1 /* 2 * Copyright 2016,2017 IBM Corporation. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 */ 9 10 #define pr_fmt(fmt) "xive: " fmt 11 12 #include <linux/types.h> 13 #include <linux/threads.h> 14 #include <linux/kernel.h> 15 #include <linux/irq.h> 16 #include <linux/debugfs.h> 17 #include <linux/smp.h> 18 #include <linux/interrupt.h> 19 #include <linux/seq_file.h> 20 #include <linux/init.h> 21 #include <linux/cpu.h> 22 #include <linux/of.h> 23 #include <linux/slab.h> 24 #include <linux/spinlock.h> 25 #include <linux/msi.h> 26 27 #include <asm/prom.h> 28 #include <asm/io.h> 29 #include <asm/smp.h> 30 #include <asm/machdep.h> 31 #include <asm/irq.h> 32 #include <asm/errno.h> 33 #include <asm/xive.h> 34 #include <asm/xive-regs.h> 35 #include <asm/xmon.h> 36 37 #include "xive-internal.h" 38 39 #undef DEBUG_FLUSH 40 #undef DEBUG_ALL 41 42 #ifdef DEBUG_ALL 43 #define DBG_VERBOSE(fmt, ...) pr_devel("cpu %d - " fmt, \ 44 smp_processor_id(), ## __VA_ARGS__) 45 #else 46 #define DBG_VERBOSE(fmt...) do { } while(0) 47 #endif 48 49 bool __xive_enabled; 50 EXPORT_SYMBOL_GPL(__xive_enabled); 51 bool xive_cmdline_disabled; 52 53 /* We use only one priority for now */ 54 static u8 xive_irq_priority; 55 56 /* TIMA exported to KVM */ 57 void __iomem *xive_tima; 58 EXPORT_SYMBOL_GPL(xive_tima); 59 u32 xive_tima_offset; 60 61 /* Backend ops */ 62 static const struct xive_ops *xive_ops; 63 64 /* Our global interrupt domain */ 65 static struct irq_domain *xive_irq_domain; 66 67 #ifdef CONFIG_SMP 68 /* The IPIs all use the same logical irq number */ 69 static u32 xive_ipi_irq; 70 #endif 71 72 /* Xive state for each CPU */ 73 static DEFINE_PER_CPU(struct xive_cpu *, xive_cpu); 74 75 /* 76 * A "disabled" interrupt should never fire, to catch problems 77 * we set its logical number to this 78 */ 79 #define XIVE_BAD_IRQ 0x7fffffff 80 #define XIVE_MAX_IRQ (XIVE_BAD_IRQ - 1) 81 82 /* An invalid CPU target */ 83 #define XIVE_INVALID_TARGET (-1) 84 85 /* 86 * Read the next entry in a queue, return its content if it's valid 87 * or 0 if there is no new entry. 88 * 89 * The queue pointer is moved forward unless "just_peek" is set 90 */ 91 static u32 xive_read_eq(struct xive_q *q, bool just_peek) 92 { 93 u32 cur; 94 95 if (!q->qpage) 96 return 0; 97 cur = be32_to_cpup(q->qpage + q->idx); 98 99 /* Check valid bit (31) vs current toggle polarity */ 100 if ((cur >> 31) == q->toggle) 101 return 0; 102 103 /* If consuming from the queue ... */ 104 if (!just_peek) { 105 /* Next entry */ 106 q->idx = (q->idx + 1) & q->msk; 107 108 /* Wrap around: flip valid toggle */ 109 if (q->idx == 0) 110 q->toggle ^= 1; 111 } 112 /* Mask out the valid bit (31) */ 113 return cur & 0x7fffffff; 114 } 115 116 /* 117 * Scans all the queue that may have interrupts in them 118 * (based on "pending_prio") in priority order until an 119 * interrupt is found or all the queues are empty. 120 * 121 * Then updates the CPPR (Current Processor Priority 122 * Register) based on the most favored interrupt found 123 * (0xff if none) and return what was found (0 if none). 124 * 125 * If just_peek is set, return the most favored pending 126 * interrupt if any but don't update the queue pointers. 127 * 128 * Note: This function can operate generically on any number 129 * of queues (up to 8). The current implementation of the XIVE 130 * driver only uses a single queue however. 131 * 132 * Note2: This will also "flush" "the pending_count" of a queue 133 * into the "count" when that queue is observed to be empty. 134 * This is used to keep track of the amount of interrupts 135 * targetting a queue. When an interrupt is moved away from 136 * a queue, we only decrement that queue count once the queue 137 * has been observed empty to avoid races. 138 */ 139 static u32 xive_scan_interrupts(struct xive_cpu *xc, bool just_peek) 140 { 141 u32 irq = 0; 142 u8 prio; 143 144 /* Find highest pending priority */ 145 while (xc->pending_prio != 0) { 146 struct xive_q *q; 147 148 prio = ffs(xc->pending_prio) - 1; 149 DBG_VERBOSE("scan_irq: trying prio %d\n", prio); 150 151 /* Try to fetch */ 152 irq = xive_read_eq(&xc->queue[prio], just_peek); 153 154 /* Found something ? That's it */ 155 if (irq) 156 break; 157 158 /* Clear pending bits */ 159 xc->pending_prio &= ~(1 << prio); 160 161 /* 162 * Check if the queue count needs adjusting due to 163 * interrupts being moved away. See description of 164 * xive_dec_target_count() 165 */ 166 q = &xc->queue[prio]; 167 if (atomic_read(&q->pending_count)) { 168 int p = atomic_xchg(&q->pending_count, 0); 169 if (p) { 170 WARN_ON(p > atomic_read(&q->count)); 171 atomic_sub(p, &q->count); 172 } 173 } 174 } 175 176 /* If nothing was found, set CPPR to 0xff */ 177 if (irq == 0) 178 prio = 0xff; 179 180 /* Update HW CPPR to match if necessary */ 181 if (prio != xc->cppr) { 182 DBG_VERBOSE("scan_irq: adjusting CPPR to %d\n", prio); 183 xc->cppr = prio; 184 out_8(xive_tima + xive_tima_offset + TM_CPPR, prio); 185 } 186 187 return irq; 188 } 189 190 /* 191 * This is used to perform the magic loads from an ESB 192 * described in xive.h 193 */ 194 static notrace u8 xive_esb_read(struct xive_irq_data *xd, u32 offset) 195 { 196 u64 val; 197 198 /* Handle HW errata */ 199 if (xd->flags & XIVE_IRQ_FLAG_SHIFT_BUG) 200 offset |= offset << 4; 201 202 if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw) 203 val = xive_ops->esb_rw(xd->hw_irq, offset, 0, 0); 204 else 205 val = in_be64(xd->eoi_mmio + offset); 206 207 return (u8)val; 208 } 209 210 static void xive_esb_write(struct xive_irq_data *xd, u32 offset, u64 data) 211 { 212 /* Handle HW errata */ 213 if (xd->flags & XIVE_IRQ_FLAG_SHIFT_BUG) 214 offset |= offset << 4; 215 216 if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw) 217 xive_ops->esb_rw(xd->hw_irq, offset, data, 1); 218 else 219 out_be64(xd->eoi_mmio + offset, data); 220 } 221 222 #ifdef CONFIG_XMON 223 static notrace void xive_dump_eq(const char *name, struct xive_q *q) 224 { 225 u32 i0, i1, idx; 226 227 if (!q->qpage) 228 return; 229 idx = q->idx; 230 i0 = be32_to_cpup(q->qpage + idx); 231 idx = (idx + 1) & q->msk; 232 i1 = be32_to_cpup(q->qpage + idx); 233 xmon_printf(" %s Q T=%d %08x %08x ...\n", name, 234 q->toggle, i0, i1); 235 } 236 237 notrace void xmon_xive_do_dump(int cpu) 238 { 239 struct xive_cpu *xc = per_cpu(xive_cpu, cpu); 240 241 xmon_printf("XIVE state for CPU %d:\n", cpu); 242 xmon_printf(" pp=%02x cppr=%02x\n", xc->pending_prio, xc->cppr); 243 xive_dump_eq("IRQ", &xc->queue[xive_irq_priority]); 244 #ifdef CONFIG_SMP 245 { 246 u64 val = xive_esb_read(&xc->ipi_data, XIVE_ESB_GET); 247 xmon_printf(" IPI state: %x:%c%c\n", xc->hw_ipi, 248 val & XIVE_ESB_VAL_P ? 'P' : 'p', 249 val & XIVE_ESB_VAL_P ? 'Q' : 'q'); 250 } 251 #endif 252 } 253 #endif /* CONFIG_XMON */ 254 255 static unsigned int xive_get_irq(void) 256 { 257 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 258 u32 irq; 259 260 /* 261 * This can be called either as a result of a HW interrupt or 262 * as a "replay" because EOI decided there was still something 263 * in one of the queues. 264 * 265 * First we perform an ACK cycle in order to update our mask 266 * of pending priorities. This will also have the effect of 267 * updating the CPPR to the most favored pending interrupts. 268 * 269 * In the future, if we have a way to differenciate a first 270 * entry (on HW interrupt) from a replay triggered by EOI, 271 * we could skip this on replays unless we soft-mask tells us 272 * that a new HW interrupt occurred. 273 */ 274 xive_ops->update_pending(xc); 275 276 DBG_VERBOSE("get_irq: pending=%02x\n", xc->pending_prio); 277 278 /* Scan our queue(s) for interrupts */ 279 irq = xive_scan_interrupts(xc, false); 280 281 DBG_VERBOSE("get_irq: got irq 0x%x, new pending=0x%02x\n", 282 irq, xc->pending_prio); 283 284 /* Return pending interrupt if any */ 285 if (irq == XIVE_BAD_IRQ) 286 return 0; 287 return irq; 288 } 289 290 /* 291 * After EOI'ing an interrupt, we need to re-check the queue 292 * to see if another interrupt is pending since multiple 293 * interrupts can coalesce into a single notification to the 294 * CPU. 295 * 296 * If we find that there is indeed more in there, we call 297 * force_external_irq_replay() to make Linux synthetize an 298 * external interrupt on the next call to local_irq_restore(). 299 */ 300 static void xive_do_queue_eoi(struct xive_cpu *xc) 301 { 302 if (xive_scan_interrupts(xc, true) != 0) { 303 DBG_VERBOSE("eoi: pending=0x%02x\n", xc->pending_prio); 304 force_external_irq_replay(); 305 } 306 } 307 308 /* 309 * EOI an interrupt at the source. There are several methods 310 * to do this depending on the HW version and source type 311 */ 312 void xive_do_source_eoi(u32 hw_irq, struct xive_irq_data *xd) 313 { 314 /* If the XIVE supports the new "store EOI facility, use it */ 315 if (xd->flags & XIVE_IRQ_FLAG_STORE_EOI) 316 xive_esb_write(xd, XIVE_ESB_STORE_EOI, 0); 317 else if (hw_irq && xd->flags & XIVE_IRQ_FLAG_EOI_FW) { 318 /* 319 * The FW told us to call it. This happens for some 320 * interrupt sources that need additional HW whacking 321 * beyond the ESB manipulation. For example LPC interrupts 322 * on P9 DD1.0 need a latch to be clared in the LPC bridge 323 * itself. The Firmware will take care of it. 324 */ 325 if (WARN_ON_ONCE(!xive_ops->eoi)) 326 return; 327 xive_ops->eoi(hw_irq); 328 } else { 329 u8 eoi_val; 330 331 /* 332 * Otherwise for EOI, we use the special MMIO that does 333 * a clear of both P and Q and returns the old Q, 334 * except for LSIs where we use the "EOI cycle" special 335 * load. 336 * 337 * This allows us to then do a re-trigger if Q was set 338 * rather than synthesizing an interrupt in software 339 * 340 * For LSIs, using the HW EOI cycle works around a problem 341 * on P9 DD1 PHBs where the other ESB accesses don't work 342 * properly. 343 */ 344 if (xd->flags & XIVE_IRQ_FLAG_LSI) 345 xive_esb_read(xd, XIVE_ESB_LOAD_EOI); 346 else { 347 eoi_val = xive_esb_read(xd, XIVE_ESB_SET_PQ_00); 348 DBG_VERBOSE("eoi_val=%x\n", eoi_val); 349 350 /* Re-trigger if needed */ 351 if ((eoi_val & XIVE_ESB_VAL_Q) && xd->trig_mmio) 352 out_be64(xd->trig_mmio, 0); 353 } 354 } 355 } 356 357 /* irq_chip eoi callback */ 358 static void xive_irq_eoi(struct irq_data *d) 359 { 360 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 361 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 362 363 DBG_VERBOSE("eoi_irq: irq=%d [0x%lx] pending=%02x\n", 364 d->irq, irqd_to_hwirq(d), xc->pending_prio); 365 366 /* 367 * EOI the source if it hasn't been disabled and hasn't 368 * been passed-through to a KVM guest 369 */ 370 if (!irqd_irq_disabled(d) && !irqd_is_forwarded_to_vcpu(d)) 371 xive_do_source_eoi(irqd_to_hwirq(d), xd); 372 373 /* 374 * Clear saved_p to indicate that it's no longer occupying 375 * a queue slot on the target queue 376 */ 377 xd->saved_p = false; 378 379 /* Check for more work in the queue */ 380 xive_do_queue_eoi(xc); 381 } 382 383 /* 384 * Helper used to mask and unmask an interrupt source. This 385 * is only called for normal interrupts that do not require 386 * masking/unmasking via firmware. 387 */ 388 static void xive_do_source_set_mask(struct xive_irq_data *xd, 389 bool mask) 390 { 391 u64 val; 392 393 /* 394 * If the interrupt had P set, it may be in a queue. 395 * 396 * We need to make sure we don't re-enable it until it 397 * has been fetched from that queue and EOId. We keep 398 * a copy of that P state and use it to restore the 399 * ESB accordingly on unmask. 400 */ 401 if (mask) { 402 val = xive_esb_read(xd, XIVE_ESB_SET_PQ_01); 403 xd->saved_p = !!(val & XIVE_ESB_VAL_P); 404 } else if (xd->saved_p) 405 xive_esb_read(xd, XIVE_ESB_SET_PQ_10); 406 else 407 xive_esb_read(xd, XIVE_ESB_SET_PQ_00); 408 } 409 410 /* 411 * Try to chose "cpu" as a new interrupt target. Increments 412 * the queue accounting for that target if it's not already 413 * full. 414 */ 415 static bool xive_try_pick_target(int cpu) 416 { 417 struct xive_cpu *xc = per_cpu(xive_cpu, cpu); 418 struct xive_q *q = &xc->queue[xive_irq_priority]; 419 int max; 420 421 /* 422 * Calculate max number of interrupts in that queue. 423 * 424 * We leave a gap of 1 just in case... 425 */ 426 max = (q->msk + 1) - 1; 427 return !!atomic_add_unless(&q->count, 1, max); 428 } 429 430 /* 431 * Un-account an interrupt for a target CPU. We don't directly 432 * decrement q->count since the interrupt might still be present 433 * in the queue. 434 * 435 * Instead increment a separate counter "pending_count" which 436 * will be substracted from "count" later when that CPU observes 437 * the queue to be empty. 438 */ 439 static void xive_dec_target_count(int cpu) 440 { 441 struct xive_cpu *xc = per_cpu(xive_cpu, cpu); 442 struct xive_q *q = &xc->queue[xive_irq_priority]; 443 444 if (unlikely(WARN_ON(cpu < 0 || !xc))) { 445 pr_err("%s: cpu=%d xc=%p\n", __func__, cpu, xc); 446 return; 447 } 448 449 /* 450 * We increment the "pending count" which will be used 451 * to decrement the target queue count whenever it's next 452 * processed and found empty. This ensure that we don't 453 * decrement while we still have the interrupt there 454 * occupying a slot. 455 */ 456 atomic_inc(&q->pending_count); 457 } 458 459 /* Find a tentative CPU target in a CPU mask */ 460 static int xive_find_target_in_mask(const struct cpumask *mask, 461 unsigned int fuzz) 462 { 463 int cpu, first, num, i; 464 465 /* Pick up a starting point CPU in the mask based on fuzz */ 466 num = min_t(int, cpumask_weight(mask), nr_cpu_ids); 467 first = fuzz % num; 468 469 /* Locate it */ 470 cpu = cpumask_first(mask); 471 for (i = 0; i < first && cpu < nr_cpu_ids; i++) 472 cpu = cpumask_next(cpu, mask); 473 474 /* Sanity check */ 475 if (WARN_ON(cpu >= nr_cpu_ids)) 476 cpu = cpumask_first(cpu_online_mask); 477 478 /* Remember first one to handle wrap-around */ 479 first = cpu; 480 481 /* 482 * Now go through the entire mask until we find a valid 483 * target. 484 */ 485 for (;;) { 486 /* 487 * We re-check online as the fallback case passes us 488 * an untested affinity mask 489 */ 490 if (cpu_online(cpu) && xive_try_pick_target(cpu)) 491 return cpu; 492 cpu = cpumask_next(cpu, mask); 493 if (cpu == first) 494 break; 495 /* Wrap around */ 496 if (cpu >= nr_cpu_ids) 497 cpu = cpumask_first(mask); 498 } 499 return -1; 500 } 501 502 /* 503 * Pick a target CPU for an interrupt. This is done at 504 * startup or if the affinity is changed in a way that 505 * invalidates the current target. 506 */ 507 static int xive_pick_irq_target(struct irq_data *d, 508 const struct cpumask *affinity) 509 { 510 static unsigned int fuzz; 511 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 512 cpumask_var_t mask; 513 int cpu = -1; 514 515 /* 516 * If we have chip IDs, first we try to build a mask of 517 * CPUs matching the CPU and find a target in there 518 */ 519 if (xd->src_chip != XIVE_INVALID_CHIP_ID && 520 zalloc_cpumask_var(&mask, GFP_ATOMIC)) { 521 /* Build a mask of matching chip IDs */ 522 for_each_cpu_and(cpu, affinity, cpu_online_mask) { 523 struct xive_cpu *xc = per_cpu(xive_cpu, cpu); 524 if (xc->chip_id == xd->src_chip) 525 cpumask_set_cpu(cpu, mask); 526 } 527 /* Try to find a target */ 528 if (cpumask_empty(mask)) 529 cpu = -1; 530 else 531 cpu = xive_find_target_in_mask(mask, fuzz++); 532 free_cpumask_var(mask); 533 if (cpu >= 0) 534 return cpu; 535 fuzz--; 536 } 537 538 /* No chip IDs, fallback to using the affinity mask */ 539 return xive_find_target_in_mask(affinity, fuzz++); 540 } 541 542 static unsigned int xive_irq_startup(struct irq_data *d) 543 { 544 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 545 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 546 int target, rc; 547 548 pr_devel("xive_irq_startup: irq %d [0x%x] data @%p\n", 549 d->irq, hw_irq, d); 550 551 #ifdef CONFIG_PCI_MSI 552 /* 553 * The generic MSI code returns with the interrupt disabled on the 554 * card, using the MSI mask bits. Firmware doesn't appear to unmask 555 * at that level, so we do it here by hand. 556 */ 557 if (irq_data_get_msi_desc(d)) 558 pci_msi_unmask_irq(d); 559 #endif 560 561 /* Pick a target */ 562 target = xive_pick_irq_target(d, irq_data_get_affinity_mask(d)); 563 if (target == XIVE_INVALID_TARGET) { 564 /* Try again breaking affinity */ 565 target = xive_pick_irq_target(d, cpu_online_mask); 566 if (target == XIVE_INVALID_TARGET) 567 return -ENXIO; 568 pr_warn("irq %d started with broken affinity\n", d->irq); 569 } 570 571 /* Sanity check */ 572 if (WARN_ON(target == XIVE_INVALID_TARGET || 573 target >= nr_cpu_ids)) 574 target = smp_processor_id(); 575 576 xd->target = target; 577 578 /* 579 * Configure the logical number to be the Linux IRQ number 580 * and set the target queue 581 */ 582 rc = xive_ops->configure_irq(hw_irq, 583 get_hard_smp_processor_id(target), 584 xive_irq_priority, d->irq); 585 if (rc) 586 return rc; 587 588 /* Unmask the ESB */ 589 xive_do_source_set_mask(xd, false); 590 591 return 0; 592 } 593 594 static void xive_irq_shutdown(struct irq_data *d) 595 { 596 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 597 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 598 599 pr_devel("xive_irq_shutdown: irq %d [0x%x] data @%p\n", 600 d->irq, hw_irq, d); 601 602 if (WARN_ON(xd->target == XIVE_INVALID_TARGET)) 603 return; 604 605 /* Mask the interrupt at the source */ 606 xive_do_source_set_mask(xd, true); 607 608 /* 609 * The above may have set saved_p. We clear it otherwise it 610 * will prevent re-enabling later on. It is ok to forget the 611 * fact that the interrupt might be in a queue because we are 612 * accounting that already in xive_dec_target_count() and will 613 * be re-routing it to a new queue with proper accounting when 614 * it's started up again 615 */ 616 xd->saved_p = false; 617 618 /* 619 * Mask the interrupt in HW in the IVT/EAS and set the number 620 * to be the "bad" IRQ number 621 */ 622 xive_ops->configure_irq(hw_irq, 623 get_hard_smp_processor_id(xd->target), 624 0xff, XIVE_BAD_IRQ); 625 626 xive_dec_target_count(xd->target); 627 xd->target = XIVE_INVALID_TARGET; 628 } 629 630 static void xive_irq_unmask(struct irq_data *d) 631 { 632 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 633 634 pr_devel("xive_irq_unmask: irq %d data @%p\n", d->irq, xd); 635 636 /* 637 * This is a workaround for PCI LSI problems on P9, for 638 * these, we call FW to set the mask. The problems might 639 * be fixed by P9 DD2.0, if that is the case, firmware 640 * will no longer set that flag. 641 */ 642 if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) { 643 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 644 xive_ops->configure_irq(hw_irq, 645 get_hard_smp_processor_id(xd->target), 646 xive_irq_priority, d->irq); 647 return; 648 } 649 650 xive_do_source_set_mask(xd, false); 651 } 652 653 static void xive_irq_mask(struct irq_data *d) 654 { 655 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 656 657 pr_devel("xive_irq_mask: irq %d data @%p\n", d->irq, xd); 658 659 /* 660 * This is a workaround for PCI LSI problems on P9, for 661 * these, we call OPAL to set the mask. The problems might 662 * be fixed by P9 DD2.0, if that is the case, firmware 663 * will no longer set that flag. 664 */ 665 if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) { 666 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 667 xive_ops->configure_irq(hw_irq, 668 get_hard_smp_processor_id(xd->target), 669 0xff, d->irq); 670 return; 671 } 672 673 xive_do_source_set_mask(xd, true); 674 } 675 676 static int xive_irq_set_affinity(struct irq_data *d, 677 const struct cpumask *cpumask, 678 bool force) 679 { 680 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 681 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 682 u32 target, old_target; 683 int rc = 0; 684 685 pr_devel("xive_irq_set_affinity: irq %d\n", d->irq); 686 687 /* Is this valid ? */ 688 if (cpumask_any_and(cpumask, cpu_online_mask) >= nr_cpu_ids) 689 return -EINVAL; 690 691 /* Don't do anything if the interrupt isn't started */ 692 if (!irqd_is_started(d)) 693 return IRQ_SET_MASK_OK; 694 695 /* 696 * If existing target is already in the new mask, and is 697 * online then do nothing. 698 */ 699 if (xd->target != XIVE_INVALID_TARGET && 700 cpu_online(xd->target) && 701 cpumask_test_cpu(xd->target, cpumask)) 702 return IRQ_SET_MASK_OK; 703 704 /* Pick a new target */ 705 target = xive_pick_irq_target(d, cpumask); 706 707 /* No target found */ 708 if (target == XIVE_INVALID_TARGET) 709 return -ENXIO; 710 711 /* Sanity check */ 712 if (WARN_ON(target >= nr_cpu_ids)) 713 target = smp_processor_id(); 714 715 old_target = xd->target; 716 717 /* 718 * Only configure the irq if it's not currently passed-through to 719 * a KVM guest 720 */ 721 if (!irqd_is_forwarded_to_vcpu(d)) 722 rc = xive_ops->configure_irq(hw_irq, 723 get_hard_smp_processor_id(target), 724 xive_irq_priority, d->irq); 725 if (rc < 0) { 726 pr_err("Error %d reconfiguring irq %d\n", rc, d->irq); 727 return rc; 728 } 729 730 pr_devel(" target: 0x%x\n", target); 731 xd->target = target; 732 733 /* Give up previous target */ 734 if (old_target != XIVE_INVALID_TARGET) 735 xive_dec_target_count(old_target); 736 737 return IRQ_SET_MASK_OK; 738 } 739 740 static int xive_irq_set_type(struct irq_data *d, unsigned int flow_type) 741 { 742 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 743 744 /* 745 * We only support these. This has really no effect other than setting 746 * the corresponding descriptor bits mind you but those will in turn 747 * affect the resend function when re-enabling an edge interrupt. 748 * 749 * Set set the default to edge as explained in map(). 750 */ 751 if (flow_type == IRQ_TYPE_DEFAULT || flow_type == IRQ_TYPE_NONE) 752 flow_type = IRQ_TYPE_EDGE_RISING; 753 754 if (flow_type != IRQ_TYPE_EDGE_RISING && 755 flow_type != IRQ_TYPE_LEVEL_LOW) 756 return -EINVAL; 757 758 irqd_set_trigger_type(d, flow_type); 759 760 /* 761 * Double check it matches what the FW thinks 762 * 763 * NOTE: We don't know yet if the PAPR interface will provide 764 * the LSI vs MSI information apart from the device-tree so 765 * this check might have to move into an optional backend call 766 * that is specific to the native backend 767 */ 768 if ((flow_type == IRQ_TYPE_LEVEL_LOW) != 769 !!(xd->flags & XIVE_IRQ_FLAG_LSI)) { 770 pr_warn("Interrupt %d (HW 0x%x) type mismatch, Linux says %s, FW says %s\n", 771 d->irq, (u32)irqd_to_hwirq(d), 772 (flow_type == IRQ_TYPE_LEVEL_LOW) ? "Level" : "Edge", 773 (xd->flags & XIVE_IRQ_FLAG_LSI) ? "Level" : "Edge"); 774 } 775 776 return IRQ_SET_MASK_OK_NOCOPY; 777 } 778 779 static int xive_irq_retrigger(struct irq_data *d) 780 { 781 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 782 783 /* This should be only for MSIs */ 784 if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI)) 785 return 0; 786 787 /* 788 * To perform a retrigger, we first set the PQ bits to 789 * 11, then perform an EOI. 790 */ 791 xive_esb_read(xd, XIVE_ESB_SET_PQ_11); 792 793 /* 794 * Note: We pass "0" to the hw_irq argument in order to 795 * avoid calling into the backend EOI code which we don't 796 * want to do in the case of a re-trigger. Backends typically 797 * only do EOI for LSIs anyway. 798 */ 799 xive_do_source_eoi(0, xd); 800 801 return 1; 802 } 803 804 static int xive_irq_set_vcpu_affinity(struct irq_data *d, void *state) 805 { 806 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 807 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 808 int rc; 809 u8 pq; 810 811 /* 812 * We only support this on interrupts that do not require 813 * firmware calls for masking and unmasking 814 */ 815 if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) 816 return -EIO; 817 818 /* 819 * This is called by KVM with state non-NULL for enabling 820 * pass-through or NULL for disabling it 821 */ 822 if (state) { 823 irqd_set_forwarded_to_vcpu(d); 824 825 /* Set it to PQ=10 state to prevent further sends */ 826 pq = xive_esb_read(xd, XIVE_ESB_SET_PQ_10); 827 828 /* No target ? nothing to do */ 829 if (xd->target == XIVE_INVALID_TARGET) { 830 /* 831 * An untargetted interrupt should have been 832 * also masked at the source 833 */ 834 WARN_ON(pq & 2); 835 836 return 0; 837 } 838 839 /* 840 * If P was set, adjust state to PQ=11 to indicate 841 * that a resend is needed for the interrupt to reach 842 * the guest. Also remember the value of P. 843 * 844 * This also tells us that it's in flight to a host queue 845 * or has already been fetched but hasn't been EOIed yet 846 * by the host. This it's potentially using up a host 847 * queue slot. This is important to know because as long 848 * as this is the case, we must not hard-unmask it when 849 * "returning" that interrupt to the host. 850 * 851 * This saved_p is cleared by the host EOI, when we know 852 * for sure the queue slot is no longer in use. 853 */ 854 if (pq & 2) { 855 pq = xive_esb_read(xd, XIVE_ESB_SET_PQ_11); 856 xd->saved_p = true; 857 858 /* 859 * Sync the XIVE source HW to ensure the interrupt 860 * has gone through the EAS before we change its 861 * target to the guest. That should guarantee us 862 * that we *will* eventually get an EOI for it on 863 * the host. Otherwise there would be a small window 864 * for P to be seen here but the interrupt going 865 * to the guest queue. 866 */ 867 if (xive_ops->sync_source) 868 xive_ops->sync_source(hw_irq); 869 } else 870 xd->saved_p = false; 871 } else { 872 irqd_clr_forwarded_to_vcpu(d); 873 874 /* No host target ? hard mask and return */ 875 if (xd->target == XIVE_INVALID_TARGET) { 876 xive_do_source_set_mask(xd, true); 877 return 0; 878 } 879 880 /* 881 * Sync the XIVE source HW to ensure the interrupt 882 * has gone through the EAS before we change its 883 * target to the host. 884 */ 885 if (xive_ops->sync_source) 886 xive_ops->sync_source(hw_irq); 887 888 /* 889 * By convention we are called with the interrupt in 890 * a PQ=10 or PQ=11 state, ie, it won't fire and will 891 * have latched in Q whether there's a pending HW 892 * interrupt or not. 893 * 894 * First reconfigure the target. 895 */ 896 rc = xive_ops->configure_irq(hw_irq, 897 get_hard_smp_processor_id(xd->target), 898 xive_irq_priority, d->irq); 899 if (rc) 900 return rc; 901 902 /* 903 * Then if saved_p is not set, effectively re-enable the 904 * interrupt with an EOI. If it is set, we know there is 905 * still a message in a host queue somewhere that will be 906 * EOId eventually. 907 * 908 * Note: We don't check irqd_irq_disabled(). Effectively, 909 * we *will* let the irq get through even if masked if the 910 * HW is still firing it in order to deal with the whole 911 * saved_p business properly. If the interrupt triggers 912 * while masked, the generic code will re-mask it anyway. 913 */ 914 if (!xd->saved_p) 915 xive_do_source_eoi(hw_irq, xd); 916 917 } 918 return 0; 919 } 920 921 static struct irq_chip xive_irq_chip = { 922 .name = "XIVE-IRQ", 923 .irq_startup = xive_irq_startup, 924 .irq_shutdown = xive_irq_shutdown, 925 .irq_eoi = xive_irq_eoi, 926 .irq_mask = xive_irq_mask, 927 .irq_unmask = xive_irq_unmask, 928 .irq_set_affinity = xive_irq_set_affinity, 929 .irq_set_type = xive_irq_set_type, 930 .irq_retrigger = xive_irq_retrigger, 931 .irq_set_vcpu_affinity = xive_irq_set_vcpu_affinity, 932 }; 933 934 bool is_xive_irq(struct irq_chip *chip) 935 { 936 return chip == &xive_irq_chip; 937 } 938 EXPORT_SYMBOL_GPL(is_xive_irq); 939 940 void xive_cleanup_irq_data(struct xive_irq_data *xd) 941 { 942 if (xd->eoi_mmio) { 943 iounmap(xd->eoi_mmio); 944 if (xd->eoi_mmio == xd->trig_mmio) 945 xd->trig_mmio = NULL; 946 xd->eoi_mmio = NULL; 947 } 948 if (xd->trig_mmio) { 949 iounmap(xd->trig_mmio); 950 xd->trig_mmio = NULL; 951 } 952 } 953 EXPORT_SYMBOL_GPL(xive_cleanup_irq_data); 954 955 static int xive_irq_alloc_data(unsigned int virq, irq_hw_number_t hw) 956 { 957 struct xive_irq_data *xd; 958 int rc; 959 960 xd = kzalloc(sizeof(struct xive_irq_data), GFP_KERNEL); 961 if (!xd) 962 return -ENOMEM; 963 rc = xive_ops->populate_irq_data(hw, xd); 964 if (rc) { 965 kfree(xd); 966 return rc; 967 } 968 xd->target = XIVE_INVALID_TARGET; 969 irq_set_handler_data(virq, xd); 970 971 return 0; 972 } 973 974 static void xive_irq_free_data(unsigned int virq) 975 { 976 struct xive_irq_data *xd = irq_get_handler_data(virq); 977 978 if (!xd) 979 return; 980 irq_set_handler_data(virq, NULL); 981 xive_cleanup_irq_data(xd); 982 kfree(xd); 983 } 984 985 #ifdef CONFIG_SMP 986 987 static void xive_cause_ipi(int cpu) 988 { 989 struct xive_cpu *xc; 990 struct xive_irq_data *xd; 991 992 xc = per_cpu(xive_cpu, cpu); 993 994 DBG_VERBOSE("IPI CPU %d -> %d (HW IRQ 0x%x)\n", 995 smp_processor_id(), cpu, xc->hw_ipi); 996 997 xd = &xc->ipi_data; 998 if (WARN_ON(!xd->trig_mmio)) 999 return; 1000 out_be64(xd->trig_mmio, 0); 1001 } 1002 1003 static irqreturn_t xive_muxed_ipi_action(int irq, void *dev_id) 1004 { 1005 return smp_ipi_demux(); 1006 } 1007 1008 static void xive_ipi_eoi(struct irq_data *d) 1009 { 1010 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 1011 1012 DBG_VERBOSE("IPI eoi: irq=%d [0x%lx] (HW IRQ 0x%x) pending=%02x\n", 1013 d->irq, irqd_to_hwirq(d), xc->hw_ipi, xc->pending_prio); 1014 1015 /* Handle possible race with unplug and drop stale IPIs */ 1016 if (!xc) 1017 return; 1018 xive_do_source_eoi(xc->hw_ipi, &xc->ipi_data); 1019 xive_do_queue_eoi(xc); 1020 } 1021 1022 static void xive_ipi_do_nothing(struct irq_data *d) 1023 { 1024 /* 1025 * Nothing to do, we never mask/unmask IPIs, but the callback 1026 * has to exist for the struct irq_chip. 1027 */ 1028 } 1029 1030 static struct irq_chip xive_ipi_chip = { 1031 .name = "XIVE-IPI", 1032 .irq_eoi = xive_ipi_eoi, 1033 .irq_mask = xive_ipi_do_nothing, 1034 .irq_unmask = xive_ipi_do_nothing, 1035 }; 1036 1037 static void __init xive_request_ipi(void) 1038 { 1039 unsigned int virq; 1040 1041 /* 1042 * Initialization failed, move on, we might manage to 1043 * reach the point where we display our errors before 1044 * the system falls appart 1045 */ 1046 if (!xive_irq_domain) 1047 return; 1048 1049 /* Initialize it */ 1050 virq = irq_create_mapping(xive_irq_domain, 0); 1051 xive_ipi_irq = virq; 1052 1053 WARN_ON(request_irq(virq, xive_muxed_ipi_action, 1054 IRQF_PERCPU | IRQF_NO_THREAD, "IPI", NULL)); 1055 } 1056 1057 static int xive_setup_cpu_ipi(unsigned int cpu) 1058 { 1059 struct xive_cpu *xc; 1060 int rc; 1061 1062 pr_debug("Setting up IPI for CPU %d\n", cpu); 1063 1064 xc = per_cpu(xive_cpu, cpu); 1065 1066 /* Check if we are already setup */ 1067 if (xc->hw_ipi != 0) 1068 return 0; 1069 1070 /* Grab an IPI from the backend, this will populate xc->hw_ipi */ 1071 if (xive_ops->get_ipi(cpu, xc)) 1072 return -EIO; 1073 1074 /* 1075 * Populate the IRQ data in the xive_cpu structure and 1076 * configure the HW / enable the IPIs. 1077 */ 1078 rc = xive_ops->populate_irq_data(xc->hw_ipi, &xc->ipi_data); 1079 if (rc) { 1080 pr_err("Failed to populate IPI data on CPU %d\n", cpu); 1081 return -EIO; 1082 } 1083 rc = xive_ops->configure_irq(xc->hw_ipi, 1084 get_hard_smp_processor_id(cpu), 1085 xive_irq_priority, xive_ipi_irq); 1086 if (rc) { 1087 pr_err("Failed to map IPI CPU %d\n", cpu); 1088 return -EIO; 1089 } 1090 pr_devel("CPU %d HW IPI %x, virq %d, trig_mmio=%p\n", cpu, 1091 xc->hw_ipi, xive_ipi_irq, xc->ipi_data.trig_mmio); 1092 1093 /* Unmask it */ 1094 xive_do_source_set_mask(&xc->ipi_data, false); 1095 1096 return 0; 1097 } 1098 1099 static void xive_cleanup_cpu_ipi(unsigned int cpu, struct xive_cpu *xc) 1100 { 1101 /* Disable the IPI and free the IRQ data */ 1102 1103 /* Already cleaned up ? */ 1104 if (xc->hw_ipi == 0) 1105 return; 1106 1107 /* Mask the IPI */ 1108 xive_do_source_set_mask(&xc->ipi_data, true); 1109 1110 /* 1111 * Note: We don't call xive_cleanup_irq_data() to free 1112 * the mappings as this is called from an IPI on kexec 1113 * which is not a safe environment to call iounmap() 1114 */ 1115 1116 /* Deconfigure/mask in the backend */ 1117 xive_ops->configure_irq(xc->hw_ipi, hard_smp_processor_id(), 1118 0xff, xive_ipi_irq); 1119 1120 /* Free the IPIs in the backend */ 1121 xive_ops->put_ipi(cpu, xc); 1122 } 1123 1124 void __init xive_smp_probe(void) 1125 { 1126 smp_ops->cause_ipi = xive_cause_ipi; 1127 1128 /* Register the IPI */ 1129 xive_request_ipi(); 1130 1131 /* Allocate and setup IPI for the boot CPU */ 1132 xive_setup_cpu_ipi(smp_processor_id()); 1133 } 1134 1135 #endif /* CONFIG_SMP */ 1136 1137 static int xive_irq_domain_map(struct irq_domain *h, unsigned int virq, 1138 irq_hw_number_t hw) 1139 { 1140 int rc; 1141 1142 /* 1143 * Mark interrupts as edge sensitive by default so that resend 1144 * actually works. Will fix that up below if needed. 1145 */ 1146 irq_clear_status_flags(virq, IRQ_LEVEL); 1147 1148 #ifdef CONFIG_SMP 1149 /* IPIs are special and come up with HW number 0 */ 1150 if (hw == 0) { 1151 /* 1152 * IPIs are marked per-cpu. We use separate HW interrupts under 1153 * the hood but associated with the same "linux" interrupt 1154 */ 1155 irq_set_chip_and_handler(virq, &xive_ipi_chip, 1156 handle_percpu_irq); 1157 return 0; 1158 } 1159 #endif 1160 1161 rc = xive_irq_alloc_data(virq, hw); 1162 if (rc) 1163 return rc; 1164 1165 irq_set_chip_and_handler(virq, &xive_irq_chip, handle_fasteoi_irq); 1166 1167 return 0; 1168 } 1169 1170 static void xive_irq_domain_unmap(struct irq_domain *d, unsigned int virq) 1171 { 1172 struct irq_data *data = irq_get_irq_data(virq); 1173 unsigned int hw_irq; 1174 1175 /* XXX Assign BAD number */ 1176 if (!data) 1177 return; 1178 hw_irq = (unsigned int)irqd_to_hwirq(data); 1179 if (hw_irq) 1180 xive_irq_free_data(virq); 1181 } 1182 1183 static int xive_irq_domain_xlate(struct irq_domain *h, struct device_node *ct, 1184 const u32 *intspec, unsigned int intsize, 1185 irq_hw_number_t *out_hwirq, unsigned int *out_flags) 1186 1187 { 1188 *out_hwirq = intspec[0]; 1189 1190 /* 1191 * If intsize is at least 2, we look for the type in the second cell, 1192 * we assume the LSB indicates a level interrupt. 1193 */ 1194 if (intsize > 1) { 1195 if (intspec[1] & 1) 1196 *out_flags = IRQ_TYPE_LEVEL_LOW; 1197 else 1198 *out_flags = IRQ_TYPE_EDGE_RISING; 1199 } else 1200 *out_flags = IRQ_TYPE_LEVEL_LOW; 1201 1202 return 0; 1203 } 1204 1205 static int xive_irq_domain_match(struct irq_domain *h, struct device_node *node, 1206 enum irq_domain_bus_token bus_token) 1207 { 1208 return xive_ops->match(node); 1209 } 1210 1211 static const struct irq_domain_ops xive_irq_domain_ops = { 1212 .match = xive_irq_domain_match, 1213 .map = xive_irq_domain_map, 1214 .unmap = xive_irq_domain_unmap, 1215 .xlate = xive_irq_domain_xlate, 1216 }; 1217 1218 static void __init xive_init_host(void) 1219 { 1220 xive_irq_domain = irq_domain_add_nomap(NULL, XIVE_MAX_IRQ, 1221 &xive_irq_domain_ops, NULL); 1222 if (WARN_ON(xive_irq_domain == NULL)) 1223 return; 1224 irq_set_default_host(xive_irq_domain); 1225 } 1226 1227 static void xive_cleanup_cpu_queues(unsigned int cpu, struct xive_cpu *xc) 1228 { 1229 if (xc->queue[xive_irq_priority].qpage) 1230 xive_ops->cleanup_queue(cpu, xc, xive_irq_priority); 1231 } 1232 1233 static int xive_setup_cpu_queues(unsigned int cpu, struct xive_cpu *xc) 1234 { 1235 int rc = 0; 1236 1237 /* We setup 1 queues for now with a 64k page */ 1238 if (!xc->queue[xive_irq_priority].qpage) 1239 rc = xive_ops->setup_queue(cpu, xc, xive_irq_priority); 1240 1241 return rc; 1242 } 1243 1244 static int xive_prepare_cpu(unsigned int cpu) 1245 { 1246 struct xive_cpu *xc; 1247 1248 xc = per_cpu(xive_cpu, cpu); 1249 if (!xc) { 1250 struct device_node *np; 1251 1252 xc = kzalloc_node(sizeof(struct xive_cpu), 1253 GFP_KERNEL, cpu_to_node(cpu)); 1254 if (!xc) 1255 return -ENOMEM; 1256 np = of_get_cpu_node(cpu, NULL); 1257 if (np) 1258 xc->chip_id = of_get_ibm_chip_id(np); 1259 of_node_put(np); 1260 1261 per_cpu(xive_cpu, cpu) = xc; 1262 } 1263 1264 /* Setup EQs if not already */ 1265 return xive_setup_cpu_queues(cpu, xc); 1266 } 1267 1268 static void xive_setup_cpu(void) 1269 { 1270 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 1271 1272 /* Debug: Dump the TM state */ 1273 pr_devel("CPU %d [HW 0x%02x] VT=%02x\n", 1274 smp_processor_id(), hard_smp_processor_id(), 1275 in_8(xive_tima + xive_tima_offset + TM_WORD2)); 1276 1277 /* The backend might have additional things to do */ 1278 if (xive_ops->setup_cpu) 1279 xive_ops->setup_cpu(smp_processor_id(), xc); 1280 1281 /* Set CPPR to 0xff to enable flow of interrupts */ 1282 xc->cppr = 0xff; 1283 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff); 1284 } 1285 1286 #ifdef CONFIG_SMP 1287 void xive_smp_setup_cpu(void) 1288 { 1289 pr_devel("SMP setup CPU %d\n", smp_processor_id()); 1290 1291 /* This will have already been done on the boot CPU */ 1292 if (smp_processor_id() != boot_cpuid) 1293 xive_setup_cpu(); 1294 1295 } 1296 1297 int xive_smp_prepare_cpu(unsigned int cpu) 1298 { 1299 int rc; 1300 1301 /* Allocate per-CPU data and queues */ 1302 rc = xive_prepare_cpu(cpu); 1303 if (rc) 1304 return rc; 1305 1306 /* Allocate and setup IPI for the new CPU */ 1307 return xive_setup_cpu_ipi(cpu); 1308 } 1309 1310 #ifdef CONFIG_HOTPLUG_CPU 1311 static void xive_flush_cpu_queue(unsigned int cpu, struct xive_cpu *xc) 1312 { 1313 u32 irq; 1314 1315 /* We assume local irqs are disabled */ 1316 WARN_ON(!irqs_disabled()); 1317 1318 /* Check what's already in the CPU queue */ 1319 while ((irq = xive_scan_interrupts(xc, false)) != 0) { 1320 /* 1321 * We need to re-route that interrupt to its new destination. 1322 * First get and lock the descriptor 1323 */ 1324 struct irq_desc *desc = irq_to_desc(irq); 1325 struct irq_data *d = irq_desc_get_irq_data(desc); 1326 struct xive_irq_data *xd; 1327 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 1328 1329 /* 1330 * Ignore anything that isn't a XIVE irq and ignore 1331 * IPIs, so can just be dropped. 1332 */ 1333 if (d->domain != xive_irq_domain || hw_irq == 0) 1334 continue; 1335 1336 /* 1337 * The IRQ should have already been re-routed, it's just a 1338 * stale in the old queue, so re-trigger it in order to make 1339 * it reach is new destination. 1340 */ 1341 #ifdef DEBUG_FLUSH 1342 pr_info("CPU %d: Got irq %d while offline, re-sending...\n", 1343 cpu, irq); 1344 #endif 1345 raw_spin_lock(&desc->lock); 1346 xd = irq_desc_get_handler_data(desc); 1347 1348 /* 1349 * For LSIs, we EOI, this will cause a resend if it's 1350 * still asserted. Otherwise do an MSI retrigger. 1351 */ 1352 if (xd->flags & XIVE_IRQ_FLAG_LSI) 1353 xive_do_source_eoi(irqd_to_hwirq(d), xd); 1354 else 1355 xive_irq_retrigger(d); 1356 1357 raw_spin_unlock(&desc->lock); 1358 } 1359 } 1360 1361 void xive_smp_disable_cpu(void) 1362 { 1363 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 1364 unsigned int cpu = smp_processor_id(); 1365 1366 /* Migrate interrupts away from the CPU */ 1367 irq_migrate_all_off_this_cpu(); 1368 1369 /* Set CPPR to 0 to disable flow of interrupts */ 1370 xc->cppr = 0; 1371 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0); 1372 1373 /* Flush everything still in the queue */ 1374 xive_flush_cpu_queue(cpu, xc); 1375 1376 /* Re-enable CPPR */ 1377 xc->cppr = 0xff; 1378 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff); 1379 } 1380 1381 void xive_flush_interrupt(void) 1382 { 1383 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 1384 unsigned int cpu = smp_processor_id(); 1385 1386 /* Called if an interrupt occurs while the CPU is hot unplugged */ 1387 xive_flush_cpu_queue(cpu, xc); 1388 } 1389 1390 #endif /* CONFIG_HOTPLUG_CPU */ 1391 1392 #endif /* CONFIG_SMP */ 1393 1394 void xive_teardown_cpu(void) 1395 { 1396 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 1397 unsigned int cpu = smp_processor_id(); 1398 1399 /* Set CPPR to 0 to disable flow of interrupts */ 1400 xc->cppr = 0; 1401 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0); 1402 1403 if (xive_ops->teardown_cpu) 1404 xive_ops->teardown_cpu(cpu, xc); 1405 1406 #ifdef CONFIG_SMP 1407 /* Get rid of IPI */ 1408 xive_cleanup_cpu_ipi(cpu, xc); 1409 #endif 1410 1411 /* Disable and free the queues */ 1412 xive_cleanup_cpu_queues(cpu, xc); 1413 } 1414 1415 void xive_kexec_teardown_cpu(int secondary) 1416 { 1417 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 1418 unsigned int cpu = smp_processor_id(); 1419 1420 /* Set CPPR to 0 to disable flow of interrupts */ 1421 xc->cppr = 0; 1422 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0); 1423 1424 /* Backend cleanup if any */ 1425 if (xive_ops->teardown_cpu) 1426 xive_ops->teardown_cpu(cpu, xc); 1427 1428 #ifdef CONFIG_SMP 1429 /* Get rid of IPI */ 1430 xive_cleanup_cpu_ipi(cpu, xc); 1431 #endif 1432 1433 /* Disable and free the queues */ 1434 xive_cleanup_cpu_queues(cpu, xc); 1435 } 1436 1437 void xive_shutdown(void) 1438 { 1439 xive_ops->shutdown(); 1440 } 1441 1442 bool __init xive_core_init(const struct xive_ops *ops, void __iomem *area, u32 offset, 1443 u8 max_prio) 1444 { 1445 xive_tima = area; 1446 xive_tima_offset = offset; 1447 xive_ops = ops; 1448 xive_irq_priority = max_prio; 1449 1450 ppc_md.get_irq = xive_get_irq; 1451 __xive_enabled = true; 1452 1453 pr_devel("Initializing host..\n"); 1454 xive_init_host(); 1455 1456 pr_devel("Initializing boot CPU..\n"); 1457 1458 /* Allocate per-CPU data and queues */ 1459 xive_prepare_cpu(smp_processor_id()); 1460 1461 /* Get ready for interrupts */ 1462 xive_setup_cpu(); 1463 1464 pr_info("Interrupt handling initialized with %s backend\n", 1465 xive_ops->name); 1466 pr_info("Using priority %d for all interrupts\n", max_prio); 1467 1468 return true; 1469 } 1470 1471 __be32 *xive_queue_page_alloc(unsigned int cpu, u32 queue_shift) 1472 { 1473 unsigned int alloc_order; 1474 struct page *pages; 1475 __be32 *qpage; 1476 1477 alloc_order = xive_alloc_order(queue_shift); 1478 pages = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, alloc_order); 1479 if (!pages) 1480 return ERR_PTR(-ENOMEM); 1481 qpage = (__be32 *)page_address(pages); 1482 memset(qpage, 0, 1 << queue_shift); 1483 1484 return qpage; 1485 } 1486 1487 static int __init xive_off(char *arg) 1488 { 1489 xive_cmdline_disabled = true; 1490 return 0; 1491 } 1492 __setup("xive=off", xive_off); 1493