != xc->cppr) { 184 DBG_VERBOSE("scan_irq: adjusting CPPR to %d\n", prio); 185 xc->cppr = prio; 186 out_8(xive_tima + xive_tima_offset + TM_CPPR, prio); 187 } 188 189 return irq; 190 } 191 192 /* 193 * This is used to perform the magic loads from an ESB 194 * described in xive-regs.h 195 */ 196 static notrace u8 xive_esb_read(struct xive_irq_data *xd, u32 offset) 197 { 198 u64 val; 199 200 if (offset == XIVE_ESB_SET_PQ_10 && xd->flags & XIVE_IRQ_FLAG_STORE_EOI) 201 offset |= XIVE_ESB_LD_ST_MO; 202 203 /* Handle HW errata */ 204 if (xd->flags & XIVE_IRQ_FLAG_SHIFT_BUG) 205 offset |= offset << 4; 206 207 if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw) 208 val = xive_ops->esb_rw(xd->hw_irq, offset, 0, 0); 209 else 210 val = in_be64(xd->eoi_mmio + offset); 211 212 return (u8)val; 213 } 214 215 static void xive_esb_write(struct xive_irq_data *xd, u32 offset, u64 data) 216 { 217 /* Handle HW errata */ 218 if (xd->flags & XIVE_IRQ_FLAG_SHIFT_BUG) 219 offset |= offset << 4; 220 221 if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw) 222 xive_ops->esb_rw(xd->hw_irq, offset, data, 1); 223 else 224 out_be64(xd->eoi_mmio + offset, data); 225 } 226 227 #ifdef CONFIG_XMON 228 static notrace void xive_dump_eq(const char *name, struct xive_q *q) 229 { 230 u32 i0, i1, idx; 231 232 if (!q->qpage) 233 return; 234 idx = q->idx; 235 i0 = be32_to_cpup(q->qpage + idx); 236 idx = (idx + 1) & q->msk; 237 i1 = be32_to_cpup(q->qpage + idx); 238 xmon_printf("%s idx=%d T=%d %08x %08x ...", name, 239 q->idx, q->toggle, i0, i1); 240 } 241 242 notrace void xmon_xive_do_dump(int cpu) 243 { 244 struct xive_cpu *xc = per_cpu(xive_cpu, cpu); 245 246 xmon_printf("CPU %d:", cpu); 247 if (xc) { 248 xmon_printf("pp=%02x CPPR=%02x ", xc->pending_prio, xc->cppr); 249 250 #ifdef CONFIG_SMP 251 { 252 u64 val = xive_esb_read(&xc->ipi_data, XIVE_ESB_GET); 253 254 xmon_printf("IPI=0x%08x PQ=%c%c ", xc->hw_ipi, 255 val & XIVE_ESB_VAL_P ? 'P' : '-', 256 val & XIVE_ESB_VAL_Q ? 'Q' : '-'); 257 } 258 #endif 259 xive_dump_eq("EQ", &xc->queue[xive_irq_priority]); 260 } 261 xmon_printf("\n"); 262 } 263 264 int xmon_xive_get_irq_config(u32 hw_irq, struct irq_data *d) 265 { 266 struct irq_chip *chip = irq_data_get_irq_chip(d); 267 int rc; 268 u32 target; 269 u8 prio; 270 u32 lirq; 271 272 if (!is_xive_irq(chip)) 273 return -EINVAL; 274 275 rc = xive_ops->get_irq_config(hw_irq, &target, &prio, &lirq); 276 if (rc) { 277 xmon_printf("IRQ 0x%08x : no config rc=%d\n", hw_irq, rc); 278 return rc; 279 } 280 281 xmon_printf("IRQ 0x%08x : target=0x%x prio=%02x lirq=0x%x ", 282 hw_irq, target, prio, lirq); 283 284 if (d) { 285 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 286 u64 val = xive_esb_read(xd, XIVE_ESB_GET); 287 288 xmon_printf("flags=%c%c%c PQ=%c%c", 289 xd->flags & XIVE_IRQ_FLAG_STORE_EOI ? 'S' : ' ', 290 xd->flags & XIVE_IRQ_FLAG_LSI ? 'L' : ' ', 291 xd->flags & XIVE_IRQ_FLAG_H_INT_ESB ? 'H' : ' ', 292 val & XIVE_ESB_VAL_P ? 'P' : '-', 293 val & XIVE_ESB_VAL_Q ? 'Q' : '-'); 294 } 295 296 xmon_printf("\n"); 297 return 0; 298 } 299 300 #endif /* CONFIG_XMON */ 301 302 static unsigned int xive_get_irq(void) 303 { 304 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 305 u32 irq; 306 307 /* 308 * This can be called either as a result of a HW interrupt or 309 * as a "replay" because EOI decided there was still something 310 * in one of the queues. 311 * 312 * First we perform an ACK cycle in order to update our mask 313 * of pending priorities. This will also have the effect of 314 * updating the CPPR to the most favored pending interrupts. 315 * 316 * In the future, if we have a way to differentiate a first 317 * entry (on HW interrupt) from a replay triggered by EOI, 318 * we could skip this on replays unless we soft-mask tells us 319 * that a new HW interrupt occurred. 320 */ 321 xive_ops->update_pending(xc); 322 323 DBG_VERBOSE("get_irq: pending=%02x\n", xc->pending_prio); 324 325 /* Scan our queue(s) for interrupts */ 326 irq = xive_scan_interrupts(xc, false); 327 328 DBG_VERBOSE("get_irq: got irq 0x%x, new pending=0x%02x\n", 329 irq, xc->pending_prio); 330 331 /* Return pending interrupt if any */ 332 if (irq == XIVE_BAD_IRQ) 333 return 0; 334 return irq; 335 } 336 337 /* 338 * After EOI'ing an interrupt, we need to re-check the queue 339 * to see if another interrupt is pending since multiple 340 * interrupts can coalesce into a single notification to the 341 * CPU. 342 * 343 * If we find that there is indeed more in there, we call 344 * force_external_irq_replay() to make Linux synthetize an 345 * external interrupt on the next call to local_irq_restore(). 346 */ 347 static void xive_do_queue_eoi(struct xive_cpu *xc) 348 { 349 if (xive_scan_interrupts(xc, true) != 0) { 350 DBG_VERBOSE("eoi: pending=0x%02x\n", xc->pending_prio); 351 force_external_irq_replay(); 352 } 353 } 354 355 /* 356 * EOI an interrupt at the source. There are several methods 357 * to do this depending on the HW version and source type 358 */ 359 static void xive_do_source_eoi(u32 hw_irq, struct xive_irq_data *xd) 360 { 361 xd->stale_p = false; 362 /* If the XIVE supports the new "store EOI facility, use it */ 363 if (xd->flags & XIVE_IRQ_FLAG_STORE_EOI) 364 xive_esb_write(xd, XIVE_ESB_STORE_EOI, 0); 365 else if (hw_irq && xd->flags & XIVE_IRQ_FLAG_EOI_FW) { 366 /* 367 * The FW told us to call it. This happens for some 368 * interrupt sources that need additional HW whacking 369 * beyond the ESB manipulation. For example LPC interrupts 370 * on P9 DD1.0 needed a latch to be clared in the LPC bridge 371 * itself. The Firmware will take care of it. 372 */ 373 if (WARN_ON_ONCE(!xive_ops->eoi)) 374 return; 375 xive_ops->eoi(hw_irq); 376 } else { 377 u8 eoi_val; 378 379 /* 380 * Otherwise for EOI, we use the special MMIO that does 381 * a clear of both P and Q and returns the old Q, 382 * except for LSIs where we use the "EOI cycle" special 383 * load. 384 * 385 * This allows us to then do a re-trigger if Q was set 386 * rather than synthesizing an interrupt in software 387 * 388 * For LSIs the HW EOI cycle is used rather than PQ bits, 389 * as they are automatically re-triggred in HW when still 390 * pending. 391 */ 392 if (xd->flags & XIVE_IRQ_FLAG_LSI) 393 xive_esb_read(xd, XIVE_ESB_LOAD_EOI); 394 else { 395 eoi_val = xive_esb_read(xd, XIVE_ESB_SET_PQ_00); 396 DBG_VERBOSE("eoi_val=%x\n", eoi_val); 397 398 /* Re-trigger if needed */ 399 if ((eoi_val & XIVE_ESB_VAL_Q) && xd->trig_mmio) 400 out_be64(xd->trig_mmio, 0); 401 } 402 } 403 } 404 405 /* irq_chip eoi callback, called with irq descriptor lock held */ 406 static void xive_irq_eoi(struct irq_data *d) 407 { 408 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 409 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 410 411 DBG_VERBOSE("eoi_irq: irq=%d [0x%lx] pending=%02x\n", 412 d->irq, irqd_to_hwirq(d), xc->pending_prio); 413 414 /* 415 * EOI the source if it hasn't been disabled and hasn't 416 * been passed-through to a KVM guest 417 */ 418 if (!irqd_irq_disabled(d) && !irqd_is_forwarded_to_vcpu(d) && 419 !(xd->flags & XIVE_IRQ_NO_EOI)) 420 xive_do_source_eoi(irqd_to_hwirq(d), xd); 421 else 422 xd->stale_p = true; 423 424 /* 425 * Clear saved_p to indicate that it's no longer occupying 426 * a queue slot on the target queue 427 */ 428 xd->saved_p = false; 429 430 /* Check for more work in the queue */ 431 xive_do_queue_eoi(xc); 432 } 433 434 /* 435 * Helper used to mask and unmask an interrupt source. This 436 * is only called for normal interrupts that do not require 437 * masking/unmasking via firmware. 438 */ 439 static void xive_do_source_set_mask(struct xive_irq_data *xd, 440 bool mask) 441 { 442 u64 val; 443 444 /* 445 * If the interrupt had P set, it may be in a queue. 446 * 447 * We need to make sure we don't re-enable it until it 448 * has been fetched from that queue and EOId. We keep 449 * a copy of that P state and use it to restore the 450 * ESB accordingly on unmask. 451 */ 452 if (mask) { 453 val = xive_esb_read(xd, XIVE_ESB_SET_PQ_01); 454 if (!xd->stale_p && !!(val & XIVE_ESB_VAL_P)) 455 xd->saved_p = true; 456 xd->stale_p = false; 457 } else if (xd->saved_p) { 458 xive_esb_read(xd, XIVE_ESB_SET_PQ_10); 459 xd->saved_p = false; 460 } else { 461 xive_esb_read(xd, XIVE_ESB_SET_PQ_00); 462 xd->stale_p = false; 463 } 464 } 465 466 /* 467 * Try to chose "cpu" as a new interrupt target. Increments 468 * the queue accounting for that target if it's not already 469 * full. 470 */ 471 static bool xive_try_pick_target(int cpu) 472 { 473 struct xive_cpu *xc = per_cpu(xive_cpu, cpu); 474 struct xive_q *q = &xc->queue[xive_irq_priority]; 475 int max; 476 477 /* 478 * Calculate max number of interrupts in that queue. 479 * 480 * We leave a gap of 1 just in case... 481 */ 482 max = (q->msk + 1) - 1; 483 return !!atomic_add_unless(&q->count, 1, max); 484 } 485 486 /* 487 * Un-account an interrupt for a target CPU. We don't directly 488 * decrement q->count since the interrupt might still be present 489 * in the queue. 490 * 491 * Instead increment a separate counter "pending_count" which 492 * will be substracted from "count" later when that CPU observes 493 * the queue to be empty. 494 */ 495 static void xive_dec_target_count(int cpu) 496 { 497 struct xive_cpu *xc = per_cpu(xive_cpu, cpu); 498 struct xive_q *q = &xc->queue[xive_irq_priority]; 499 500 if (WARN_ON(cpu < 0 || !xc)) { 501 pr_err("%s: cpu=%d xc=%p\n", __func__, cpu, xc); 502 return; 503 } 504 505 /* 506 * We increment the "pending count" which will be used 507 * to decrement the target queue count whenever it's next 508 * processed and found empty. This ensure that we don't 509 * decrement while we still have the interrupt there 510 * occupying a slot. 511 */ 512 atomic_inc(&q->pending_count); 513 } 514 515 /* Find a tentative CPU target in a CPU mask */ 516 static int xive_find_target_in_mask(const struct cpumask *mask, 517 unsigned int fuzz) 518 { 519 int cpu, first, num, i; 520 521 /* Pick up a starting point CPU in the mask based on fuzz */ 522 num = min_t(int, cpumask_weight(mask), nr_cpu_ids); 523 first = fuzz % num; 524 525 /* Locate it */ 526 cpu = cpumask_first(mask); 527 for (i = 0; i < first && cpu < nr_cpu_ids; i++) 528 cpu = cpumask_next(cpu, mask); 529 530 /* Sanity check */ 531 if (WARN_ON(cpu >= nr_cpu_ids)) 532 cpu = cpumask_first(cpu_online_mask); 533 534 /* Remember first one to handle wrap-around */ 535 first = cpu; 536 537 /* 538 * Now go through the entire mask until we find a valid 539 * target. 540 */ 541 do { 542 /* 543 * We re-check online as the fallback case passes us 544 * an untested affinity mask 545 */ 546 if (cpu_online(cpu) && xive_try_pick_target(cpu)) 547 return cpu; 548 cpu = cpumask_next(cpu, mask); 549 /* Wrap around */ 550 if (cpu >= nr_cpu_ids) 551 cpu = cpumask_first(mask); 552 } while (cpu != first); 553 554 return -1; 555 } 556 557 /* 558 * Pick a target CPU for an interrupt. This is done at 559 * startup or if the affinity is changed in a way that 560 * invalidates the current target. 561 */ 562 static int xive_pick_irq_target(struct irq_data *d, 563 const struct cpumask *affinity) 564 { 565 static unsigned int fuzz; 566 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 567 cpumask_var_t mask; 568 int cpu = -1; 569 570 /* 571 * If we have chip IDs, first we try to build a mask of 572 * CPUs matching the CPU and find a target in there 573 */ 574 if (xd->src_chip != XIVE_INVALID_CHIP_ID && 575 zalloc_cpumask_var(&mask, GFP_ATOMIC)) { 576 /* Build a mask of matching chip IDs */ 577 for_each_cpu_and(cpu, affinity, cpu_online_mask) { 578 struct xive_cpu *xc = per_cpu(xive_cpu, cpu); 579 if (xc->chip_id == xd->src_chip) 580 cpumask_set_cpu(cpu, mask); 581 } 582 /* Try to find a target */ 583 if (cpumask_empty(mask)) 584 cpu = -1; 585 else 586 cpu = xive_find_target_in_mask(mask, fuzz++); 587 free_cpumask_var(mask); 588 if (cpu >= 0) 589 return cpu; 590 fuzz--; 591 } 592 593 /* No chip IDs, fallback to using the affinity mask */ 594 return xive_find_target_in_mask(affinity, fuzz++); 595 } 596 597 static unsigned int xive_irq_startup(struct irq_data *d) 598 { 599 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 600 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 601 int target, rc; 602 603 xd->saved_p = false; 604 xd->stale_p = false; 605 pr_devel("xive_irq_startup: irq %d [0x%x] data @%p\n", 606 d->irq, hw_irq, d); 607 608 #ifdef CONFIG_PCI_MSI 609 /* 610 * The generic MSI code returns with the interrupt disabled on the 611 * card, using the MSI mask bits. Firmware doesn't appear to unmask 612 * at that level, so we do it here by hand. 613 */ 614 if (irq_data_get_msi_desc(d)) 615 pci_msi_unmask_irq(d); 616 #endif 617 618 /* Pick a target */ 619 target = xive_pick_irq_target(d, irq_data_get_affinity_mask(d)); 620 if (target == XIVE_INVALID_TARGET) { 621 /* Try again breaking affinity */ 622 target = xive_pick_irq_target(d, cpu_online_mask); 623 if (target == XIVE_INVALID_TARGET) 624 return -ENXIO; 625 pr_warn("irq %d started with broken affinity\n", d->irq); 626 } 627 628 /* Sanity check */ 629 if (WARN_ON(target == XIVE_INVALID_TARGET || 630 target >= nr_cpu_ids)) 631 target = smp_processor_id(); 632 633 xd->target = target; 634 635 /* 636 * Configure the logical number to be the Linux IRQ number 637 * and set the target queue 638 */ 639 rc = xive_ops->configure_irq(hw_irq, 640 get_hard_smp_processor_id(target), 641 xive_irq_priority, d->irq); 642 if (rc) 643 return rc; 644 645 /* Unmask the ESB */ 646 xive_do_source_set_mask(xd, false); 647 648 return 0; 649 } 650 651 /* called with irq descriptor lock held */ 652 static void xive_irq_shutdown(struct irq_data *d) 653 { 654 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 655 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 656 657 pr_devel("xive_irq_shutdown: irq %d [0x%x] data @%p\n", 658 d->irq, hw_irq, d); 659 660 if (WARN_ON(xd->target == XIVE_INVALID_TARGET)) 661 return; 662 663 /* Mask the interrupt at the source */ 664 xive_do_source_set_mask(xd, true); 665 666 /* 667 * Mask the interrupt in HW in the IVT/EAS and set the number 668 * to be the "bad" IRQ number 669 */ 670 xive_ops->configure_irq(hw_irq, 671 get_hard_smp_processor_id(xd->target), 672 0xff, XIVE_BAD_IRQ); 673 674 xive_dec_target_count(xd->target); 675 xd->target = XIVE_INVALID_TARGET; 676 } 677 678 static void xive_irq_unmask(struct irq_data *d) 679 { 680 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 681 682 pr_devel("xive_irq_unmask: irq %d data @%p\n", d->irq, xd); 683 684 /* 685 * This is a workaround for PCI LSI problems on P9, for 686 * these, we call FW to set the mask. The problems might 687 * be fixed by P9 DD2.0, if that is the case, firmware 688 * will no longer set that flag. 689 */ 690 if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) { 691 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 692 xive_ops->configure_irq(hw_irq, 693 get_hard_smp_processor_id(xd->target), 694 xive_irq_priority, d->irq); 695 return; 696 } 697 698 xive_do_source_set_mask(xd, false); 699 } 700 701 static void xive_irq_mask(struct irq_data *d) 702 { 703 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 704 705 pr_devel("xive_irq_mask: irq %d data @%p\n", d->irq, xd); 706 707 /* 708 * This is a workaround for PCI LSI problems on P9, for 709 * these, we call OPAL to set the mask. The problems might 710 * be fixed by P9 DD2.0, if that is the case, firmware 711 * will no longer set that flag. 712 */ 713 if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) { 714 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 715 xive_ops->configure_irq(hw_irq, 716 get_hard_smp_processor_id(xd->target), 717 0xff, d->irq); 718 return; 719 } 720 721 xive_do_source_set_mask(xd, true); 722 } 723 724 static int xive_irq_set_affinity(struct irq_data *d, 725 const struct cpumask *cpumask, 726 bool force) 727 { 728 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 729 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 730 u32 target, old_target; 731 int rc = 0; 732 733 pr_devel("xive_irq_set_affinity: irq %d\n", d->irq); 734 735 /* Is this valid ? */ 736 if (cpumask_any_and(cpumask, cpu_online_mask) >= nr_cpu_ids) 737 return -EINVAL; 738 739 /* Don't do anything if the interrupt isn't started */ 740 if (!irqd_is_started(d)) 741 return IRQ_SET_MASK_OK; 742 743 /* 744 * If existing target is already in the new mask, and is 745 * online then do nothing. 746 */ 747 if (xd->target != XIVE_INVALID_TARGET && 748 cpu_online(xd->target) && 749 cpumask_test_cpu(xd->target, cpumask)) 750 return IRQ_SET_MASK_OK; 751 752 /* Pick a new target */ 753 target = xive_pick_irq_target(d, cpumask); 754 755 /* No target found */ 756 if (target == XIVE_INVALID_TARGET) 757 return -ENXIO; 758 759 /* Sanity check */ 760 if (WARN_ON(target >= nr_cpu_ids)) 761 target = smp_processor_id(); 762 763 old_target = xd->target; 764 765 /* 766 * Only configure the irq if it's not currently passed-through to 767 * a KVM guest 768 */ 769 if (!irqd_is_forwarded_to_vcpu(d)) 770 rc = xive_ops->configure_irq(hw_irq, 771 get_hard_smp_processor_id(target), 772 xive_irq_priority, d->irq); 773 if (rc < 0) { 774 pr_err("Error %d reconfiguring irq %d\n", rc, d->irq); 775 return rc; 776 } 777 778 pr_devel(" target: 0x%x\n", target); 779 xd->target = target; 780 781 /* Give up previous target */ 782 if (old_target != XIVE_INVALID_TARGET) 783 xive_dec_target_count(old_target); 784 785 return IRQ_SET_MASK_OK; 786 } 787 788 static int xive_irq_set_type(struct irq_data *d, unsigned int flow_type) 789 { 790 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 791 792 /* 793 * We only support these. This has really no effect other than setting 794 * the corresponding descriptor bits mind you but those will in turn 795 * affect the resend function when re-enabling an edge interrupt. 796 * 797 * Set set the default to edge as explained in map(). 798 */ 799 if (flow_type == IRQ_TYPE_DEFAULT || flow_type == IRQ_TYPE_NONE) 800 flow_type = IRQ_TYPE_EDGE_RISING; 801 802 if (flow_type != IRQ_TYPE_EDGE_RISING && 803 flow_type != IRQ_TYPE_LEVEL_LOW) 804 return -EINVAL; 805 806 irqd_set_trigger_type(d, flow_type); 807 808 /* 809 * Double check it matches what the FW thinks 810 * 811 * NOTE: We don't know yet if the PAPR interface will provide 812 * the LSI vs MSI information apart from the device-tree so 813 * this check might have to move into an optional backend call 814 * that is specific to the native backend 815 */ 816 if ((flow_type == IRQ_TYPE_LEVEL_LOW) != 817 !!(xd->flags & XIVE_IRQ_FLAG_LSI)) { 818 pr_warn("Interrupt %d (HW 0x%x) type mismatch, Linux says %s, FW says %s\n", 819 d->irq, (u32)irqd_to_hwirq(d), 820 (flow_type == IRQ_TYPE_LEVEL_LOW) ? "Level" : "Edge", 821 (xd->flags & XIVE_IRQ_FLAG_LSI) ? "Level" : "Edge"); 822 } 823 824 return IRQ_SET_MASK_OK_NOCOPY; 825 } 826 827 static int xive_irq_retrigger(struct irq_data *d) 828 { 829 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 830 831 /* This should be only for MSIs */ 832 if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI)) 833 return 0; 834 835 /* 836 * To perform a retrigger, we first set the PQ bits to 837 * 11, then perform an EOI. 838 */ 839 xive_esb_read(xd, XIVE_ESB_SET_PQ_11); 840 841 /* 842 * Note: We pass "0" to the hw_irq argument in order to 843 * avoid calling into the backend EOI code which we don't 844 * want to do in the case of a re-trigger. Backends typically 845 * only do EOI for LSIs anyway. 846 */ 847 xive_do_source_eoi(0, xd); 848 849 return 1; 850 } 851 852 /* 853 * Caller holds the irq descriptor lock, so this won't be called 854 * concurrently with xive_get_irqchip_state on the same interrupt. 855 */ 856 static int xive_irq_set_vcpu_affinity(struct irq_data *d, void *state) 857 { 858 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 859 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 860 int rc; 861 u8 pq; 862 863 /* 864 * We only support this on interrupts that do not require 865 * firmware calls for masking and unmasking 866 */ 867 if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) 868 return -EIO; 869 870 /* 871 * This is called by KVM with state non-NULL for enabling 872 * pass-through or NULL for disabling it 873 */ 874 if (state) { 875 irqd_set_forwarded_to_vcpu(d); 876 877 /* Set it to PQ=10 state to prevent further sends */ 878 pq = xive_esb_read(xd, XIVE_ESB_SET_PQ_10); 879 if (!xd->stale_p) { 880 xd->saved_p = !!(pq & XIVE_ESB_VAL_P); 881 xd->stale_p = !xd->saved_p; 882 } 883 884 /* No target ? nothing to do */ 885 if (xd->target == XIVE_INVALID_TARGET) { 886 /* 887 * An untargetted interrupt should have been 888 * also masked at the source 889 */ 890 WARN_ON(xd->saved_p); 891 892 return 0; 893 } 894 895 /* 896 * If P was set, adjust state to PQ=11 to indicate 897 * that a resend is needed for the interrupt to reach 898 * the guest. Also remember the value of P. 899 * 900 * This also tells us that it's in flight to a host queue 901 * or has already been fetched but hasn't been EOIed yet 902 * by the host. This it's potentially using up a host 903 * queue slot. This is important to know because as long 904 * as this is the case, we must not hard-unmask it when 905 * "returning" that interrupt to the host. 906 * 907 * This saved_p is cleared by the host EOI, when we know 908 * for sure the queue slot is no longer in use. 909 */ 910 if (xd->saved_p) { 911 xive_esb_read(xd, XIVE_ESB_SET_PQ_11); 912 913 /* 914 * Sync the XIVE source HW to ensure the interrupt 915 * has gone through the EAS before we change its 916 * target to the guest. That should guarantee us 917 * that we *will* eventually get an EOI for it on 918 * the host. Otherwise there would be a small window 919 * for P to be seen here but the interrupt going 920 * to the guest queue. 921 */ 922 if (xive_ops->sync_source) 923 xive_ops->sync_source(hw_irq); 924 } 925 } else { 926 irqd_clr_forwarded_to_vcpu(d); 927 928 /* No host target ? hard mask and return */ 929 if (xd->target == XIVE_INVALID_TARGET) { 930 xive_do_source_set_mask(xd, true); 931 return 0; 932 } 933 934 /* 935 * Sync the XIVE source HW to ensure the interrupt 936 * has gone through the EAS before we change its 937 * target to the host. 938 */ 939 if (xive_ops->sync_source) 940 xive_ops->sync_source(hw_irq); 941 942 /* 943 * By convention we are called with the interrupt in 944 * a PQ=10 or PQ=11 state, ie, it won't fire and will 945 * have latched in Q whether there's a pending HW 946 * interrupt or not. 947 * 948 * First reconfigure the target. 949 */ 950 rc = xive_ops->configure_irq(hw_irq, 951 get_hard_smp_processor_id(xd->target), 952 xive_irq_priority, d->irq); 953 if (rc) 954 return rc; 955 956 /* 957 * Then if saved_p is not set, effectively re-enable the 958 * interrupt with an EOI. If it is set, we know there is 959 * still a message in a host queue somewhere that will be 960 * EOId eventually. 961 * 962 * Note: We don't check irqd_irq_disabled(). Effectively, 963 * we *will* let the irq get through even if masked if the 964 * HW is still firing it in order to deal with the whole 965 * saved_p business properly. If the interrupt triggers 966 * while masked, the generic code will re-mask it anyway. 967 */ 968 if (!xd->saved_p) 969 xive_do_source_eoi(hw_irq, xd); 970 971 } 972 return 0; 973 } 974 975 /* Called with irq descriptor lock held. */ 976 static int xive_get_irqchip_state(struct irq_data *data, 977 enum irqchip_irq_state which, bool *state) 978 { 979 struct xive_irq_data *xd = irq_data_get_irq_handler_data(data); 980 u8 pq; 981 982 switch (which) { 983 case IRQCHIP_STATE_ACTIVE: 984 pq = xive_esb_read(xd, XIVE_ESB_GET); 985 986 /* 987 * The esb value being all 1's means we couldn't get 988 * the PQ state of the interrupt through mmio. It may 989 * happen, for example when querying a PHB interrupt 990 * while the PHB is in an error state. We consider the 991 * interrupt to be inactive in that case. 992 */ 993 *state = (pq != XIVE_ESB_INVALID) && !xd->stale_p && 994 (xd->saved_p || !!(pq & XIVE_ESB_VAL_P)); 995 return 0; 996 default: 997 return -EINVAL; 998 } 999 } 1000 1001 static struct irq_chip xive_irq_chip = { 1002 .name = "XIVE-IRQ", 1003 .irq_startup = xive_irq_startup, 1004 .irq_shutdown = xive_irq_shutdown, 1005 .irq_eoi = xive_irq_eoi, 1006 .irq_mask = xive_irq_mask, 1007 .irq_unmask = xive_irq_unmask, 1008 .irq_set_affinity = xive_irq_set_affinity, 1009 .irq_set_type = xive_irq_set_type, 1010 .irq_retrigger = xive_irq_retrigger, 1011 .irq_set_vcpu_affinity = xive_irq_set_vcpu_affinity, 1012 .irq_get_irqchip_state = xive_get_irqchip_state, 1013 }; 1014 1015 bool is_xive_irq(struct irq_chip *chip) 1016 { 1017 return chip == &xive_irq_chip; 1018 } 1019 EXPORT_SYMBOL_GPL(is_xive_irq); 1020 1021 void xive_cleanup_irq_data(struct xive_irq_data *xd) 1022 { 1023 if (xd->eoi_mmio) { 1024 unmap_kernel_range((unsigned long)xd->eoi_mmio, 1025 1u << xd->esb_shift); 1026 iounmap(xd->eoi_mmio); 1027 if (xd->eoi_mmio == xd->trig_mmio) 1028 xd->trig_mmio = NULL; 1029 xd->eoi_mmio = NULL; 1030 } 1031 if (xd->trig_mmio) { 1032 unmap_kernel_range((unsigned long)xd->trig_mmio, 1033 1u << xd->esb_shift); 1034 iounmap(xd->trig_mmio); 1035 xd->trig_mmio = NULL; 1036 } 1037 } 1038 EXPORT_SYMBOL_GPL(xive_cleanup_irq_data); 1039 1040 static int xive_irq_alloc_data(unsigned int virq, irq_hw_number_t hw) 1041 { 1042 struct xive_irq_data *xd; 1043 int rc; 1044 1045 xd = kzalloc(sizeof(struct xive_irq_data), GFP_KERNEL); 1046 if (!xd) 1047 return -ENOMEM; 1048 rc = xive_ops->populate_irq_data(hw, xd); 1049 if (rc) { 1050 kfree(xd); 1051 return rc; 1052 } 1053 xd->target = XIVE_INVALID_TARGET; 1054 irq_set_handler_data(virq, xd); 1055 1056 /* 1057 * Turn OFF by default the interrupt being mapped. A side 1058 * effect of this check is the mapping the ESB page of the 1059 * interrupt in the Linux address space. This prevents page 1060 * fault issues in the crash handler which masks all 1061 * interrupts. 1062 */ 1063 xive_esb_read(xd, XIVE_ESB_SET_PQ_01); 1064 1065 return 0; 1066 } 1067 1068 static void xive_irq_free_data(unsigned int virq) 1069 { 1070 struct xive_irq_data *xd = irq_get_handler_data(virq); 1071 1072 if (!xd) 1073 return; 1074 irq_set_handler_data(virq, NULL); 1075 xive_cleanup_irq_data(xd); 1076 kfree(xd); 1077 } 1078 1079 #ifdef CONFIG_SMP 1080 1081 static void xive_cause_ipi(int cpu) 1082 { 1083 struct xive_cpu *xc; 1084 struct xive_irq_data *xd; 1085 1086 xc = per_cpu(xive_cpu, cpu); 1087 1088 DBG_VERBOSE("IPI CPU %d -> %d (HW IRQ 0x%x)\n", 1089 smp_processor_id(), cpu, xc->hw_ipi); 1090 1091 xd = &xc->ipi_data; 1092 if (WARN_ON(!xd->trig_mmio)) 1093 return; 1094 out_be64(xd->trig_mmio, 0); 1095 } 1096 1097 static irqreturn_t xive_muxed_ipi_action(int irq, void *dev_id) 1098 { 1099 return smp_ipi_demux(); 1100 } 1101 1102 static void xive_ipi_eoi(struct irq_data *d) 1103 { 1104 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 1105 1106 /* Handle possible race with unplug and drop stale IPIs */ 1107 if (!xc) 1108 return; 1109 1110 DBG_VERBOSE("IPI eoi: irq=%d [0x%lx] (HW IRQ 0x%x) pending=%02x\n", 1111 d->irq, irqd_to_hwirq(d), xc->hw_ipi, xc->pending_prio); 1112 1113 xive_do_source_eoi(xc->hw_ipi, &xc->ipi_data); 1114 xive_do_queue_eoi(xc); 1115 } 1116 1117 static void xive_ipi_do_nothing(struct irq_data *d) 1118 { 1119 /* 1120 * Nothing to do, we never mask/unmask IPIs, but the callback 1121 * has to exist for the struct irq_chip. 1122 */ 1123 } 1124 1125 static struct irq_chip xive_ipi_chip = { 1126 .name = "XIVE-IPI", 1127 .irq_eoi = xive_ipi_eoi, 1128 .irq_mask = xive_ipi_do_nothing, 1129 .irq_unmask = xive_ipi_do_nothing, 1130 }; 1131 1132 static void __init xive_request_ipi(void) 1133 { 1134 unsigned int virq; 1135 1136 /* 1137 * Initialization failed, move on, we might manage to 1138 * reach the point where we display our errors before 1139 * the system falls appart 1140 */ 1141 if (!xive_irq_domain) 1142 return; 1143 1144 /* Initialize it */ 1145 virq = irq_create_mapping(xive_irq_domain, 0); 1146 xive_ipi_irq = virq; 1147 1148 WARN_ON(request_irq(virq, xive_muxed_ipi_action, 1149 IRQF_PERCPU | IRQF_NO_THREAD, "IPI", NULL)); 1150 } 1151 1152 static int xive_setup_cpu_ipi(unsigned int cpu) 1153 { 1154 struct xive_cpu *xc; 1155 int rc; 1156 1157 pr_debug("Setting up IPI for CPU %d\n", cpu); 1158 1159 xc = per_cpu(xive_cpu, cpu); 1160 1161 /* Check if we are already setup */ 1162 if (xc->hw_ipi != XIVE_BAD_IRQ) 1163 return 0; 1164 1165 /* Grab an IPI from the backend, this will populate xc->hw_ipi */ 1166 if (xive_ops->get_ipi(cpu, xc)) 1167 return -EIO; 1168 1169 /* 1170 * Populate the IRQ data in the xive_cpu structure and 1171 * configure the HW / enable the IPIs. 1172 */ 1173 rc = xive_ops->populate_irq_data(xc->hw_ipi, &xc->ipi_data); 1174 if (rc) { 1175 pr_err("Failed to populate IPI data on CPU %d\n", cpu); 1176 return -EIO; 1177 } 1178 rc = xive_ops->configure_irq(xc->hw_ipi, 1179 get_hard_smp_processor_id(cpu), 1180 xive_irq_priority, xive_ipi_irq); 1181 if (rc) { 1182 pr_err("Failed to map IPI CPU %d\n", cpu); 1183 return -EIO; 1184 } 1185 pr_devel("CPU %d HW IPI %x, virq %d, trig_mmio=%p\n", cpu, 1186 xc->hw_ipi, xive_ipi_irq, xc->ipi_data.trig_mmio); 1187 1188 /* Unmask it */ 1189 xive_do_source_set_mask(&xc->ipi_data, false); 1190 1191 return 0; 1192 } 1193 1194 static void xive_cleanup_cpu_ipi(unsigned int cpu, struct xive_cpu *xc) 1195 { 1196 /* Disable the IPI and free the IRQ data */ 1197 1198 /* Already cleaned up ? */ 1199 if (xc->hw_ipi == XIVE_BAD_IRQ) 1200 return; 1201 1202 /* Mask the IPI */ 1203 xive_do_source_set_mask(&xc->ipi_data, true); 1204 1205 /* 1206 * Note: We don't call xive_cleanup_irq_data() to free 1207 * the mappings as this is called from an IPI on kexec 1208 * which is not a safe environment to call iounmap() 1209 */ 1210 1211 /* Deconfigure/mask in the backend */ 1212 xive_ops->configure_irq(xc->hw_ipi, hard_smp_processor_id(), 1213 0xff, xive_ipi_irq); 1214 1215 /* Free the IPIs in the backend */ 1216 xive_ops->put_ipi(cpu, xc); 1217 } 1218 1219 void __init xive_smp_probe(void) 1220 { 1221 smp_ops->cause_ipi = xive_cause_ipi; 1222 1223 /* Register the IPI */ 1224 xive_request_ipi(); 1225 1226 /* Allocate and setup IPI for the boot CPU */ 1227 xive_setup_cpu_ipi(smp_processor_id()); 1228 } 1229 1230 #endif /* CONFIG_SMP */ 1231 1232 static int xive_irq_domain_map(struct irq_domain *h, unsigned int virq, 1233 irq_hw_number_t hw) 1234 { 1235 int rc; 1236 1237 /* 1238 * Mark interrupts as edge sensitive by default so that resend 1239 * actually works. Will fix that up below if needed. 1240 */ 1241 irq_clear_status_flags(virq, IRQ_LEVEL); 1242 1243 #ifdef CONFIG_SMP 1244 /* IPIs are special and come up with HW number 0 */ 1245 if (hw == 0) { 1246 /* 1247 * IPIs are marked per-cpu. We use separate HW interrupts under 1248 * the hood but associated with the same "linux" interrupt 1249 */ 1250 irq_set_chip_and_handler(virq, &xive_ipi_chip, 1251 handle_percpu_irq); 1252 return 0; 1253 } 1254 #endif 1255 1256 rc = xive_irq_alloc_data(virq, hw); 1257 if (rc) 1258 return rc; 1259 1260 irq_set_chip_and_handler(virq, &xive_irq_chip, handle_fasteoi_irq); 1261 1262 return 0; 1263 } 1264 1265 static void xive_irq_domain_unmap(struct irq_domain *d, unsigned int virq) 1266 { 1267 struct irq_data *data = irq_get_irq_data(virq); 1268 unsigned int hw_irq; 1269 1270 /* XXX Assign BAD number */ 1271 if (!data) 1272 return; 1273 hw_irq = (unsigned int)irqd_to_hwirq(data); 1274 if (hw_irq) 1275 xive_irq_free_data(virq); 1276 } 1277 1278 static int xive_irq_domain_xlate(struct irq_domain *h, struct device_node *ct, 1279 const u32 *intspec, unsigned int intsize, 1280 irq_hw_number_t *out_hwirq, unsigned int *out_flags) 1281 1282 { 1283 *out_hwirq = intspec[0]; 1284 1285 /* 1286 * If intsize is at least 2, we look for the type in the second cell, 1287 * we assume the LSB indicates a level interrupt. 1288 */ 1289 if (intsize > 1) { 1290 if (intspec[1] & 1) 1291 *out_flags = IRQ_TYPE_LEVEL_LOW; 1292 else 1293 *out_flags = IRQ_TYPE_EDGE_RISING; 1294 } else 1295 *out_flags = IRQ_TYPE_LEVEL_LOW; 1296 1297 return 0; 1298 } 1299 1300 static int xive_irq_domain_match(struct irq_domain *h, struct device_node *node, 1301 enum irq_domain_bus_token bus_token) 1302 { 1303 return xive_ops->match(node); 1304 } 1305 1306 static const struct irq_domain_ops xive_irq_domain_ops = { 1307 .match = xive_irq_domain_match, 1308 .map = xive_irq_domain_map, 1309 .unmap = xive_irq_domain_unmap, 1310 .xlate = xive_irq_domain_xlate, 1311 }; 1312 1313 static void __init xive_init_host(void) 1314 { 1315 xive_irq_domain = irq_domain_add_nomap(NULL, XIVE_MAX_IRQ, 1316 &xive_irq_domain_ops, NULL); 1317 if (WARN_ON(xive_irq_domain == NULL)) 1318 return; 1319 irq_set_default_host(xive_irq_domain); 1320 } 1321 1322 static void xive_cleanup_cpu_queues(unsigned int cpu, struct xive_cpu *xc) 1323 { 1324 if (xc->queue[xive_irq_priority].qpage) 1325 xive_ops->cleanup_queue(cpu, xc, xive_irq_priority); 1326 } 1327 1328 static int xive_setup_cpu_queues(unsigned int cpu, struct xive_cpu *xc) 1329 { 1330 int rc = 0; 1331 1332 /* We setup 1 queues for now with a 64k page */ 1333 if (!xc->queue[xive_irq_priority].qpage) 1334 rc = xive_ops->setup_queue(cpu, xc, xive_irq_priority); 1335 1336 return rc; 1337 } 1338 1339 static int xive_prepare_cpu(unsigned int cpu) 1340 { 1341 struct xive_cpu *xc; 1342 1343 xc = per_cpu(xive_cpu, cpu); 1344 if (!xc) { 1345 struct device_node *np; 1346 1347 xc = kzalloc_node(sizeof(struct xive_cpu), 1348 GFP_KERNEL, cpu_to_node(cpu)); 1349 if (!xc) 1350 return -ENOMEM; 1351 np = of_get_cpu_node(cpu, NULL); 1352 if (np) 1353 xc->chip_id = of_get_ibm_chip_id(np); 1354 of_node_put(np); 1355 xc->hw_ipi = XIVE_BAD_IRQ; 1356 1357 per_cpu(xive_cpu, cpu) = xc; 1358 } 1359 1360 /* Setup EQs if not already */ 1361 return xive_setup_cpu_queues(cpu, xc); 1362 } 1363 1364 static void xive_setup_cpu(void) 1365 { 1366 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 1367 1368 /* The backend might have additional things to do */ 1369 if (xive_ops->setup_cpu) 1370 xive_ops->setup_cpu(smp_processor_id(), xc); 1371 1372 /* Set CPPR to 0xff to enable flow of interrupts */ 1373 xc->cppr = 0xff; 1374 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff); 1375 } 1376 1377 #ifdef CONFIG_SMP 1378 void xive_smp_setup_cpu(void) 1379 { 1380 pr_devel("SMP setup CPU %d\n", smp_processor_id()); 1381 1382 /* This will have already been done on the boot CPU */ 1383 if (smp_processor_id() != boot_cpuid) 1384 xive_setup_cpu(); 1385 1386 } 1387 1388 int xive_smp_prepare_cpu(unsigned int cpu) 1389 { 1390 int rc; 1391 1392 /* Allocate per-CPU data and queues */ 1393 rc = xive_prepare_cpu(cpu); 1394 if (rc) 1395 return rc; 1396 1397 /* Allocate and setup IPI for the new CPU */ 1398 return xive_setup_cpu_ipi(cpu); 1399 } 1400 1401 #ifdef CONFIG_HOTPLUG_CPU 1402 static void xive_flush_cpu_queue(unsigned int cpu, struct xive_cpu *xc) 1403 { 1404 u32 irq; 1405 1406 /* We assume local irqs are disabled */ 1407 WARN_ON(!irqs_disabled()); 1408 1409 /* Check what's already in the CPU queue */ 1410 while ((irq = xive_scan_interrupts(xc, false)) != 0) { 1411 /* 1412 * We need to re-route that interrupt to its new destination. 1413 * First get and lock the descriptor 1414 */ 1415 struct irq_desc *desc = irq_to_desc(irq); 1416 struct irq_data *d = irq_desc_get_irq_data(desc); 1417 struct xive_irq_data *xd; 1418 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 1419 1420 /* 1421 * Ignore anything that isn't a XIVE irq and ignore 1422 * IPIs, so can just be dropped. 1423 */ 1424 if (d->domain != xive_irq_domain || hw_irq == 0) 1425 continue; 1426 1427 /* 1428 * The IRQ should have already been re-routed, it's just a 1429 * stale in the old queue, so re-trigger it in order to make 1430 * it reach is new destination. 1431 */ 1432 #ifdef DEBUG_FLUSH 1433 pr_info("CPU %d: Got irq %d while offline, re-sending...\n", 1434 cpu, irq); 1435 #endif 1436 raw_spin_lock(&desc->lock); 1437 xd = irq_desc_get_handler_data(desc); 1438 1439 /* 1440 * Clear saved_p to indicate that it's no longer pending 1441 */ 1442 xd->saved_p = false; 1443 1444 /* 1445 * For LSIs, we EOI, this will cause a resend if it's 1446 * still asserted. Otherwise do an MSI retrigger. 1447 */ 1448 if (xd->flags & XIVE_IRQ_FLAG_LSI) 1449 xive_do_source_eoi(irqd_to_hwirq(d), xd); 1450 else 1451 xive_irq_retrigger(d); 1452 1453 raw_spin_unlock(&desc->lock); 1454 } 1455 } 1456 1457 void xive_smp_disable_cpu(void) 1458 { 1459 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 1460 unsigned int cpu = smp_processor_id(); 1461 1462 /* Migrate interrupts away from the CPU */ 1463 irq_migrate_all_off_this_cpu(); 1464 1465 /* Set CPPR to 0 to disable flow of interrupts */ 1466 xc->cppr = 0; 1467 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0); 1468 1469 /* Flush everything still in the queue */ 1470 xive_flush_cpu_queue(cpu, xc); 1471 1472 /* Re-enable CPPR */ 1473 xc->cppr = 0xff; 1474 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff); 1475 } 1476 1477 void xive_flush_interrupt(void) 1478 { 1479 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 1480 unsigned int cpu = smp_processor_id(); 1481 1482 /* Called if an interrupt occurs while the CPU is hot unplugged */ 1483 xive_flush_cpu_queue(cpu, xc); 1484 } 1485 1486 #endif /* CONFIG_HOTPLUG_CPU */ 1487 1488 #endif /* CONFIG_SMP */ 1489 1490 void xive_teardown_cpu(void) 1491 { 1492 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 1493 unsigned int cpu = smp_processor_id(); 1494 1495 /* Set CPPR to 0 to disable flow of interrupts */ 1496 xc->cppr = 0; 1497 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0); 1498 1499 if (xive_ops->teardown_cpu) 1500 xive_ops->teardown_cpu(cpu, xc); 1501 1502 #ifdef CONFIG_SMP 1503 /* Get rid of IPI */ 1504 xive_cleanup_cpu_ipi(cpu, xc); 1505 #endif 1506 1507 /* Disable and free the queues */ 1508 xive_cleanup_cpu_queues(cpu, xc); 1509 } 1510 1511 void xive_shutdown(void) 1512 { 1513 xive_ops->shutdown(); 1514 } 1515 1516 bool __init xive_core_init(const struct xive_ops *ops, void __iomem *area, u32 offset, 1517 u8 max_prio) 1518 { 1519 xive_tima = area; 1520 xive_tima_offset = offset; 1521 xive_ops = ops; 1522 xive_irq_priority = max_prio; 1523 1524 ppc_md.get_irq = xive_get_irq; 1525 __xive_enabled = true; 1526 1527 pr_devel("Initializing host..\n"); 1528 xive_init_host(); 1529 1530 pr_devel("Initializing boot CPU..\n"); 1531 1532 /* Allocate per-CPU data and queues */ 1533 xive_prepare_cpu(smp_processor_id()); 1534 1535 /* Get ready for interrupts */ 1536 xive_setup_cpu(); 1537 1538 pr_info("Interrupt handling initialized with %s backend\n", 1539 xive_ops->name); 1540 pr_info("Using priority %d for all interrupts\n", max_prio); 1541 1542 return true; 1543 } 1544 1545 __be32 *xive_queue_page_alloc(unsigned int cpu, u32 queue_shift) 1546 { 1547 unsigned int alloc_order; 1548 struct page *pages; 1549 __be32 *qpage; 1550 1551 alloc_order = xive_alloc_order(queue_shift); 1552 pages = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, alloc_order); 1553 if (!pages) 1554 return ERR_PTR(-ENOMEM); 1555 qpage = (__be32 *)page_address(pages); 1556 memset(qpage, 0, 1 << queue_shift); 1557 1558 return qpage; 1559 } 1560 1561 static int __init xive_off(char *arg) 1562 { 1563 xive_cmdline_disabled = true; 1564 return 0; 1565 } 1566 __setup("xive=off", xive_off); 1567 1568 void xive_debug_show_cpu(struct seq_file *m, int cpu) 1569 { 1570 struct xive_cpu *xc = per_cpu(xive_cpu, cpu); 1571 1572 seq_printf(m, "CPU %d:", cpu); 1573 if (xc) { 1574 seq_printf(m, "pp=%02x CPPR=%02x ", xc->pending_prio, xc->cppr); 1575 1576 #ifdef CONFIG_SMP 1577 { 1578 u64 val = xive_esb_read(&xc->ipi_data, XIVE_ESB_GET); 1579 1580 seq_printf(m, "IPI=0x%08x PQ=%c%c ", xc->hw_ipi, 1581 val & XIVE_ESB_VAL_P ? 'P' : '-', 1582 val & XIVE_ESB_VAL_Q ? 'Q' : '-'); 1583 } 1584 #endif 1585 { 1586 struct xive_q *q = &xc->queue[xive_irq_priority]; 1587 u32 i0, i1, idx; 1588 1589 if (q->qpage) { 1590 idx = q->idx; 1591 i0 = be32_to_cpup(q->qpage + idx); 1592 idx = (idx + 1) & q->msk; 1593 i1 = be32_to_cpup(q->qpage + idx); 1594 seq_printf(m, "EQ idx=%d T=%d %08x %08x ...", 1595 q->idx, q->toggle, i0, i1); 1596 } 1597 } 1598 } 1599 seq_puts(m, "\n"); 1600 } 1601 1602 void xive_debug_show_irq(struct seq_file *m, u32 hw_irq, struct irq_data *d) 1603 { 1604 struct irq_chip *chip = irq_data_get_irq_chip(d); 1605 int rc; 1606 u32 target; 1607 u8 prio; 1608 u32 lirq; 1609 1610 if (!is_xive_irq(chip)) 1611 return; 1612 1613 rc = xive_ops->get_irq_config(hw_irq, &target, &prio, &lirq); 1614 if (rc) { 1615 seq_printf(m, "IRQ 0x%08x : no config rc=%d\n", hw_irq, rc); 1616 return; 1617 } 1618 1619 seq_printf(m, "IRQ 0x%08x : target=0x%x prio=%02x lirq=0x%x ", 1620 hw_irq, target, prio, lirq); 1621 1622 if (d) { 1623 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 1624 u64 val = xive_esb_read(xd, XIVE_ESB_GET); 1625 1626 seq_printf(m, "flags=%c%c%c PQ=%c%c", 1627 xd->flags & XIVE_IRQ_FLAG_STORE_EOI ? 'S' : ' ', 1628 xd->flags & XIVE_IRQ_FLAG_LSI ? 'L' : ' ', 1629 xd->flags & XIVE_IRQ_FLAG_H_INT_ESB ? 'H' : ' ', 1630 val & XIVE_ESB_VAL_P ? 'P' : '-', 1631 val & XIVE_ESB_VAL_Q ? 'Q' : '-'); 1632 } 1633 seq_puts(m, "\n"); 1634 } 1635 1636 static int xive_core_debug_show(struct seq_file *m, void *private) 1637 { 1638 unsigned int i; 1639 struct irq_desc *desc; 1640 int cpu; 1641 1642 if (xive_ops->debug_show) 1643 xive_ops->debug_show(m, private); 1644 1645 for_each_possible_cpu(cpu) 1646 xive_debug_show_cpu(m, cpu); 1647 1648 for_each_irq_desc(i, desc) { 1649 struct irq_data *d = irq_desc_get_irq_data(desc); 1650 unsigned int hw_irq; 1651 1652 if (!d) 1653 continue; 1654 1655 hw_irq = (unsigned int)irqd_to_hwirq(d); 1656 1657 /* IPIs are special (HW number 0) */ 1658 if (hw_irq) 1659 xive_debug_show_irq(m, hw_irq, d); 1660 } 1661 return 0; 1662 } 1663 DEFINE_SHOW_ATTRIBUTE(xive_core_debug); 1664 1665 int xive_core_debug_init(void) 1666 { 1667 if (xive_enabled()) 1668 debugfs_create_file("xive", 0400, powerpc_debugfs_root, 1669 NULL, &xive_core_debug_fops); 1670 return 0; 1671 } 1672