xref: /openbmc/linux/arch/powerpc/sysdev/xive/common.c (revision 5d0e4d78)
1 /*
2  * Copyright 2016,2017 IBM Corporation.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * as published by the Free Software Foundation; either version
7  * 2 of the License, or (at your option) any later version.
8  */
9 
10 #define pr_fmt(fmt) "xive: " fmt
11 
12 #include <linux/types.h>
13 #include <linux/threads.h>
14 #include <linux/kernel.h>
15 #include <linux/irq.h>
16 #include <linux/debugfs.h>
17 #include <linux/smp.h>
18 #include <linux/interrupt.h>
19 #include <linux/seq_file.h>
20 #include <linux/init.h>
21 #include <linux/cpu.h>
22 #include <linux/of.h>
23 #include <linux/slab.h>
24 #include <linux/spinlock.h>
25 #include <linux/msi.h>
26 
27 #include <asm/prom.h>
28 #include <asm/io.h>
29 #include <asm/smp.h>
30 #include <asm/machdep.h>
31 #include <asm/irq.h>
32 #include <asm/errno.h>
33 #include <asm/xive.h>
34 #include <asm/xive-regs.h>
35 #include <asm/xmon.h>
36 
37 #include "xive-internal.h"
38 
39 #undef DEBUG_FLUSH
40 #undef DEBUG_ALL
41 
42 #ifdef DEBUG_ALL
43 #define DBG_VERBOSE(fmt...)	pr_devel(fmt)
44 #else
45 #define DBG_VERBOSE(fmt...)	do { } while(0)
46 #endif
47 
48 bool __xive_enabled;
49 EXPORT_SYMBOL_GPL(__xive_enabled);
50 bool xive_cmdline_disabled;
51 
52 /* We use only one priority for now */
53 static u8 xive_irq_priority;
54 
55 /* TIMA exported to KVM */
56 void __iomem *xive_tima;
57 EXPORT_SYMBOL_GPL(xive_tima);
58 u32 xive_tima_offset;
59 
60 /* Backend ops */
61 static const struct xive_ops *xive_ops;
62 
63 /* Our global interrupt domain */
64 static struct irq_domain *xive_irq_domain;
65 
66 #ifdef CONFIG_SMP
67 /* The IPIs all use the same logical irq number */
68 static u32 xive_ipi_irq;
69 #endif
70 
71 /* Xive state for each CPU */
72 static DEFINE_PER_CPU(struct xive_cpu *, xive_cpu);
73 
74 /*
75  * A "disabled" interrupt should never fire, to catch problems
76  * we set its logical number to this
77  */
78 #define XIVE_BAD_IRQ		0x7fffffff
79 #define XIVE_MAX_IRQ		(XIVE_BAD_IRQ - 1)
80 
81 /* An invalid CPU target */
82 #define XIVE_INVALID_TARGET	(-1)
83 
84 /*
85  * Read the next entry in a queue, return its content if it's valid
86  * or 0 if there is no new entry.
87  *
88  * The queue pointer is moved forward unless "just_peek" is set
89  */
90 static u32 xive_read_eq(struct xive_q *q, bool just_peek)
91 {
92 	u32 cur;
93 
94 	if (!q->qpage)
95 		return 0;
96 	cur = be32_to_cpup(q->qpage + q->idx);
97 
98 	/* Check valid bit (31) vs current toggle polarity */
99 	if ((cur >> 31) == q->toggle)
100 		return 0;
101 
102 	/* If consuming from the queue ... */
103 	if (!just_peek) {
104 		/* Next entry */
105 		q->idx = (q->idx + 1) & q->msk;
106 
107 		/* Wrap around: flip valid toggle */
108 		if (q->idx == 0)
109 			q->toggle ^= 1;
110 	}
111 	/* Mask out the valid bit (31) */
112 	return cur & 0x7fffffff;
113 }
114 
115 /*
116  * Scans all the queue that may have interrupts in them
117  * (based on "pending_prio") in priority order until an
118  * interrupt is found or all the queues are empty.
119  *
120  * Then updates the CPPR (Current Processor Priority
121  * Register) based on the most favored interrupt found
122  * (0xff if none) and return what was found (0 if none).
123  *
124  * If just_peek is set, return the most favored pending
125  * interrupt if any but don't update the queue pointers.
126  *
127  * Note: This function can operate generically on any number
128  * of queues (up to 8). The current implementation of the XIVE
129  * driver only uses a single queue however.
130  *
131  * Note2: This will also "flush" "the pending_count" of a queue
132  * into the "count" when that queue is observed to be empty.
133  * This is used to keep track of the amount of interrupts
134  * targetting a queue. When an interrupt is moved away from
135  * a queue, we only decrement that queue count once the queue
136  * has been observed empty to avoid races.
137  */
138 static u32 xive_scan_interrupts(struct xive_cpu *xc, bool just_peek)
139 {
140 	u32 irq = 0;
141 	u8 prio;
142 
143 	/* Find highest pending priority */
144 	while (xc->pending_prio != 0) {
145 		struct xive_q *q;
146 
147 		prio = ffs(xc->pending_prio) - 1;
148 		DBG_VERBOSE("scan_irq: trying prio %d\n", prio);
149 
150 		/* Try to fetch */
151 		irq = xive_read_eq(&xc->queue[prio], just_peek);
152 
153 		/* Found something ? That's it */
154 		if (irq)
155 			break;
156 
157 		/* Clear pending bits */
158 		xc->pending_prio &= ~(1 << prio);
159 
160 		/*
161 		 * Check if the queue count needs adjusting due to
162 		 * interrupts being moved away. See description of
163 		 * xive_dec_target_count()
164 		 */
165 		q = &xc->queue[prio];
166 		if (atomic_read(&q->pending_count)) {
167 			int p = atomic_xchg(&q->pending_count, 0);
168 			if (p) {
169 				WARN_ON(p > atomic_read(&q->count));
170 				atomic_sub(p, &q->count);
171 			}
172 		}
173 	}
174 
175 	/* If nothing was found, set CPPR to 0xff */
176 	if (irq == 0)
177 		prio = 0xff;
178 
179 	/* Update HW CPPR to match if necessary */
180 	if (prio != xc->cppr) {
181 		DBG_VERBOSE("scan_irq: adjusting CPPR to %d\n", prio);
182 		xc->cppr = prio;
183 		out_8(xive_tima + xive_tima_offset + TM_CPPR, prio);
184 	}
185 
186 	return irq;
187 }
188 
189 /*
190  * This is used to perform the magic loads from an ESB
191  * described in xive.h
192  */
193 static u8 xive_poke_esb(struct xive_irq_data *xd, u32 offset)
194 {
195 	u64 val;
196 
197 	/* Handle HW errata */
198 	if (xd->flags & XIVE_IRQ_FLAG_SHIFT_BUG)
199 		offset |= offset << 4;
200 
201 	val = in_be64(xd->eoi_mmio + offset);
202 
203 	return (u8)val;
204 }
205 
206 #ifdef CONFIG_XMON
207 static void xive_dump_eq(const char *name, struct xive_q *q)
208 {
209 	u32 i0, i1, idx;
210 
211 	if (!q->qpage)
212 		return;
213 	idx = q->idx;
214 	i0 = be32_to_cpup(q->qpage + idx);
215 	idx = (idx + 1) & q->msk;
216 	i1 = be32_to_cpup(q->qpage + idx);
217 	xmon_printf("  %s Q T=%d %08x %08x ...\n", name,
218 		    q->toggle, i0, i1);
219 }
220 
221 void xmon_xive_do_dump(int cpu)
222 {
223 	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
224 
225 	xmon_printf("XIVE state for CPU %d:\n", cpu);
226 	xmon_printf("  pp=%02x cppr=%02x\n", xc->pending_prio, xc->cppr);
227 	xive_dump_eq("IRQ", &xc->queue[xive_irq_priority]);
228 #ifdef CONFIG_SMP
229 	{
230 		u64 val = xive_poke_esb(&xc->ipi_data, XIVE_ESB_GET);
231 		xmon_printf("  IPI state: %x:%c%c\n", xc->hw_ipi,
232 			val & XIVE_ESB_VAL_P ? 'P' : 'p',
233 			val & XIVE_ESB_VAL_P ? 'Q' : 'q');
234 	}
235 #endif
236 }
237 #endif /* CONFIG_XMON */
238 
239 static unsigned int xive_get_irq(void)
240 {
241 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
242 	u32 irq;
243 
244 	/*
245 	 * This can be called either as a result of a HW interrupt or
246 	 * as a "replay" because EOI decided there was still something
247 	 * in one of the queues.
248 	 *
249 	 * First we perform an ACK cycle in order to update our mask
250 	 * of pending priorities. This will also have the effect of
251 	 * updating the CPPR to the most favored pending interrupts.
252 	 *
253 	 * In the future, if we have a way to differenciate a first
254 	 * entry (on HW interrupt) from a replay triggered by EOI,
255 	 * we could skip this on replays unless we soft-mask tells us
256 	 * that a new HW interrupt occurred.
257 	 */
258 	xive_ops->update_pending(xc);
259 
260 	DBG_VERBOSE("get_irq: pending=%02x\n", xc->pending_prio);
261 
262 	/* Scan our queue(s) for interrupts */
263 	irq = xive_scan_interrupts(xc, false);
264 
265 	DBG_VERBOSE("get_irq: got irq 0x%x, new pending=0x%02x\n",
266 	    irq, xc->pending_prio);
267 
268 	/* Return pending interrupt if any */
269 	if (irq == XIVE_BAD_IRQ)
270 		return 0;
271 	return irq;
272 }
273 
274 /*
275  * After EOI'ing an interrupt, we need to re-check the queue
276  * to see if another interrupt is pending since multiple
277  * interrupts can coalesce into a single notification to the
278  * CPU.
279  *
280  * If we find that there is indeed more in there, we call
281  * force_external_irq_replay() to make Linux synthetize an
282  * external interrupt on the next call to local_irq_restore().
283  */
284 static void xive_do_queue_eoi(struct xive_cpu *xc)
285 {
286 	if (xive_scan_interrupts(xc, true) != 0) {
287 		DBG_VERBOSE("eoi: pending=0x%02x\n", xc->pending_prio);
288 		force_external_irq_replay();
289 	}
290 }
291 
292 /*
293  * EOI an interrupt at the source. There are several methods
294  * to do this depending on the HW version and source type
295  */
296 void xive_do_source_eoi(u32 hw_irq, struct xive_irq_data *xd)
297 {
298 	/* If the XIVE supports the new "store EOI facility, use it */
299 	if (xd->flags & XIVE_IRQ_FLAG_STORE_EOI)
300 		out_be64(xd->eoi_mmio + XIVE_ESB_STORE_EOI, 0);
301 	else if (hw_irq && xd->flags & XIVE_IRQ_FLAG_EOI_FW) {
302 		/*
303 		 * The FW told us to call it. This happens for some
304 		 * interrupt sources that need additional HW whacking
305 		 * beyond the ESB manipulation. For example LPC interrupts
306 		 * on P9 DD1.0 need a latch to be clared in the LPC bridge
307 		 * itself. The Firmware will take care of it.
308 		 */
309 		if (WARN_ON_ONCE(!xive_ops->eoi))
310 			return;
311 		xive_ops->eoi(hw_irq);
312 	} else {
313 		u8 eoi_val;
314 
315 		/*
316 		 * Otherwise for EOI, we use the special MMIO that does
317 		 * a clear of both P and Q and returns the old Q,
318 		 * except for LSIs where we use the "EOI cycle" special
319 		 * load.
320 		 *
321 		 * This allows us to then do a re-trigger if Q was set
322 		 * rather than synthesizing an interrupt in software
323 		 *
324 		 * For LSIs, using the HW EOI cycle works around a problem
325 		 * on P9 DD1 PHBs where the other ESB accesses don't work
326 		 * properly.
327 		 */
328 		if (xd->flags & XIVE_IRQ_FLAG_LSI)
329 			in_be64(xd->eoi_mmio);
330 		else {
331 			eoi_val = xive_poke_esb(xd, XIVE_ESB_SET_PQ_00);
332 			DBG_VERBOSE("eoi_val=%x\n", offset, eoi_val);
333 
334 			/* Re-trigger if needed */
335 			if ((eoi_val & XIVE_ESB_VAL_Q) && xd->trig_mmio)
336 				out_be64(xd->trig_mmio, 0);
337 		}
338 	}
339 }
340 
341 /* irq_chip eoi callback */
342 static void xive_irq_eoi(struct irq_data *d)
343 {
344 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
345 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
346 
347 	DBG_VERBOSE("eoi_irq: irq=%d [0x%lx] pending=%02x\n",
348 		    d->irq, irqd_to_hwirq(d), xc->pending_prio);
349 
350 	/*
351 	 * EOI the source if it hasn't been disabled and hasn't
352 	 * been passed-through to a KVM guest
353 	 */
354 	if (!irqd_irq_disabled(d) && !irqd_is_forwarded_to_vcpu(d))
355 		xive_do_source_eoi(irqd_to_hwirq(d), xd);
356 
357 	/*
358 	 * Clear saved_p to indicate that it's no longer occupying
359 	 * a queue slot on the target queue
360 	 */
361 	xd->saved_p = false;
362 
363 	/* Check for more work in the queue */
364 	xive_do_queue_eoi(xc);
365 }
366 
367 /*
368  * Helper used to mask and unmask an interrupt source. This
369  * is only called for normal interrupts that do not require
370  * masking/unmasking via firmware.
371  */
372 static void xive_do_source_set_mask(struct xive_irq_data *xd,
373 				    bool mask)
374 {
375 	u64 val;
376 
377 	/*
378 	 * If the interrupt had P set, it may be in a queue.
379 	 *
380 	 * We need to make sure we don't re-enable it until it
381 	 * has been fetched from that queue and EOId. We keep
382 	 * a copy of that P state and use it to restore the
383 	 * ESB accordingly on unmask.
384 	 */
385 	if (mask) {
386 		val = xive_poke_esb(xd, XIVE_ESB_SET_PQ_01);
387 		xd->saved_p = !!(val & XIVE_ESB_VAL_P);
388 	} else if (xd->saved_p)
389 		xive_poke_esb(xd, XIVE_ESB_SET_PQ_10);
390 	else
391 		xive_poke_esb(xd, XIVE_ESB_SET_PQ_00);
392 }
393 
394 /*
395  * Try to chose "cpu" as a new interrupt target. Increments
396  * the queue accounting for that target if it's not already
397  * full.
398  */
399 static bool xive_try_pick_target(int cpu)
400 {
401 	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
402 	struct xive_q *q = &xc->queue[xive_irq_priority];
403 	int max;
404 
405 	/*
406 	 * Calculate max number of interrupts in that queue.
407 	 *
408 	 * We leave a gap of 1 just in case...
409 	 */
410 	max = (q->msk + 1) - 1;
411 	return !!atomic_add_unless(&q->count, 1, max);
412 }
413 
414 /*
415  * Un-account an interrupt for a target CPU. We don't directly
416  * decrement q->count since the interrupt might still be present
417  * in the queue.
418  *
419  * Instead increment a separate counter "pending_count" which
420  * will be substracted from "count" later when that CPU observes
421  * the queue to be empty.
422  */
423 static void xive_dec_target_count(int cpu)
424 {
425 	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
426 	struct xive_q *q = &xc->queue[xive_irq_priority];
427 
428 	if (unlikely(WARN_ON(cpu < 0 || !xc))) {
429 		pr_err("%s: cpu=%d xc=%p\n", __func__, cpu, xc);
430 		return;
431 	}
432 
433 	/*
434 	 * We increment the "pending count" which will be used
435 	 * to decrement the target queue count whenever it's next
436 	 * processed and found empty. This ensure that we don't
437 	 * decrement while we still have the interrupt there
438 	 * occupying a slot.
439 	 */
440 	atomic_inc(&q->pending_count);
441 }
442 
443 /* Find a tentative CPU target in a CPU mask */
444 static int xive_find_target_in_mask(const struct cpumask *mask,
445 				    unsigned int fuzz)
446 {
447 	int cpu, first, num, i;
448 
449 	/* Pick up a starting point CPU in the mask based on  fuzz */
450 	num = cpumask_weight(mask);
451 	first = fuzz % num;
452 
453 	/* Locate it */
454 	cpu = cpumask_first(mask);
455 	for (i = 0; i < first && cpu < nr_cpu_ids; i++)
456 		cpu = cpumask_next(cpu, mask);
457 
458 	/* Sanity check */
459 	if (WARN_ON(cpu >= nr_cpu_ids))
460 		cpu = cpumask_first(cpu_online_mask);
461 
462 	/* Remember first one to handle wrap-around */
463 	first = cpu;
464 
465 	/*
466 	 * Now go through the entire mask until we find a valid
467 	 * target.
468 	 */
469 	for (;;) {
470 		/*
471 		 * We re-check online as the fallback case passes us
472 		 * an untested affinity mask
473 		 */
474 		if (cpu_online(cpu) && xive_try_pick_target(cpu))
475 			return cpu;
476 		cpu = cpumask_next(cpu, mask);
477 		if (cpu == first)
478 			break;
479 		/* Wrap around */
480 		if (cpu >= nr_cpu_ids)
481 			cpu = cpumask_first(mask);
482 	}
483 	return -1;
484 }
485 
486 /*
487  * Pick a target CPU for an interrupt. This is done at
488  * startup or if the affinity is changed in a way that
489  * invalidates the current target.
490  */
491 static int xive_pick_irq_target(struct irq_data *d,
492 				const struct cpumask *affinity)
493 {
494 	static unsigned int fuzz;
495 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
496 	cpumask_var_t mask;
497 	int cpu = -1;
498 
499 	/*
500 	 * If we have chip IDs, first we try to build a mask of
501 	 * CPUs matching the CPU and find a target in there
502 	 */
503 	if (xd->src_chip != XIVE_INVALID_CHIP_ID &&
504 		zalloc_cpumask_var(&mask, GFP_ATOMIC)) {
505 		/* Build a mask of matching chip IDs */
506 		for_each_cpu_and(cpu, affinity, cpu_online_mask) {
507 			struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
508 			if (xc->chip_id == xd->src_chip)
509 				cpumask_set_cpu(cpu, mask);
510 		}
511 		/* Try to find a target */
512 		if (cpumask_empty(mask))
513 			cpu = -1;
514 		else
515 			cpu = xive_find_target_in_mask(mask, fuzz++);
516 		free_cpumask_var(mask);
517 		if (cpu >= 0)
518 			return cpu;
519 		fuzz--;
520 	}
521 
522 	/* No chip IDs, fallback to using the affinity mask */
523 	return xive_find_target_in_mask(affinity, fuzz++);
524 }
525 
526 static unsigned int xive_irq_startup(struct irq_data *d)
527 {
528 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
529 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
530 	int target, rc;
531 
532 	pr_devel("xive_irq_startup: irq %d [0x%x] data @%p\n",
533 		 d->irq, hw_irq, d);
534 
535 #ifdef CONFIG_PCI_MSI
536 	/*
537 	 * The generic MSI code returns with the interrupt disabled on the
538 	 * card, using the MSI mask bits. Firmware doesn't appear to unmask
539 	 * at that level, so we do it here by hand.
540 	 */
541 	if (irq_data_get_msi_desc(d))
542 		pci_msi_unmask_irq(d);
543 #endif
544 
545 	/* Pick a target */
546 	target = xive_pick_irq_target(d, irq_data_get_affinity_mask(d));
547 	if (target == XIVE_INVALID_TARGET) {
548 		/* Try again breaking affinity */
549 		target = xive_pick_irq_target(d, cpu_online_mask);
550 		if (target == XIVE_INVALID_TARGET)
551 			return -ENXIO;
552 		pr_warn("irq %d started with broken affinity\n", d->irq);
553 	}
554 
555 	/* Sanity check */
556 	if (WARN_ON(target == XIVE_INVALID_TARGET ||
557 		    target >= nr_cpu_ids))
558 		target = smp_processor_id();
559 
560 	xd->target = target;
561 
562 	/*
563 	 * Configure the logical number to be the Linux IRQ number
564 	 * and set the target queue
565 	 */
566 	rc = xive_ops->configure_irq(hw_irq,
567 				     get_hard_smp_processor_id(target),
568 				     xive_irq_priority, d->irq);
569 	if (rc)
570 		return rc;
571 
572 	/* Unmask the ESB */
573 	xive_do_source_set_mask(xd, false);
574 
575 	return 0;
576 }
577 
578 static void xive_irq_shutdown(struct irq_data *d)
579 {
580 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
581 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
582 
583 	pr_devel("xive_irq_shutdown: irq %d [0x%x] data @%p\n",
584 		 d->irq, hw_irq, d);
585 
586 	if (WARN_ON(xd->target == XIVE_INVALID_TARGET))
587 		return;
588 
589 	/* Mask the interrupt at the source */
590 	xive_do_source_set_mask(xd, true);
591 
592 	/*
593 	 * The above may have set saved_p. We clear it otherwise it
594 	 * will prevent re-enabling later on. It is ok to forget the
595 	 * fact that the interrupt might be in a queue because we are
596 	 * accounting that already in xive_dec_target_count() and will
597 	 * be re-routing it to a new queue with proper accounting when
598 	 * it's started up again
599 	 */
600 	xd->saved_p = false;
601 
602 	/*
603 	 * Mask the interrupt in HW in the IVT/EAS and set the number
604 	 * to be the "bad" IRQ number
605 	 */
606 	xive_ops->configure_irq(hw_irq,
607 				get_hard_smp_processor_id(xd->target),
608 				0xff, XIVE_BAD_IRQ);
609 
610 	xive_dec_target_count(xd->target);
611 	xd->target = XIVE_INVALID_TARGET;
612 }
613 
614 static void xive_irq_unmask(struct irq_data *d)
615 {
616 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
617 
618 	pr_devel("xive_irq_unmask: irq %d data @%p\n", d->irq, xd);
619 
620 	/*
621 	 * This is a workaround for PCI LSI problems on P9, for
622 	 * these, we call FW to set the mask. The problems might
623 	 * be fixed by P9 DD2.0, if that is the case, firmware
624 	 * will no longer set that flag.
625 	 */
626 	if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) {
627 		unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
628 		xive_ops->configure_irq(hw_irq,
629 					get_hard_smp_processor_id(xd->target),
630 					xive_irq_priority, d->irq);
631 		return;
632 	}
633 
634 	xive_do_source_set_mask(xd, false);
635 }
636 
637 static void xive_irq_mask(struct irq_data *d)
638 {
639 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
640 
641 	pr_devel("xive_irq_mask: irq %d data @%p\n", d->irq, xd);
642 
643 	/*
644 	 * This is a workaround for PCI LSI problems on P9, for
645 	 * these, we call OPAL to set the mask. The problems might
646 	 * be fixed by P9 DD2.0, if that is the case, firmware
647 	 * will no longer set that flag.
648 	 */
649 	if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) {
650 		unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
651 		xive_ops->configure_irq(hw_irq,
652 					get_hard_smp_processor_id(xd->target),
653 					0xff, d->irq);
654 		return;
655 	}
656 
657 	xive_do_source_set_mask(xd, true);
658 }
659 
660 static int xive_irq_set_affinity(struct irq_data *d,
661 				 const struct cpumask *cpumask,
662 				 bool force)
663 {
664 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
665 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
666 	u32 target, old_target;
667 	int rc = 0;
668 
669 	pr_devel("xive_irq_set_affinity: irq %d\n", d->irq);
670 
671 	/* Is this valid ? */
672 	if (cpumask_any_and(cpumask, cpu_online_mask) >= nr_cpu_ids)
673 		return -EINVAL;
674 
675 	/*
676 	 * If existing target is already in the new mask, and is
677 	 * online then do nothing.
678 	 */
679 	if (xd->target != XIVE_INVALID_TARGET &&
680 	    cpu_online(xd->target) &&
681 	    cpumask_test_cpu(xd->target, cpumask))
682 		return IRQ_SET_MASK_OK;
683 
684 	/* Pick a new target */
685 	target = xive_pick_irq_target(d, cpumask);
686 
687 	/* No target found */
688 	if (target == XIVE_INVALID_TARGET)
689 		return -ENXIO;
690 
691 	/* Sanity check */
692 	if (WARN_ON(target >= nr_cpu_ids))
693 		target = smp_processor_id();
694 
695 	old_target = xd->target;
696 
697 	/*
698 	 * Only configure the irq if it's not currently passed-through to
699 	 * a KVM guest
700 	 */
701 	if (!irqd_is_forwarded_to_vcpu(d))
702 		rc = xive_ops->configure_irq(hw_irq,
703 					     get_hard_smp_processor_id(target),
704 					     xive_irq_priority, d->irq);
705 	if (rc < 0) {
706 		pr_err("Error %d reconfiguring irq %d\n", rc, d->irq);
707 		return rc;
708 	}
709 
710 	pr_devel("  target: 0x%x\n", target);
711 	xd->target = target;
712 
713 	/* Give up previous target */
714 	if (old_target != XIVE_INVALID_TARGET)
715 	    xive_dec_target_count(old_target);
716 
717 	return IRQ_SET_MASK_OK;
718 }
719 
720 static int xive_irq_set_type(struct irq_data *d, unsigned int flow_type)
721 {
722 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
723 
724 	/*
725 	 * We only support these. This has really no effect other than setting
726 	 * the corresponding descriptor bits mind you but those will in turn
727 	 * affect the resend function when re-enabling an edge interrupt.
728 	 *
729 	 * Set set the default to edge as explained in map().
730 	 */
731 	if (flow_type == IRQ_TYPE_DEFAULT || flow_type == IRQ_TYPE_NONE)
732 		flow_type = IRQ_TYPE_EDGE_RISING;
733 
734 	if (flow_type != IRQ_TYPE_EDGE_RISING &&
735 	    flow_type != IRQ_TYPE_LEVEL_LOW)
736 		return -EINVAL;
737 
738 	irqd_set_trigger_type(d, flow_type);
739 
740 	/*
741 	 * Double check it matches what the FW thinks
742 	 *
743 	 * NOTE: We don't know yet if the PAPR interface will provide
744 	 * the LSI vs MSI information apart from the device-tree so
745 	 * this check might have to move into an optional backend call
746 	 * that is specific to the native backend
747 	 */
748 	if ((flow_type == IRQ_TYPE_LEVEL_LOW) !=
749 	    !!(xd->flags & XIVE_IRQ_FLAG_LSI)) {
750 		pr_warn("Interrupt %d (HW 0x%x) type mismatch, Linux says %s, FW says %s\n",
751 			d->irq, (u32)irqd_to_hwirq(d),
752 			(flow_type == IRQ_TYPE_LEVEL_LOW) ? "Level" : "Edge",
753 			(xd->flags & XIVE_IRQ_FLAG_LSI) ? "Level" : "Edge");
754 	}
755 
756 	return IRQ_SET_MASK_OK_NOCOPY;
757 }
758 
759 static int xive_irq_retrigger(struct irq_data *d)
760 {
761 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
762 
763 	/* This should be only for MSIs */
764 	if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
765 		return 0;
766 
767 	/*
768 	 * To perform a retrigger, we first set the PQ bits to
769 	 * 11, then perform an EOI.
770 	 */
771 	xive_poke_esb(xd, XIVE_ESB_SET_PQ_11);
772 
773 	/*
774 	 * Note: We pass "0" to the hw_irq argument in order to
775 	 * avoid calling into the backend EOI code which we don't
776 	 * want to do in the case of a re-trigger. Backends typically
777 	 * only do EOI for LSIs anyway.
778 	 */
779 	xive_do_source_eoi(0, xd);
780 
781 	return 1;
782 }
783 
784 static int xive_irq_set_vcpu_affinity(struct irq_data *d, void *state)
785 {
786 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
787 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
788 	int rc;
789 	u8 pq;
790 
791 	/*
792 	 * We only support this on interrupts that do not require
793 	 * firmware calls for masking and unmasking
794 	 */
795 	if (xd->flags & XIVE_IRQ_FLAG_MASK_FW)
796 		return -EIO;
797 
798 	/*
799 	 * This is called by KVM with state non-NULL for enabling
800 	 * pass-through or NULL for disabling it
801 	 */
802 	if (state) {
803 		irqd_set_forwarded_to_vcpu(d);
804 
805 		/* Set it to PQ=10 state to prevent further sends */
806 		pq = xive_poke_esb(xd, XIVE_ESB_SET_PQ_10);
807 
808 		/* No target ? nothing to do */
809 		if (xd->target == XIVE_INVALID_TARGET) {
810 			/*
811 			 * An untargetted interrupt should have been
812 			 * also masked at the source
813 			 */
814 			WARN_ON(pq & 2);
815 
816 			return 0;
817 		}
818 
819 		/*
820 		 * If P was set, adjust state to PQ=11 to indicate
821 		 * that a resend is needed for the interrupt to reach
822 		 * the guest. Also remember the value of P.
823 		 *
824 		 * This also tells us that it's in flight to a host queue
825 		 * or has already been fetched but hasn't been EOIed yet
826 		 * by the host. This it's potentially using up a host
827 		 * queue slot. This is important to know because as long
828 		 * as this is the case, we must not hard-unmask it when
829 		 * "returning" that interrupt to the host.
830 		 *
831 		 * This saved_p is cleared by the host EOI, when we know
832 		 * for sure the queue slot is no longer in use.
833 		 */
834 		if (pq & 2) {
835 			pq = xive_poke_esb(xd, XIVE_ESB_SET_PQ_11);
836 			xd->saved_p = true;
837 
838 			/*
839 			 * Sync the XIVE source HW to ensure the interrupt
840 			 * has gone through the EAS before we change its
841 			 * target to the guest. That should guarantee us
842 			 * that we *will* eventually get an EOI for it on
843 			 * the host. Otherwise there would be a small window
844 			 * for P to be seen here but the interrupt going
845 			 * to the guest queue.
846 			 */
847 			if (xive_ops->sync_source)
848 				xive_ops->sync_source(hw_irq);
849 		} else
850 			xd->saved_p = false;
851 	} else {
852 		irqd_clr_forwarded_to_vcpu(d);
853 
854 		/* No host target ? hard mask and return */
855 		if (xd->target == XIVE_INVALID_TARGET) {
856 			xive_do_source_set_mask(xd, true);
857 			return 0;
858 		}
859 
860 		/*
861 		 * Sync the XIVE source HW to ensure the interrupt
862 		 * has gone through the EAS before we change its
863 		 * target to the host.
864 		 */
865 		if (xive_ops->sync_source)
866 			xive_ops->sync_source(hw_irq);
867 
868 		/*
869 		 * By convention we are called with the interrupt in
870 		 * a PQ=10 or PQ=11 state, ie, it won't fire and will
871 		 * have latched in Q whether there's a pending HW
872 		 * interrupt or not.
873 		 *
874 		 * First reconfigure the target.
875 		 */
876 		rc = xive_ops->configure_irq(hw_irq,
877 					     get_hard_smp_processor_id(xd->target),
878 					     xive_irq_priority, d->irq);
879 		if (rc)
880 			return rc;
881 
882 		/*
883 		 * Then if saved_p is not set, effectively re-enable the
884 		 * interrupt with an EOI. If it is set, we know there is
885 		 * still a message in a host queue somewhere that will be
886 		 * EOId eventually.
887 		 *
888 		 * Note: We don't check irqd_irq_disabled(). Effectively,
889 		 * we *will* let the irq get through even if masked if the
890 		 * HW is still firing it in order to deal with the whole
891 		 * saved_p business properly. If the interrupt triggers
892 		 * while masked, the generic code will re-mask it anyway.
893 		 */
894 		if (!xd->saved_p)
895 			xive_do_source_eoi(hw_irq, xd);
896 
897 	}
898 	return 0;
899 }
900 
901 static struct irq_chip xive_irq_chip = {
902 	.name = "XIVE-IRQ",
903 	.irq_startup = xive_irq_startup,
904 	.irq_shutdown = xive_irq_shutdown,
905 	.irq_eoi = xive_irq_eoi,
906 	.irq_mask = xive_irq_mask,
907 	.irq_unmask = xive_irq_unmask,
908 	.irq_set_affinity = xive_irq_set_affinity,
909 	.irq_set_type = xive_irq_set_type,
910 	.irq_retrigger = xive_irq_retrigger,
911 	.irq_set_vcpu_affinity = xive_irq_set_vcpu_affinity,
912 };
913 
914 bool is_xive_irq(struct irq_chip *chip)
915 {
916 	return chip == &xive_irq_chip;
917 }
918 EXPORT_SYMBOL_GPL(is_xive_irq);
919 
920 void xive_cleanup_irq_data(struct xive_irq_data *xd)
921 {
922 	if (xd->eoi_mmio) {
923 		iounmap(xd->eoi_mmio);
924 		if (xd->eoi_mmio == xd->trig_mmio)
925 			xd->trig_mmio = NULL;
926 		xd->eoi_mmio = NULL;
927 	}
928 	if (xd->trig_mmio) {
929 		iounmap(xd->trig_mmio);
930 		xd->trig_mmio = NULL;
931 	}
932 }
933 EXPORT_SYMBOL_GPL(xive_cleanup_irq_data);
934 
935 static int xive_irq_alloc_data(unsigned int virq, irq_hw_number_t hw)
936 {
937 	struct xive_irq_data *xd;
938 	int rc;
939 
940 	xd = kzalloc(sizeof(struct xive_irq_data), GFP_KERNEL);
941 	if (!xd)
942 		return -ENOMEM;
943 	rc = xive_ops->populate_irq_data(hw, xd);
944 	if (rc) {
945 		kfree(xd);
946 		return rc;
947 	}
948 	xd->target = XIVE_INVALID_TARGET;
949 	irq_set_handler_data(virq, xd);
950 
951 	return 0;
952 }
953 
954 static void xive_irq_free_data(unsigned int virq)
955 {
956 	struct xive_irq_data *xd = irq_get_handler_data(virq);
957 
958 	if (!xd)
959 		return;
960 	irq_set_handler_data(virq, NULL);
961 	xive_cleanup_irq_data(xd);
962 	kfree(xd);
963 }
964 
965 #ifdef CONFIG_SMP
966 
967 static void xive_cause_ipi(int cpu)
968 {
969 	struct xive_cpu *xc;
970 	struct xive_irq_data *xd;
971 
972 	xc = per_cpu(xive_cpu, cpu);
973 
974 	DBG_VERBOSE("IPI CPU %d -> %d (HW IRQ 0x%x)\n",
975 		    smp_processor_id(), cpu, xc->hw_ipi);
976 
977 	xd = &xc->ipi_data;
978 	if (WARN_ON(!xd->trig_mmio))
979 		return;
980 	out_be64(xd->trig_mmio, 0);
981 }
982 
983 static irqreturn_t xive_muxed_ipi_action(int irq, void *dev_id)
984 {
985 	return smp_ipi_demux();
986 }
987 
988 static void xive_ipi_eoi(struct irq_data *d)
989 {
990 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
991 
992 	/* Handle possible race with unplug and drop stale IPIs */
993 	if (!xc)
994 		return;
995 	xive_do_source_eoi(xc->hw_ipi, &xc->ipi_data);
996 	xive_do_queue_eoi(xc);
997 }
998 
999 static void xive_ipi_do_nothing(struct irq_data *d)
1000 {
1001 	/*
1002 	 * Nothing to do, we never mask/unmask IPIs, but the callback
1003 	 * has to exist for the struct irq_chip.
1004 	 */
1005 }
1006 
1007 static struct irq_chip xive_ipi_chip = {
1008 	.name = "XIVE-IPI",
1009 	.irq_eoi = xive_ipi_eoi,
1010 	.irq_mask = xive_ipi_do_nothing,
1011 	.irq_unmask = xive_ipi_do_nothing,
1012 };
1013 
1014 static void __init xive_request_ipi(void)
1015 {
1016 	unsigned int virq;
1017 
1018 	/*
1019 	 * Initialization failed, move on, we might manage to
1020 	 * reach the point where we display our errors before
1021 	 * the system falls appart
1022 	 */
1023 	if (!xive_irq_domain)
1024 		return;
1025 
1026 	/* Initialize it */
1027 	virq = irq_create_mapping(xive_irq_domain, 0);
1028 	xive_ipi_irq = virq;
1029 
1030 	WARN_ON(request_irq(virq, xive_muxed_ipi_action,
1031 			    IRQF_PERCPU | IRQF_NO_THREAD, "IPI", NULL));
1032 }
1033 
1034 static int xive_setup_cpu_ipi(unsigned int cpu)
1035 {
1036 	struct xive_cpu *xc;
1037 	int rc;
1038 
1039 	pr_debug("Setting up IPI for CPU %d\n", cpu);
1040 
1041 	xc = per_cpu(xive_cpu, cpu);
1042 
1043 	/* Check if we are already setup */
1044 	if (xc->hw_ipi != 0)
1045 		return 0;
1046 
1047 	/* Grab an IPI from the backend, this will populate xc->hw_ipi */
1048 	if (xive_ops->get_ipi(cpu, xc))
1049 		return -EIO;
1050 
1051 	/*
1052 	 * Populate the IRQ data in the xive_cpu structure and
1053 	 * configure the HW / enable the IPIs.
1054 	 */
1055 	rc = xive_ops->populate_irq_data(xc->hw_ipi, &xc->ipi_data);
1056 	if (rc) {
1057 		pr_err("Failed to populate IPI data on CPU %d\n", cpu);
1058 		return -EIO;
1059 	}
1060 	rc = xive_ops->configure_irq(xc->hw_ipi,
1061 				     get_hard_smp_processor_id(cpu),
1062 				     xive_irq_priority, xive_ipi_irq);
1063 	if (rc) {
1064 		pr_err("Failed to map IPI CPU %d\n", cpu);
1065 		return -EIO;
1066 	}
1067 	pr_devel("CPU %d HW IPI %x, virq %d, trig_mmio=%p\n", cpu,
1068 	    xc->hw_ipi, xive_ipi_irq, xc->ipi_data.trig_mmio);
1069 
1070 	/* Unmask it */
1071 	xive_do_source_set_mask(&xc->ipi_data, false);
1072 
1073 	return 0;
1074 }
1075 
1076 static void xive_cleanup_cpu_ipi(unsigned int cpu, struct xive_cpu *xc)
1077 {
1078 	/* Disable the IPI and free the IRQ data */
1079 
1080 	/* Already cleaned up ? */
1081 	if (xc->hw_ipi == 0)
1082 		return;
1083 
1084 	/* Mask the IPI */
1085 	xive_do_source_set_mask(&xc->ipi_data, true);
1086 
1087 	/*
1088 	 * Note: We don't call xive_cleanup_irq_data() to free
1089 	 * the mappings as this is called from an IPI on kexec
1090 	 * which is not a safe environment to call iounmap()
1091 	 */
1092 
1093 	/* Deconfigure/mask in the backend */
1094 	xive_ops->configure_irq(xc->hw_ipi, hard_smp_processor_id(),
1095 				0xff, xive_ipi_irq);
1096 
1097 	/* Free the IPIs in the backend */
1098 	xive_ops->put_ipi(cpu, xc);
1099 }
1100 
1101 void __init xive_smp_probe(void)
1102 {
1103 	smp_ops->cause_ipi = xive_cause_ipi;
1104 
1105 	/* Register the IPI */
1106 	xive_request_ipi();
1107 
1108 	/* Allocate and setup IPI for the boot CPU */
1109 	xive_setup_cpu_ipi(smp_processor_id());
1110 }
1111 
1112 #endif /* CONFIG_SMP */
1113 
1114 static int xive_irq_domain_map(struct irq_domain *h, unsigned int virq,
1115 			       irq_hw_number_t hw)
1116 {
1117 	int rc;
1118 
1119 	/*
1120 	 * Mark interrupts as edge sensitive by default so that resend
1121 	 * actually works. Will fix that up below if needed.
1122 	 */
1123 	irq_clear_status_flags(virq, IRQ_LEVEL);
1124 
1125 #ifdef CONFIG_SMP
1126 	/* IPIs are special and come up with HW number 0 */
1127 	if (hw == 0) {
1128 		/*
1129 		 * IPIs are marked per-cpu. We use separate HW interrupts under
1130 		 * the hood but associated with the same "linux" interrupt
1131 		 */
1132 		irq_set_chip_and_handler(virq, &xive_ipi_chip,
1133 					 handle_percpu_irq);
1134 		return 0;
1135 	}
1136 #endif
1137 
1138 	rc = xive_irq_alloc_data(virq, hw);
1139 	if (rc)
1140 		return rc;
1141 
1142 	irq_set_chip_and_handler(virq, &xive_irq_chip, handle_fasteoi_irq);
1143 
1144 	return 0;
1145 }
1146 
1147 static void xive_irq_domain_unmap(struct irq_domain *d, unsigned int virq)
1148 {
1149 	struct irq_data *data = irq_get_irq_data(virq);
1150 	unsigned int hw_irq;
1151 
1152 	/* XXX Assign BAD number */
1153 	if (!data)
1154 		return;
1155 	hw_irq = (unsigned int)irqd_to_hwirq(data);
1156 	if (hw_irq)
1157 		xive_irq_free_data(virq);
1158 }
1159 
1160 static int xive_irq_domain_xlate(struct irq_domain *h, struct device_node *ct,
1161 				 const u32 *intspec, unsigned int intsize,
1162 				 irq_hw_number_t *out_hwirq, unsigned int *out_flags)
1163 
1164 {
1165 	*out_hwirq = intspec[0];
1166 
1167 	/*
1168 	 * If intsize is at least 2, we look for the type in the second cell,
1169 	 * we assume the LSB indicates a level interrupt.
1170 	 */
1171 	if (intsize > 1) {
1172 		if (intspec[1] & 1)
1173 			*out_flags = IRQ_TYPE_LEVEL_LOW;
1174 		else
1175 			*out_flags = IRQ_TYPE_EDGE_RISING;
1176 	} else
1177 		*out_flags = IRQ_TYPE_LEVEL_LOW;
1178 
1179 	return 0;
1180 }
1181 
1182 static int xive_irq_domain_match(struct irq_domain *h, struct device_node *node,
1183 				 enum irq_domain_bus_token bus_token)
1184 {
1185 	return xive_ops->match(node);
1186 }
1187 
1188 static const struct irq_domain_ops xive_irq_domain_ops = {
1189 	.match = xive_irq_domain_match,
1190 	.map = xive_irq_domain_map,
1191 	.unmap = xive_irq_domain_unmap,
1192 	.xlate = xive_irq_domain_xlate,
1193 };
1194 
1195 static void __init xive_init_host(void)
1196 {
1197 	xive_irq_domain = irq_domain_add_nomap(NULL, XIVE_MAX_IRQ,
1198 					       &xive_irq_domain_ops, NULL);
1199 	if (WARN_ON(xive_irq_domain == NULL))
1200 		return;
1201 	irq_set_default_host(xive_irq_domain);
1202 }
1203 
1204 static void xive_cleanup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1205 {
1206 	if (xc->queue[xive_irq_priority].qpage)
1207 		xive_ops->cleanup_queue(cpu, xc, xive_irq_priority);
1208 }
1209 
1210 static int xive_setup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1211 {
1212 	int rc = 0;
1213 
1214 	/* We setup 1 queues for now with a 64k page */
1215 	if (!xc->queue[xive_irq_priority].qpage)
1216 		rc = xive_ops->setup_queue(cpu, xc, xive_irq_priority);
1217 
1218 	return rc;
1219 }
1220 
1221 static int xive_prepare_cpu(unsigned int cpu)
1222 {
1223 	struct xive_cpu *xc;
1224 
1225 	xc = per_cpu(xive_cpu, cpu);
1226 	if (!xc) {
1227 		struct device_node *np;
1228 
1229 		xc = kzalloc_node(sizeof(struct xive_cpu),
1230 				  GFP_KERNEL, cpu_to_node(cpu));
1231 		if (!xc)
1232 			return -ENOMEM;
1233 		np = of_get_cpu_node(cpu, NULL);
1234 		if (np)
1235 			xc->chip_id = of_get_ibm_chip_id(np);
1236 		of_node_put(np);
1237 
1238 		per_cpu(xive_cpu, cpu) = xc;
1239 	}
1240 
1241 	/* Setup EQs if not already */
1242 	return xive_setup_cpu_queues(cpu, xc);
1243 }
1244 
1245 static void xive_setup_cpu(void)
1246 {
1247 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1248 
1249 	/* Debug: Dump the TM state */
1250 	pr_devel("CPU %d [HW 0x%02x] VT=%02x\n",
1251 	    smp_processor_id(), hard_smp_processor_id(),
1252 	    in_8(xive_tima + xive_tima_offset + TM_WORD2));
1253 
1254 	/* The backend might have additional things to do */
1255 	if (xive_ops->setup_cpu)
1256 		xive_ops->setup_cpu(smp_processor_id(), xc);
1257 
1258 	/* Set CPPR to 0xff to enable flow of interrupts */
1259 	xc->cppr = 0xff;
1260 	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1261 }
1262 
1263 #ifdef CONFIG_SMP
1264 void xive_smp_setup_cpu(void)
1265 {
1266 	pr_devel("SMP setup CPU %d\n", smp_processor_id());
1267 
1268 	/* This will have already been done on the boot CPU */
1269 	if (smp_processor_id() != boot_cpuid)
1270 		xive_setup_cpu();
1271 
1272 }
1273 
1274 int xive_smp_prepare_cpu(unsigned int cpu)
1275 {
1276 	int rc;
1277 
1278 	/* Allocate per-CPU data and queues */
1279 	rc = xive_prepare_cpu(cpu);
1280 	if (rc)
1281 		return rc;
1282 
1283 	/* Allocate and setup IPI for the new CPU */
1284 	return xive_setup_cpu_ipi(cpu);
1285 }
1286 
1287 #ifdef CONFIG_HOTPLUG_CPU
1288 static void xive_flush_cpu_queue(unsigned int cpu, struct xive_cpu *xc)
1289 {
1290 	u32 irq;
1291 
1292 	/* We assume local irqs are disabled */
1293 	WARN_ON(!irqs_disabled());
1294 
1295 	/* Check what's already in the CPU queue */
1296 	while ((irq = xive_scan_interrupts(xc, false)) != 0) {
1297 		/*
1298 		 * We need to re-route that interrupt to its new destination.
1299 		 * First get and lock the descriptor
1300 		 */
1301 		struct irq_desc *desc = irq_to_desc(irq);
1302 		struct irq_data *d = irq_desc_get_irq_data(desc);
1303 		struct xive_irq_data *xd;
1304 		unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
1305 
1306 		/*
1307 		 * Ignore anything that isn't a XIVE irq and ignore
1308 		 * IPIs, so can just be dropped.
1309 		 */
1310 		if (d->domain != xive_irq_domain || hw_irq == 0)
1311 			continue;
1312 
1313 		/*
1314 		 * The IRQ should have already been re-routed, it's just a
1315 		 * stale in the old queue, so re-trigger it in order to make
1316 		 * it reach is new destination.
1317 		 */
1318 #ifdef DEBUG_FLUSH
1319 		pr_info("CPU %d: Got irq %d while offline, re-sending...\n",
1320 			cpu, irq);
1321 #endif
1322 		raw_spin_lock(&desc->lock);
1323 		xd = irq_desc_get_handler_data(desc);
1324 
1325 		/*
1326 		 * For LSIs, we EOI, this will cause a resend if it's
1327 		 * still asserted. Otherwise do an MSI retrigger.
1328 		 */
1329 		if (xd->flags & XIVE_IRQ_FLAG_LSI)
1330 			xive_do_source_eoi(irqd_to_hwirq(d), xd);
1331 		else
1332 			xive_irq_retrigger(d);
1333 
1334 		raw_spin_unlock(&desc->lock);
1335 	}
1336 }
1337 
1338 void xive_smp_disable_cpu(void)
1339 {
1340 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1341 	unsigned int cpu = smp_processor_id();
1342 
1343 	/* Migrate interrupts away from the CPU */
1344 	irq_migrate_all_off_this_cpu();
1345 
1346 	/* Set CPPR to 0 to disable flow of interrupts */
1347 	xc->cppr = 0;
1348 	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1349 
1350 	/* Flush everything still in the queue */
1351 	xive_flush_cpu_queue(cpu, xc);
1352 
1353 	/* Re-enable CPPR  */
1354 	xc->cppr = 0xff;
1355 	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1356 }
1357 
1358 void xive_flush_interrupt(void)
1359 {
1360 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1361 	unsigned int cpu = smp_processor_id();
1362 
1363 	/* Called if an interrupt occurs while the CPU is hot unplugged */
1364 	xive_flush_cpu_queue(cpu, xc);
1365 }
1366 
1367 #endif /* CONFIG_HOTPLUG_CPU */
1368 
1369 #endif /* CONFIG_SMP */
1370 
1371 void xive_kexec_teardown_cpu(int secondary)
1372 {
1373 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1374 	unsigned int cpu = smp_processor_id();
1375 
1376 	/* Set CPPR to 0 to disable flow of interrupts */
1377 	xc->cppr = 0;
1378 	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1379 
1380 	/* Backend cleanup if any */
1381 	if (xive_ops->teardown_cpu)
1382 		xive_ops->teardown_cpu(cpu, xc);
1383 
1384 #ifdef CONFIG_SMP
1385 	/* Get rid of IPI */
1386 	xive_cleanup_cpu_ipi(cpu, xc);
1387 #endif
1388 
1389 	/* Disable and free the queues */
1390 	xive_cleanup_cpu_queues(cpu, xc);
1391 }
1392 
1393 void xive_shutdown(void)
1394 {
1395 	xive_ops->shutdown();
1396 }
1397 
1398 bool xive_core_init(const struct xive_ops *ops, void __iomem *area, u32 offset,
1399 		    u8 max_prio)
1400 {
1401 	xive_tima = area;
1402 	xive_tima_offset = offset;
1403 	xive_ops = ops;
1404 	xive_irq_priority = max_prio;
1405 
1406 	ppc_md.get_irq = xive_get_irq;
1407 	__xive_enabled = true;
1408 
1409 	pr_devel("Initializing host..\n");
1410 	xive_init_host();
1411 
1412 	pr_devel("Initializing boot CPU..\n");
1413 
1414 	/* Allocate per-CPU data and queues */
1415 	xive_prepare_cpu(smp_processor_id());
1416 
1417 	/* Get ready for interrupts */
1418 	xive_setup_cpu();
1419 
1420 	pr_info("Interrupt handling initialized with %s backend\n",
1421 		xive_ops->name);
1422 	pr_info("Using priority %d for all interrupts\n", max_prio);
1423 
1424 	return true;
1425 }
1426 
1427 static int __init xive_off(char *arg)
1428 {
1429 	xive_cmdline_disabled = true;
1430 	return 0;
1431 }
1432 __setup("xive=off", xive_off);
1433