xref: /openbmc/linux/arch/powerpc/sysdev/xive/common.c (revision 59f216cf04d973b4316761cbf3e7cb9556715b7a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2016,2017 IBM Corporation.
4  */
5 
6 #define pr_fmt(fmt) "xive: " fmt
7 
8 #include <linux/types.h>
9 #include <linux/threads.h>
10 #include <linux/kernel.h>
11 #include <linux/irq.h>
12 #include <linux/debugfs.h>
13 #include <linux/smp.h>
14 #include <linux/interrupt.h>
15 #include <linux/seq_file.h>
16 #include <linux/init.h>
17 #include <linux/cpu.h>
18 #include <linux/of.h>
19 #include <linux/slab.h>
20 #include <linux/spinlock.h>
21 #include <linux/msi.h>
22 #include <linux/vmalloc.h>
23 
24 #include <asm/debugfs.h>
25 #include <asm/prom.h>
26 #include <asm/io.h>
27 #include <asm/smp.h>
28 #include <asm/machdep.h>
29 #include <asm/irq.h>
30 #include <asm/errno.h>
31 #include <asm/xive.h>
32 #include <asm/xive-regs.h>
33 #include <asm/xmon.h>
34 
35 #include "xive-internal.h"
36 
37 #undef DEBUG_FLUSH
38 #undef DEBUG_ALL
39 
40 #ifdef DEBUG_ALL
41 #define DBG_VERBOSE(fmt, ...)	pr_devel("cpu %d - " fmt, \
42 					 smp_processor_id(), ## __VA_ARGS__)
43 #else
44 #define DBG_VERBOSE(fmt...)	do { } while(0)
45 #endif
46 
47 bool __xive_enabled;
48 EXPORT_SYMBOL_GPL(__xive_enabled);
49 bool xive_cmdline_disabled;
50 
51 /* We use only one priority for now */
52 static u8 xive_irq_priority;
53 
54 /* TIMA exported to KVM */
55 void __iomem *xive_tima;
56 EXPORT_SYMBOL_GPL(xive_tima);
57 u32 xive_tima_offset;
58 
59 /* Backend ops */
60 static const struct xive_ops *xive_ops;
61 
62 /* Our global interrupt domain */
63 static struct irq_domain *xive_irq_domain;
64 
65 #ifdef CONFIG_SMP
66 /* The IPIs use the same logical irq number when on the same chip */
67 static struct xive_ipi_desc {
68 	unsigned int irq;
69 	char name[16];
70 	atomic_t started;
71 } *xive_ipis;
72 
73 /*
74  * Use early_cpu_to_node() for hot-plugged CPUs
75  */
76 static unsigned int xive_ipi_cpu_to_irq(unsigned int cpu)
77 {
78 	return xive_ipis[early_cpu_to_node(cpu)].irq;
79 }
80 #endif
81 
82 /* Xive state for each CPU */
83 static DEFINE_PER_CPU(struct xive_cpu *, xive_cpu);
84 
85 /* An invalid CPU target */
86 #define XIVE_INVALID_TARGET	(-1)
87 
88 /*
89  * Read the next entry in a queue, return its content if it's valid
90  * or 0 if there is no new entry.
91  *
92  * The queue pointer is moved forward unless "just_peek" is set
93  */
94 static u32 xive_read_eq(struct xive_q *q, bool just_peek)
95 {
96 	u32 cur;
97 
98 	if (!q->qpage)
99 		return 0;
100 	cur = be32_to_cpup(q->qpage + q->idx);
101 
102 	/* Check valid bit (31) vs current toggle polarity */
103 	if ((cur >> 31) == q->toggle)
104 		return 0;
105 
106 	/* If consuming from the queue ... */
107 	if (!just_peek) {
108 		/* Next entry */
109 		q->idx = (q->idx + 1) & q->msk;
110 
111 		/* Wrap around: flip valid toggle */
112 		if (q->idx == 0)
113 			q->toggle ^= 1;
114 	}
115 	/* Mask out the valid bit (31) */
116 	return cur & 0x7fffffff;
117 }
118 
119 /*
120  * Scans all the queue that may have interrupts in them
121  * (based on "pending_prio") in priority order until an
122  * interrupt is found or all the queues are empty.
123  *
124  * Then updates the CPPR (Current Processor Priority
125  * Register) based on the most favored interrupt found
126  * (0xff if none) and return what was found (0 if none).
127  *
128  * If just_peek is set, return the most favored pending
129  * interrupt if any but don't update the queue pointers.
130  *
131  * Note: This function can operate generically on any number
132  * of queues (up to 8). The current implementation of the XIVE
133  * driver only uses a single queue however.
134  *
135  * Note2: This will also "flush" "the pending_count" of a queue
136  * into the "count" when that queue is observed to be empty.
137  * This is used to keep track of the amount of interrupts
138  * targetting a queue. When an interrupt is moved away from
139  * a queue, we only decrement that queue count once the queue
140  * has been observed empty to avoid races.
141  */
142 static u32 xive_scan_interrupts(struct xive_cpu *xc, bool just_peek)
143 {
144 	u32 irq = 0;
145 	u8 prio = 0;
146 
147 	/* Find highest pending priority */
148 	while (xc->pending_prio != 0) {
149 		struct xive_q *q;
150 
151 		prio = ffs(xc->pending_prio) - 1;
152 		DBG_VERBOSE("scan_irq: trying prio %d\n", prio);
153 
154 		/* Try to fetch */
155 		irq = xive_read_eq(&xc->queue[prio], just_peek);
156 
157 		/* Found something ? That's it */
158 		if (irq) {
159 			if (just_peek || irq_to_desc(irq))
160 				break;
161 			/*
162 			 * We should never get here; if we do then we must
163 			 * have failed to synchronize the interrupt properly
164 			 * when shutting it down.
165 			 */
166 			pr_crit("xive: got interrupt %d without descriptor, dropping\n",
167 				irq);
168 			WARN_ON(1);
169 			continue;
170 		}
171 
172 		/* Clear pending bits */
173 		xc->pending_prio &= ~(1 << prio);
174 
175 		/*
176 		 * Check if the queue count needs adjusting due to
177 		 * interrupts being moved away. See description of
178 		 * xive_dec_target_count()
179 		 */
180 		q = &xc->queue[prio];
181 		if (atomic_read(&q->pending_count)) {
182 			int p = atomic_xchg(&q->pending_count, 0);
183 			if (p) {
184 				WARN_ON(p > atomic_read(&q->count));
185 				atomic_sub(p, &q->count);
186 			}
187 		}
188 	}
189 
190 	/* If nothing was found, set CPPR to 0xff */
191 	if (irq == 0)
192 		prio = 0xff;
193 
194 	/* Update HW CPPR to match if necessary */
195 	if (prio != xc->cppr) {
196 		DBG_VERBOSE("scan_irq: adjusting CPPR to %d\n", prio);
197 		xc->cppr = prio;
198 		out_8(xive_tima + xive_tima_offset + TM_CPPR, prio);
199 	}
200 
201 	return irq;
202 }
203 
204 /*
205  * This is used to perform the magic loads from an ESB
206  * described in xive-regs.h
207  */
208 static notrace u8 xive_esb_read(struct xive_irq_data *xd, u32 offset)
209 {
210 	u64 val;
211 
212 	if (offset == XIVE_ESB_SET_PQ_10 && xd->flags & XIVE_IRQ_FLAG_STORE_EOI)
213 		offset |= XIVE_ESB_LD_ST_MO;
214 
215 	if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw)
216 		val = xive_ops->esb_rw(xd->hw_irq, offset, 0, 0);
217 	else
218 		val = in_be64(xd->eoi_mmio + offset);
219 
220 	return (u8)val;
221 }
222 
223 static void xive_esb_write(struct xive_irq_data *xd, u32 offset, u64 data)
224 {
225 	if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw)
226 		xive_ops->esb_rw(xd->hw_irq, offset, data, 1);
227 	else
228 		out_be64(xd->eoi_mmio + offset, data);
229 }
230 
231 #ifdef CONFIG_XMON
232 static notrace void xive_dump_eq(const char *name, struct xive_q *q)
233 {
234 	u32 i0, i1, idx;
235 
236 	if (!q->qpage)
237 		return;
238 	idx = q->idx;
239 	i0 = be32_to_cpup(q->qpage + idx);
240 	idx = (idx + 1) & q->msk;
241 	i1 = be32_to_cpup(q->qpage + idx);
242 	xmon_printf("%s idx=%d T=%d %08x %08x ...", name,
243 		     q->idx, q->toggle, i0, i1);
244 }
245 
246 notrace void xmon_xive_do_dump(int cpu)
247 {
248 	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
249 
250 	xmon_printf("CPU %d:", cpu);
251 	if (xc) {
252 		xmon_printf("pp=%02x CPPR=%02x ", xc->pending_prio, xc->cppr);
253 
254 #ifdef CONFIG_SMP
255 		{
256 			u64 val = xive_esb_read(&xc->ipi_data, XIVE_ESB_GET);
257 
258 			xmon_printf("IPI=0x%08x PQ=%c%c ", xc->hw_ipi,
259 				    val & XIVE_ESB_VAL_P ? 'P' : '-',
260 				    val & XIVE_ESB_VAL_Q ? 'Q' : '-');
261 		}
262 #endif
263 		xive_dump_eq("EQ", &xc->queue[xive_irq_priority]);
264 	}
265 	xmon_printf("\n");
266 }
267 
268 static struct irq_data *xive_get_irq_data(u32 hw_irq)
269 {
270 	unsigned int irq = irq_find_mapping(xive_irq_domain, hw_irq);
271 
272 	return irq ? irq_get_irq_data(irq) : NULL;
273 }
274 
275 int xmon_xive_get_irq_config(u32 hw_irq, struct irq_data *d)
276 {
277 	int rc;
278 	u32 target;
279 	u8 prio;
280 	u32 lirq;
281 
282 	rc = xive_ops->get_irq_config(hw_irq, &target, &prio, &lirq);
283 	if (rc) {
284 		xmon_printf("IRQ 0x%08x : no config rc=%d\n", hw_irq, rc);
285 		return rc;
286 	}
287 
288 	xmon_printf("IRQ 0x%08x : target=0x%x prio=%02x lirq=0x%x ",
289 		    hw_irq, target, prio, lirq);
290 
291 	if (!d)
292 		d = xive_get_irq_data(hw_irq);
293 
294 	if (d) {
295 		struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
296 		u64 val = xive_esb_read(xd, XIVE_ESB_GET);
297 
298 		xmon_printf("flags=%c%c%c PQ=%c%c",
299 			    xd->flags & XIVE_IRQ_FLAG_STORE_EOI ? 'S' : ' ',
300 			    xd->flags & XIVE_IRQ_FLAG_LSI ? 'L' : ' ',
301 			    xd->flags & XIVE_IRQ_FLAG_H_INT_ESB ? 'H' : ' ',
302 			    val & XIVE_ESB_VAL_P ? 'P' : '-',
303 			    val & XIVE_ESB_VAL_Q ? 'Q' : '-');
304 	}
305 
306 	xmon_printf("\n");
307 	return 0;
308 }
309 
310 void xmon_xive_get_irq_all(void)
311 {
312 	unsigned int i;
313 	struct irq_desc *desc;
314 
315 	for_each_irq_desc(i, desc) {
316 		struct irq_data *d = irq_desc_get_irq_data(desc);
317 		unsigned int hwirq = (unsigned int)irqd_to_hwirq(d);
318 
319 		if (d->domain == xive_irq_domain)
320 			xmon_xive_get_irq_config(hwirq, d);
321 	}
322 }
323 
324 #endif /* CONFIG_XMON */
325 
326 static unsigned int xive_get_irq(void)
327 {
328 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
329 	u32 irq;
330 
331 	/*
332 	 * This can be called either as a result of a HW interrupt or
333 	 * as a "replay" because EOI decided there was still something
334 	 * in one of the queues.
335 	 *
336 	 * First we perform an ACK cycle in order to update our mask
337 	 * of pending priorities. This will also have the effect of
338 	 * updating the CPPR to the most favored pending interrupts.
339 	 *
340 	 * In the future, if we have a way to differentiate a first
341 	 * entry (on HW interrupt) from a replay triggered by EOI,
342 	 * we could skip this on replays unless we soft-mask tells us
343 	 * that a new HW interrupt occurred.
344 	 */
345 	xive_ops->update_pending(xc);
346 
347 	DBG_VERBOSE("get_irq: pending=%02x\n", xc->pending_prio);
348 
349 	/* Scan our queue(s) for interrupts */
350 	irq = xive_scan_interrupts(xc, false);
351 
352 	DBG_VERBOSE("get_irq: got irq 0x%x, new pending=0x%02x\n",
353 	    irq, xc->pending_prio);
354 
355 	/* Return pending interrupt if any */
356 	if (irq == XIVE_BAD_IRQ)
357 		return 0;
358 	return irq;
359 }
360 
361 /*
362  * After EOI'ing an interrupt, we need to re-check the queue
363  * to see if another interrupt is pending since multiple
364  * interrupts can coalesce into a single notification to the
365  * CPU.
366  *
367  * If we find that there is indeed more in there, we call
368  * force_external_irq_replay() to make Linux synthetize an
369  * external interrupt on the next call to local_irq_restore().
370  */
371 static void xive_do_queue_eoi(struct xive_cpu *xc)
372 {
373 	if (xive_scan_interrupts(xc, true) != 0) {
374 		DBG_VERBOSE("eoi: pending=0x%02x\n", xc->pending_prio);
375 		force_external_irq_replay();
376 	}
377 }
378 
379 /*
380  * EOI an interrupt at the source. There are several methods
381  * to do this depending on the HW version and source type
382  */
383 static void xive_do_source_eoi(struct xive_irq_data *xd)
384 {
385 	u8 eoi_val;
386 
387 	xd->stale_p = false;
388 
389 	/* If the XIVE supports the new "store EOI facility, use it */
390 	if (xd->flags & XIVE_IRQ_FLAG_STORE_EOI) {
391 		xive_esb_write(xd, XIVE_ESB_STORE_EOI, 0);
392 		return;
393 	}
394 
395 	/*
396 	 * For LSIs, we use the "EOI cycle" special load rather than
397 	 * PQ bits, as they are automatically re-triggered in HW when
398 	 * still pending.
399 	 */
400 	if (xd->flags & XIVE_IRQ_FLAG_LSI) {
401 		xive_esb_read(xd, XIVE_ESB_LOAD_EOI);
402 		return;
403 	}
404 
405 	/*
406 	 * Otherwise, we use the special MMIO that does a clear of
407 	 * both P and Q and returns the old Q. This allows us to then
408 	 * do a re-trigger if Q was set rather than synthesizing an
409 	 * interrupt in software
410 	 */
411 	eoi_val = xive_esb_read(xd, XIVE_ESB_SET_PQ_00);
412 	DBG_VERBOSE("eoi_val=%x\n", eoi_val);
413 
414 	/* Re-trigger if needed */
415 	if ((eoi_val & XIVE_ESB_VAL_Q) && xd->trig_mmio)
416 		out_be64(xd->trig_mmio, 0);
417 }
418 
419 /* irq_chip eoi callback, called with irq descriptor lock held */
420 static void xive_irq_eoi(struct irq_data *d)
421 {
422 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
423 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
424 
425 	DBG_VERBOSE("eoi_irq: irq=%d [0x%lx] pending=%02x\n",
426 		    d->irq, irqd_to_hwirq(d), xc->pending_prio);
427 
428 	/*
429 	 * EOI the source if it hasn't been disabled and hasn't
430 	 * been passed-through to a KVM guest
431 	 */
432 	if (!irqd_irq_disabled(d) && !irqd_is_forwarded_to_vcpu(d) &&
433 	    !(xd->flags & XIVE_IRQ_FLAG_NO_EOI))
434 		xive_do_source_eoi(xd);
435 	else
436 		xd->stale_p = true;
437 
438 	/*
439 	 * Clear saved_p to indicate that it's no longer occupying
440 	 * a queue slot on the target queue
441 	 */
442 	xd->saved_p = false;
443 
444 	/* Check for more work in the queue */
445 	xive_do_queue_eoi(xc);
446 }
447 
448 /*
449  * Helper used to mask and unmask an interrupt source.
450  */
451 static void xive_do_source_set_mask(struct xive_irq_data *xd,
452 				    bool mask)
453 {
454 	u64 val;
455 
456 	/*
457 	 * If the interrupt had P set, it may be in a queue.
458 	 *
459 	 * We need to make sure we don't re-enable it until it
460 	 * has been fetched from that queue and EOId. We keep
461 	 * a copy of that P state and use it to restore the
462 	 * ESB accordingly on unmask.
463 	 */
464 	if (mask) {
465 		val = xive_esb_read(xd, XIVE_ESB_SET_PQ_01);
466 		if (!xd->stale_p && !!(val & XIVE_ESB_VAL_P))
467 			xd->saved_p = true;
468 		xd->stale_p = false;
469 	} else if (xd->saved_p) {
470 		xive_esb_read(xd, XIVE_ESB_SET_PQ_10);
471 		xd->saved_p = false;
472 	} else {
473 		xive_esb_read(xd, XIVE_ESB_SET_PQ_00);
474 		xd->stale_p = false;
475 	}
476 }
477 
478 /*
479  * Try to chose "cpu" as a new interrupt target. Increments
480  * the queue accounting for that target if it's not already
481  * full.
482  */
483 static bool xive_try_pick_target(int cpu)
484 {
485 	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
486 	struct xive_q *q = &xc->queue[xive_irq_priority];
487 	int max;
488 
489 	/*
490 	 * Calculate max number of interrupts in that queue.
491 	 *
492 	 * We leave a gap of 1 just in case...
493 	 */
494 	max = (q->msk + 1) - 1;
495 	return !!atomic_add_unless(&q->count, 1, max);
496 }
497 
498 /*
499  * Un-account an interrupt for a target CPU. We don't directly
500  * decrement q->count since the interrupt might still be present
501  * in the queue.
502  *
503  * Instead increment a separate counter "pending_count" which
504  * will be substracted from "count" later when that CPU observes
505  * the queue to be empty.
506  */
507 static void xive_dec_target_count(int cpu)
508 {
509 	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
510 	struct xive_q *q = &xc->queue[xive_irq_priority];
511 
512 	if (WARN_ON(cpu < 0 || !xc)) {
513 		pr_err("%s: cpu=%d xc=%p\n", __func__, cpu, xc);
514 		return;
515 	}
516 
517 	/*
518 	 * We increment the "pending count" which will be used
519 	 * to decrement the target queue count whenever it's next
520 	 * processed and found empty. This ensure that we don't
521 	 * decrement while we still have the interrupt there
522 	 * occupying a slot.
523 	 */
524 	atomic_inc(&q->pending_count);
525 }
526 
527 /* Find a tentative CPU target in a CPU mask */
528 static int xive_find_target_in_mask(const struct cpumask *mask,
529 				    unsigned int fuzz)
530 {
531 	int cpu, first, num, i;
532 
533 	/* Pick up a starting point CPU in the mask based on  fuzz */
534 	num = min_t(int, cpumask_weight(mask), nr_cpu_ids);
535 	first = fuzz % num;
536 
537 	/* Locate it */
538 	cpu = cpumask_first(mask);
539 	for (i = 0; i < first && cpu < nr_cpu_ids; i++)
540 		cpu = cpumask_next(cpu, mask);
541 
542 	/* Sanity check */
543 	if (WARN_ON(cpu >= nr_cpu_ids))
544 		cpu = cpumask_first(cpu_online_mask);
545 
546 	/* Remember first one to handle wrap-around */
547 	first = cpu;
548 
549 	/*
550 	 * Now go through the entire mask until we find a valid
551 	 * target.
552 	 */
553 	do {
554 		/*
555 		 * We re-check online as the fallback case passes us
556 		 * an untested affinity mask
557 		 */
558 		if (cpu_online(cpu) && xive_try_pick_target(cpu))
559 			return cpu;
560 		cpu = cpumask_next(cpu, mask);
561 		/* Wrap around */
562 		if (cpu >= nr_cpu_ids)
563 			cpu = cpumask_first(mask);
564 	} while (cpu != first);
565 
566 	return -1;
567 }
568 
569 /*
570  * Pick a target CPU for an interrupt. This is done at
571  * startup or if the affinity is changed in a way that
572  * invalidates the current target.
573  */
574 static int xive_pick_irq_target(struct irq_data *d,
575 				const struct cpumask *affinity)
576 {
577 	static unsigned int fuzz;
578 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
579 	cpumask_var_t mask;
580 	int cpu = -1;
581 
582 	/*
583 	 * If we have chip IDs, first we try to build a mask of
584 	 * CPUs matching the CPU and find a target in there
585 	 */
586 	if (xd->src_chip != XIVE_INVALID_CHIP_ID &&
587 		zalloc_cpumask_var(&mask, GFP_ATOMIC)) {
588 		/* Build a mask of matching chip IDs */
589 		for_each_cpu_and(cpu, affinity, cpu_online_mask) {
590 			struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
591 			if (xc->chip_id == xd->src_chip)
592 				cpumask_set_cpu(cpu, mask);
593 		}
594 		/* Try to find a target */
595 		if (cpumask_empty(mask))
596 			cpu = -1;
597 		else
598 			cpu = xive_find_target_in_mask(mask, fuzz++);
599 		free_cpumask_var(mask);
600 		if (cpu >= 0)
601 			return cpu;
602 		fuzz--;
603 	}
604 
605 	/* No chip IDs, fallback to using the affinity mask */
606 	return xive_find_target_in_mask(affinity, fuzz++);
607 }
608 
609 static unsigned int xive_irq_startup(struct irq_data *d)
610 {
611 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
612 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
613 	int target, rc;
614 
615 	xd->saved_p = false;
616 	xd->stale_p = false;
617 	pr_devel("xive_irq_startup: irq %d [0x%x] data @%p\n",
618 		 d->irq, hw_irq, d);
619 
620 #ifdef CONFIG_PCI_MSI
621 	/*
622 	 * The generic MSI code returns with the interrupt disabled on the
623 	 * card, using the MSI mask bits. Firmware doesn't appear to unmask
624 	 * at that level, so we do it here by hand.
625 	 */
626 	if (irq_data_get_msi_desc(d))
627 		pci_msi_unmask_irq(d);
628 #endif
629 
630 	/* Pick a target */
631 	target = xive_pick_irq_target(d, irq_data_get_affinity_mask(d));
632 	if (target == XIVE_INVALID_TARGET) {
633 		/* Try again breaking affinity */
634 		target = xive_pick_irq_target(d, cpu_online_mask);
635 		if (target == XIVE_INVALID_TARGET)
636 			return -ENXIO;
637 		pr_warn("irq %d started with broken affinity\n", d->irq);
638 	}
639 
640 	/* Sanity check */
641 	if (WARN_ON(target == XIVE_INVALID_TARGET ||
642 		    target >= nr_cpu_ids))
643 		target = smp_processor_id();
644 
645 	xd->target = target;
646 
647 	/*
648 	 * Configure the logical number to be the Linux IRQ number
649 	 * and set the target queue
650 	 */
651 	rc = xive_ops->configure_irq(hw_irq,
652 				     get_hard_smp_processor_id(target),
653 				     xive_irq_priority, d->irq);
654 	if (rc)
655 		return rc;
656 
657 	/* Unmask the ESB */
658 	xive_do_source_set_mask(xd, false);
659 
660 	return 0;
661 }
662 
663 /* called with irq descriptor lock held */
664 static void xive_irq_shutdown(struct irq_data *d)
665 {
666 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
667 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
668 
669 	pr_devel("xive_irq_shutdown: irq %d [0x%x] data @%p\n",
670 		 d->irq, hw_irq, d);
671 
672 	if (WARN_ON(xd->target == XIVE_INVALID_TARGET))
673 		return;
674 
675 	/* Mask the interrupt at the source */
676 	xive_do_source_set_mask(xd, true);
677 
678 	/*
679 	 * Mask the interrupt in HW in the IVT/EAS and set the number
680 	 * to be the "bad" IRQ number
681 	 */
682 	xive_ops->configure_irq(hw_irq,
683 				get_hard_smp_processor_id(xd->target),
684 				0xff, XIVE_BAD_IRQ);
685 
686 	xive_dec_target_count(xd->target);
687 	xd->target = XIVE_INVALID_TARGET;
688 }
689 
690 static void xive_irq_unmask(struct irq_data *d)
691 {
692 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
693 
694 	pr_devel("xive_irq_unmask: irq %d data @%p\n", d->irq, xd);
695 
696 	xive_do_source_set_mask(xd, false);
697 }
698 
699 static void xive_irq_mask(struct irq_data *d)
700 {
701 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
702 
703 	pr_devel("xive_irq_mask: irq %d data @%p\n", d->irq, xd);
704 
705 	xive_do_source_set_mask(xd, true);
706 }
707 
708 static int xive_irq_set_affinity(struct irq_data *d,
709 				 const struct cpumask *cpumask,
710 				 bool force)
711 {
712 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
713 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
714 	u32 target, old_target;
715 	int rc = 0;
716 
717 	pr_devel("xive_irq_set_affinity: irq %d\n", d->irq);
718 
719 	/* Is this valid ? */
720 	if (cpumask_any_and(cpumask, cpu_online_mask) >= nr_cpu_ids)
721 		return -EINVAL;
722 
723 	/* Don't do anything if the interrupt isn't started */
724 	if (!irqd_is_started(d))
725 		return IRQ_SET_MASK_OK;
726 
727 	/*
728 	 * If existing target is already in the new mask, and is
729 	 * online then do nothing.
730 	 */
731 	if (xd->target != XIVE_INVALID_TARGET &&
732 	    cpu_online(xd->target) &&
733 	    cpumask_test_cpu(xd->target, cpumask))
734 		return IRQ_SET_MASK_OK;
735 
736 	/* Pick a new target */
737 	target = xive_pick_irq_target(d, cpumask);
738 
739 	/* No target found */
740 	if (target == XIVE_INVALID_TARGET)
741 		return -ENXIO;
742 
743 	/* Sanity check */
744 	if (WARN_ON(target >= nr_cpu_ids))
745 		target = smp_processor_id();
746 
747 	old_target = xd->target;
748 
749 	/*
750 	 * Only configure the irq if it's not currently passed-through to
751 	 * a KVM guest
752 	 */
753 	if (!irqd_is_forwarded_to_vcpu(d))
754 		rc = xive_ops->configure_irq(hw_irq,
755 					     get_hard_smp_processor_id(target),
756 					     xive_irq_priority, d->irq);
757 	if (rc < 0) {
758 		pr_err("Error %d reconfiguring irq %d\n", rc, d->irq);
759 		return rc;
760 	}
761 
762 	pr_devel("  target: 0x%x\n", target);
763 	xd->target = target;
764 
765 	/* Give up previous target */
766 	if (old_target != XIVE_INVALID_TARGET)
767 	    xive_dec_target_count(old_target);
768 
769 	return IRQ_SET_MASK_OK;
770 }
771 
772 static int xive_irq_set_type(struct irq_data *d, unsigned int flow_type)
773 {
774 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
775 
776 	/*
777 	 * We only support these. This has really no effect other than setting
778 	 * the corresponding descriptor bits mind you but those will in turn
779 	 * affect the resend function when re-enabling an edge interrupt.
780 	 *
781 	 * Set set the default to edge as explained in map().
782 	 */
783 	if (flow_type == IRQ_TYPE_DEFAULT || flow_type == IRQ_TYPE_NONE)
784 		flow_type = IRQ_TYPE_EDGE_RISING;
785 
786 	if (flow_type != IRQ_TYPE_EDGE_RISING &&
787 	    flow_type != IRQ_TYPE_LEVEL_LOW)
788 		return -EINVAL;
789 
790 	irqd_set_trigger_type(d, flow_type);
791 
792 	/*
793 	 * Double check it matches what the FW thinks
794 	 *
795 	 * NOTE: We don't know yet if the PAPR interface will provide
796 	 * the LSI vs MSI information apart from the device-tree so
797 	 * this check might have to move into an optional backend call
798 	 * that is specific to the native backend
799 	 */
800 	if ((flow_type == IRQ_TYPE_LEVEL_LOW) !=
801 	    !!(xd->flags & XIVE_IRQ_FLAG_LSI)) {
802 		pr_warn("Interrupt %d (HW 0x%x) type mismatch, Linux says %s, FW says %s\n",
803 			d->irq, (u32)irqd_to_hwirq(d),
804 			(flow_type == IRQ_TYPE_LEVEL_LOW) ? "Level" : "Edge",
805 			(xd->flags & XIVE_IRQ_FLAG_LSI) ? "Level" : "Edge");
806 	}
807 
808 	return IRQ_SET_MASK_OK_NOCOPY;
809 }
810 
811 static int xive_irq_retrigger(struct irq_data *d)
812 {
813 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
814 
815 	/* This should be only for MSIs */
816 	if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
817 		return 0;
818 
819 	/*
820 	 * To perform a retrigger, we first set the PQ bits to
821 	 * 11, then perform an EOI.
822 	 */
823 	xive_esb_read(xd, XIVE_ESB_SET_PQ_11);
824 	xive_do_source_eoi(xd);
825 
826 	return 1;
827 }
828 
829 /*
830  * Caller holds the irq descriptor lock, so this won't be called
831  * concurrently with xive_get_irqchip_state on the same interrupt.
832  */
833 static int xive_irq_set_vcpu_affinity(struct irq_data *d, void *state)
834 {
835 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
836 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
837 	int rc;
838 	u8 pq;
839 
840 	/*
841 	 * This is called by KVM with state non-NULL for enabling
842 	 * pass-through or NULL for disabling it
843 	 */
844 	if (state) {
845 		irqd_set_forwarded_to_vcpu(d);
846 
847 		/* Set it to PQ=10 state to prevent further sends */
848 		pq = xive_esb_read(xd, XIVE_ESB_SET_PQ_10);
849 		if (!xd->stale_p) {
850 			xd->saved_p = !!(pq & XIVE_ESB_VAL_P);
851 			xd->stale_p = !xd->saved_p;
852 		}
853 
854 		/* No target ? nothing to do */
855 		if (xd->target == XIVE_INVALID_TARGET) {
856 			/*
857 			 * An untargetted interrupt should have been
858 			 * also masked at the source
859 			 */
860 			WARN_ON(xd->saved_p);
861 
862 			return 0;
863 		}
864 
865 		/*
866 		 * If P was set, adjust state to PQ=11 to indicate
867 		 * that a resend is needed for the interrupt to reach
868 		 * the guest. Also remember the value of P.
869 		 *
870 		 * This also tells us that it's in flight to a host queue
871 		 * or has already been fetched but hasn't been EOIed yet
872 		 * by the host. This it's potentially using up a host
873 		 * queue slot. This is important to know because as long
874 		 * as this is the case, we must not hard-unmask it when
875 		 * "returning" that interrupt to the host.
876 		 *
877 		 * This saved_p is cleared by the host EOI, when we know
878 		 * for sure the queue slot is no longer in use.
879 		 */
880 		if (xd->saved_p) {
881 			xive_esb_read(xd, XIVE_ESB_SET_PQ_11);
882 
883 			/*
884 			 * Sync the XIVE source HW to ensure the interrupt
885 			 * has gone through the EAS before we change its
886 			 * target to the guest. That should guarantee us
887 			 * that we *will* eventually get an EOI for it on
888 			 * the host. Otherwise there would be a small window
889 			 * for P to be seen here but the interrupt going
890 			 * to the guest queue.
891 			 */
892 			if (xive_ops->sync_source)
893 				xive_ops->sync_source(hw_irq);
894 		}
895 	} else {
896 		irqd_clr_forwarded_to_vcpu(d);
897 
898 		/* No host target ? hard mask and return */
899 		if (xd->target == XIVE_INVALID_TARGET) {
900 			xive_do_source_set_mask(xd, true);
901 			return 0;
902 		}
903 
904 		/*
905 		 * Sync the XIVE source HW to ensure the interrupt
906 		 * has gone through the EAS before we change its
907 		 * target to the host.
908 		 */
909 		if (xive_ops->sync_source)
910 			xive_ops->sync_source(hw_irq);
911 
912 		/*
913 		 * By convention we are called with the interrupt in
914 		 * a PQ=10 or PQ=11 state, ie, it won't fire and will
915 		 * have latched in Q whether there's a pending HW
916 		 * interrupt or not.
917 		 *
918 		 * First reconfigure the target.
919 		 */
920 		rc = xive_ops->configure_irq(hw_irq,
921 					     get_hard_smp_processor_id(xd->target),
922 					     xive_irq_priority, d->irq);
923 		if (rc)
924 			return rc;
925 
926 		/*
927 		 * Then if saved_p is not set, effectively re-enable the
928 		 * interrupt with an EOI. If it is set, we know there is
929 		 * still a message in a host queue somewhere that will be
930 		 * EOId eventually.
931 		 *
932 		 * Note: We don't check irqd_irq_disabled(). Effectively,
933 		 * we *will* let the irq get through even if masked if the
934 		 * HW is still firing it in order to deal with the whole
935 		 * saved_p business properly. If the interrupt triggers
936 		 * while masked, the generic code will re-mask it anyway.
937 		 */
938 		if (!xd->saved_p)
939 			xive_do_source_eoi(xd);
940 
941 	}
942 	return 0;
943 }
944 
945 /* Called with irq descriptor lock held. */
946 static int xive_get_irqchip_state(struct irq_data *data,
947 				  enum irqchip_irq_state which, bool *state)
948 {
949 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(data);
950 	u8 pq;
951 
952 	switch (which) {
953 	case IRQCHIP_STATE_ACTIVE:
954 		pq = xive_esb_read(xd, XIVE_ESB_GET);
955 
956 		/*
957 		 * The esb value being all 1's means we couldn't get
958 		 * the PQ state of the interrupt through mmio. It may
959 		 * happen, for example when querying a PHB interrupt
960 		 * while the PHB is in an error state. We consider the
961 		 * interrupt to be inactive in that case.
962 		 */
963 		*state = (pq != XIVE_ESB_INVALID) && !xd->stale_p &&
964 			(xd->saved_p || !!(pq & XIVE_ESB_VAL_P));
965 		return 0;
966 	default:
967 		return -EINVAL;
968 	}
969 }
970 
971 static struct irq_chip xive_irq_chip = {
972 	.name = "XIVE-IRQ",
973 	.irq_startup = xive_irq_startup,
974 	.irq_shutdown = xive_irq_shutdown,
975 	.irq_eoi = xive_irq_eoi,
976 	.irq_mask = xive_irq_mask,
977 	.irq_unmask = xive_irq_unmask,
978 	.irq_set_affinity = xive_irq_set_affinity,
979 	.irq_set_type = xive_irq_set_type,
980 	.irq_retrigger = xive_irq_retrigger,
981 	.irq_set_vcpu_affinity = xive_irq_set_vcpu_affinity,
982 	.irq_get_irqchip_state = xive_get_irqchip_state,
983 };
984 
985 bool is_xive_irq(struct irq_chip *chip)
986 {
987 	return chip == &xive_irq_chip;
988 }
989 EXPORT_SYMBOL_GPL(is_xive_irq);
990 
991 void xive_cleanup_irq_data(struct xive_irq_data *xd)
992 {
993 	if (xd->eoi_mmio) {
994 		iounmap(xd->eoi_mmio);
995 		if (xd->eoi_mmio == xd->trig_mmio)
996 			xd->trig_mmio = NULL;
997 		xd->eoi_mmio = NULL;
998 	}
999 	if (xd->trig_mmio) {
1000 		iounmap(xd->trig_mmio);
1001 		xd->trig_mmio = NULL;
1002 	}
1003 }
1004 EXPORT_SYMBOL_GPL(xive_cleanup_irq_data);
1005 
1006 static int xive_irq_alloc_data(unsigned int virq, irq_hw_number_t hw)
1007 {
1008 	struct xive_irq_data *xd;
1009 	int rc;
1010 
1011 	xd = kzalloc(sizeof(struct xive_irq_data), GFP_KERNEL);
1012 	if (!xd)
1013 		return -ENOMEM;
1014 	rc = xive_ops->populate_irq_data(hw, xd);
1015 	if (rc) {
1016 		kfree(xd);
1017 		return rc;
1018 	}
1019 	xd->target = XIVE_INVALID_TARGET;
1020 	irq_set_handler_data(virq, xd);
1021 
1022 	/*
1023 	 * Turn OFF by default the interrupt being mapped. A side
1024 	 * effect of this check is the mapping the ESB page of the
1025 	 * interrupt in the Linux address space. This prevents page
1026 	 * fault issues in the crash handler which masks all
1027 	 * interrupts.
1028 	 */
1029 	xive_esb_read(xd, XIVE_ESB_SET_PQ_01);
1030 
1031 	return 0;
1032 }
1033 
1034 static void xive_irq_free_data(unsigned int virq)
1035 {
1036 	struct xive_irq_data *xd = irq_get_handler_data(virq);
1037 
1038 	if (!xd)
1039 		return;
1040 	irq_set_handler_data(virq, NULL);
1041 	xive_cleanup_irq_data(xd);
1042 	kfree(xd);
1043 }
1044 
1045 #ifdef CONFIG_SMP
1046 
1047 static void xive_cause_ipi(int cpu)
1048 {
1049 	struct xive_cpu *xc;
1050 	struct xive_irq_data *xd;
1051 
1052 	xc = per_cpu(xive_cpu, cpu);
1053 
1054 	DBG_VERBOSE("IPI CPU %d -> %d (HW IRQ 0x%x)\n",
1055 		    smp_processor_id(), cpu, xc->hw_ipi);
1056 
1057 	xd = &xc->ipi_data;
1058 	if (WARN_ON(!xd->trig_mmio))
1059 		return;
1060 	out_be64(xd->trig_mmio, 0);
1061 }
1062 
1063 static irqreturn_t xive_muxed_ipi_action(int irq, void *dev_id)
1064 {
1065 	return smp_ipi_demux();
1066 }
1067 
1068 static void xive_ipi_eoi(struct irq_data *d)
1069 {
1070 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1071 
1072 	/* Handle possible race with unplug and drop stale IPIs */
1073 	if (!xc)
1074 		return;
1075 
1076 	DBG_VERBOSE("IPI eoi: irq=%d [0x%lx] (HW IRQ 0x%x) pending=%02x\n",
1077 		    d->irq, irqd_to_hwirq(d), xc->hw_ipi, xc->pending_prio);
1078 
1079 	xive_do_source_eoi(&xc->ipi_data);
1080 	xive_do_queue_eoi(xc);
1081 }
1082 
1083 static void xive_ipi_do_nothing(struct irq_data *d)
1084 {
1085 	/*
1086 	 * Nothing to do, we never mask/unmask IPIs, but the callback
1087 	 * has to exist for the struct irq_chip.
1088 	 */
1089 }
1090 
1091 static struct irq_chip xive_ipi_chip = {
1092 	.name = "XIVE-IPI",
1093 	.irq_eoi = xive_ipi_eoi,
1094 	.irq_mask = xive_ipi_do_nothing,
1095 	.irq_unmask = xive_ipi_do_nothing,
1096 };
1097 
1098 /*
1099  * IPIs are marked per-cpu. We use separate HW interrupts under the
1100  * hood but associated with the same "linux" interrupt
1101  */
1102 struct xive_ipi_alloc_info {
1103 	irq_hw_number_t hwirq;
1104 };
1105 
1106 static int xive_ipi_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1107 				     unsigned int nr_irqs, void *arg)
1108 {
1109 	struct xive_ipi_alloc_info *info = arg;
1110 	int i;
1111 
1112 	for (i = 0; i < nr_irqs; i++) {
1113 		irq_domain_set_info(domain, virq + i, info->hwirq + i, &xive_ipi_chip,
1114 				    domain->host_data, handle_percpu_irq,
1115 				    NULL, NULL);
1116 	}
1117 	return 0;
1118 }
1119 
1120 static const struct irq_domain_ops xive_ipi_irq_domain_ops = {
1121 	.alloc  = xive_ipi_irq_domain_alloc,
1122 };
1123 
1124 static int __init xive_init_ipis(void)
1125 {
1126 	struct fwnode_handle *fwnode;
1127 	struct irq_domain *ipi_domain;
1128 	unsigned int node;
1129 	int ret = -ENOMEM;
1130 
1131 	fwnode = irq_domain_alloc_named_fwnode("XIVE-IPI");
1132 	if (!fwnode)
1133 		goto out;
1134 
1135 	ipi_domain = irq_domain_create_linear(fwnode, nr_node_ids,
1136 					      &xive_ipi_irq_domain_ops, NULL);
1137 	if (!ipi_domain)
1138 		goto out_free_fwnode;
1139 
1140 	xive_ipis = kcalloc(nr_node_ids, sizeof(*xive_ipis), GFP_KERNEL | __GFP_NOFAIL);
1141 	if (!xive_ipis)
1142 		goto out_free_domain;
1143 
1144 	for_each_node(node) {
1145 		struct xive_ipi_desc *xid = &xive_ipis[node];
1146 		struct xive_ipi_alloc_info info = { node };
1147 
1148 		/*
1149 		 * Map one IPI interrupt per node for all cpus of that node.
1150 		 * Since the HW interrupt number doesn't have any meaning,
1151 		 * simply use the node number.
1152 		 */
1153 		ret = irq_domain_alloc_irqs(ipi_domain, 1, node, &info);
1154 		if (ret < 0)
1155 			goto out_free_xive_ipis;
1156 		xid->irq = ret;
1157 
1158 		snprintf(xid->name, sizeof(xid->name), "IPI-%d", node);
1159 	}
1160 
1161 	return ret;
1162 
1163 out_free_xive_ipis:
1164 	kfree(xive_ipis);
1165 out_free_domain:
1166 	irq_domain_remove(ipi_domain);
1167 out_free_fwnode:
1168 	irq_domain_free_fwnode(fwnode);
1169 out:
1170 	return ret;
1171 }
1172 
1173 static int __init xive_request_ipi(unsigned int cpu)
1174 {
1175 	struct xive_ipi_desc *xid = &xive_ipis[early_cpu_to_node(cpu)];
1176 	int ret;
1177 
1178 	if (atomic_inc_return(&xid->started) > 1)
1179 		return 0;
1180 
1181 	ret = request_irq(xid->irq, xive_muxed_ipi_action,
1182 			  IRQF_PERCPU | IRQF_NO_THREAD,
1183 			  xid->name, NULL);
1184 
1185 	WARN(ret < 0, "Failed to request IPI %d: %d\n", xid->irq, ret);
1186 	return ret;
1187 }
1188 
1189 static int xive_setup_cpu_ipi(unsigned int cpu)
1190 {
1191 	unsigned int xive_ipi_irq = xive_ipi_cpu_to_irq(cpu);
1192 	struct xive_cpu *xc;
1193 	int rc;
1194 
1195 	pr_debug("Setting up IPI for CPU %d\n", cpu);
1196 
1197 	xc = per_cpu(xive_cpu, cpu);
1198 
1199 	/* Check if we are already setup */
1200 	if (xc->hw_ipi != XIVE_BAD_IRQ)
1201 		return 0;
1202 
1203 	/* Register the IPI */
1204 	xive_request_ipi(cpu);
1205 
1206 	/* Grab an IPI from the backend, this will populate xc->hw_ipi */
1207 	if (xive_ops->get_ipi(cpu, xc))
1208 		return -EIO;
1209 
1210 	/*
1211 	 * Populate the IRQ data in the xive_cpu structure and
1212 	 * configure the HW / enable the IPIs.
1213 	 */
1214 	rc = xive_ops->populate_irq_data(xc->hw_ipi, &xc->ipi_data);
1215 	if (rc) {
1216 		pr_err("Failed to populate IPI data on CPU %d\n", cpu);
1217 		return -EIO;
1218 	}
1219 	rc = xive_ops->configure_irq(xc->hw_ipi,
1220 				     get_hard_smp_processor_id(cpu),
1221 				     xive_irq_priority, xive_ipi_irq);
1222 	if (rc) {
1223 		pr_err("Failed to map IPI CPU %d\n", cpu);
1224 		return -EIO;
1225 	}
1226 	pr_devel("CPU %d HW IPI %x, virq %d, trig_mmio=%p\n", cpu,
1227 	    xc->hw_ipi, xive_ipi_irq, xc->ipi_data.trig_mmio);
1228 
1229 	/* Unmask it */
1230 	xive_do_source_set_mask(&xc->ipi_data, false);
1231 
1232 	return 0;
1233 }
1234 
1235 static void xive_cleanup_cpu_ipi(unsigned int cpu, struct xive_cpu *xc)
1236 {
1237 	unsigned int xive_ipi_irq = xive_ipi_cpu_to_irq(cpu);
1238 
1239 	/* Disable the IPI and free the IRQ data */
1240 
1241 	/* Already cleaned up ? */
1242 	if (xc->hw_ipi == XIVE_BAD_IRQ)
1243 		return;
1244 
1245 	/* TODO: clear IPI mapping */
1246 
1247 	/* Mask the IPI */
1248 	xive_do_source_set_mask(&xc->ipi_data, true);
1249 
1250 	/*
1251 	 * Note: We don't call xive_cleanup_irq_data() to free
1252 	 * the mappings as this is called from an IPI on kexec
1253 	 * which is not a safe environment to call iounmap()
1254 	 */
1255 
1256 	/* Deconfigure/mask in the backend */
1257 	xive_ops->configure_irq(xc->hw_ipi, hard_smp_processor_id(),
1258 				0xff, xive_ipi_irq);
1259 
1260 	/* Free the IPIs in the backend */
1261 	xive_ops->put_ipi(cpu, xc);
1262 }
1263 
1264 void __init xive_smp_probe(void)
1265 {
1266 	smp_ops->cause_ipi = xive_cause_ipi;
1267 
1268 	/* Register the IPI */
1269 	xive_init_ipis();
1270 
1271 	/* Allocate and setup IPI for the boot CPU */
1272 	xive_setup_cpu_ipi(smp_processor_id());
1273 }
1274 
1275 #endif /* CONFIG_SMP */
1276 
1277 static int xive_irq_domain_map(struct irq_domain *h, unsigned int virq,
1278 			       irq_hw_number_t hw)
1279 {
1280 	int rc;
1281 
1282 	/*
1283 	 * Mark interrupts as edge sensitive by default so that resend
1284 	 * actually works. Will fix that up below if needed.
1285 	 */
1286 	irq_clear_status_flags(virq, IRQ_LEVEL);
1287 
1288 	rc = xive_irq_alloc_data(virq, hw);
1289 	if (rc)
1290 		return rc;
1291 
1292 	irq_set_chip_and_handler(virq, &xive_irq_chip, handle_fasteoi_irq);
1293 
1294 	return 0;
1295 }
1296 
1297 static void xive_irq_domain_unmap(struct irq_domain *d, unsigned int virq)
1298 {
1299 	xive_irq_free_data(virq);
1300 }
1301 
1302 static int xive_irq_domain_xlate(struct irq_domain *h, struct device_node *ct,
1303 				 const u32 *intspec, unsigned int intsize,
1304 				 irq_hw_number_t *out_hwirq, unsigned int *out_flags)
1305 
1306 {
1307 	*out_hwirq = intspec[0];
1308 
1309 	/*
1310 	 * If intsize is at least 2, we look for the type in the second cell,
1311 	 * we assume the LSB indicates a level interrupt.
1312 	 */
1313 	if (intsize > 1) {
1314 		if (intspec[1] & 1)
1315 			*out_flags = IRQ_TYPE_LEVEL_LOW;
1316 		else
1317 			*out_flags = IRQ_TYPE_EDGE_RISING;
1318 	} else
1319 		*out_flags = IRQ_TYPE_LEVEL_LOW;
1320 
1321 	return 0;
1322 }
1323 
1324 static int xive_irq_domain_match(struct irq_domain *h, struct device_node *node,
1325 				 enum irq_domain_bus_token bus_token)
1326 {
1327 	return xive_ops->match(node);
1328 }
1329 
1330 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS
1331 static const char * const esb_names[] = { "RESET", "OFF", "PENDING", "QUEUED" };
1332 
1333 static const struct {
1334 	u64  mask;
1335 	char *name;
1336 } xive_irq_flags[] = {
1337 	{ XIVE_IRQ_FLAG_STORE_EOI, "STORE_EOI" },
1338 	{ XIVE_IRQ_FLAG_LSI,       "LSI"       },
1339 	{ XIVE_IRQ_FLAG_H_INT_ESB, "H_INT_ESB" },
1340 	{ XIVE_IRQ_FLAG_NO_EOI,    "NO_EOI"    },
1341 };
1342 
1343 static void xive_irq_domain_debug_show(struct seq_file *m, struct irq_domain *d,
1344 				       struct irq_data *irqd, int ind)
1345 {
1346 	struct xive_irq_data *xd;
1347 	u64 val;
1348 	int i;
1349 
1350 	/* No IRQ domain level information. To be done */
1351 	if (!irqd)
1352 		return;
1353 
1354 	if (!is_xive_irq(irq_data_get_irq_chip(irqd)))
1355 		return;
1356 
1357 	seq_printf(m, "%*sXIVE:\n", ind, "");
1358 	ind++;
1359 
1360 	xd = irq_data_get_irq_handler_data(irqd);
1361 	if (!xd) {
1362 		seq_printf(m, "%*snot assigned\n", ind, "");
1363 		return;
1364 	}
1365 
1366 	val = xive_esb_read(xd, XIVE_ESB_GET);
1367 	seq_printf(m, "%*sESB:      %s\n", ind, "", esb_names[val & 0x3]);
1368 	seq_printf(m, "%*sPstate:   %s %s\n", ind, "", xd->stale_p ? "stale" : "",
1369 		   xd->saved_p ? "saved" : "");
1370 	seq_printf(m, "%*sTarget:   %d\n", ind, "", xd->target);
1371 	seq_printf(m, "%*sChip:     %d\n", ind, "", xd->src_chip);
1372 	seq_printf(m, "%*sTrigger:  0x%016llx\n", ind, "", xd->trig_page);
1373 	seq_printf(m, "%*sEOI:      0x%016llx\n", ind, "", xd->eoi_page);
1374 	seq_printf(m, "%*sFlags:    0x%llx\n", ind, "", xd->flags);
1375 	for (i = 0; i < ARRAY_SIZE(xive_irq_flags); i++) {
1376 		if (xd->flags & xive_irq_flags[i].mask)
1377 			seq_printf(m, "%*s%s\n", ind + 12, "", xive_irq_flags[i].name);
1378 	}
1379 }
1380 #endif
1381 
1382 static const struct irq_domain_ops xive_irq_domain_ops = {
1383 	.match = xive_irq_domain_match,
1384 	.map = xive_irq_domain_map,
1385 	.unmap = xive_irq_domain_unmap,
1386 	.xlate = xive_irq_domain_xlate,
1387 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS
1388 	.debug_show = xive_irq_domain_debug_show,
1389 #endif
1390 };
1391 
1392 static void __init xive_init_host(struct device_node *np)
1393 {
1394 	xive_irq_domain = irq_domain_add_nomap(np, XIVE_MAX_IRQ,
1395 					       &xive_irq_domain_ops, NULL);
1396 	if (WARN_ON(xive_irq_domain == NULL))
1397 		return;
1398 	irq_set_default_host(xive_irq_domain);
1399 }
1400 
1401 static void xive_cleanup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1402 {
1403 	if (xc->queue[xive_irq_priority].qpage)
1404 		xive_ops->cleanup_queue(cpu, xc, xive_irq_priority);
1405 }
1406 
1407 static int xive_setup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1408 {
1409 	int rc = 0;
1410 
1411 	/* We setup 1 queues for now with a 64k page */
1412 	if (!xc->queue[xive_irq_priority].qpage)
1413 		rc = xive_ops->setup_queue(cpu, xc, xive_irq_priority);
1414 
1415 	return rc;
1416 }
1417 
1418 static int xive_prepare_cpu(unsigned int cpu)
1419 {
1420 	struct xive_cpu *xc;
1421 
1422 	xc = per_cpu(xive_cpu, cpu);
1423 	if (!xc) {
1424 		xc = kzalloc_node(sizeof(struct xive_cpu),
1425 				  GFP_KERNEL, cpu_to_node(cpu));
1426 		if (!xc)
1427 			return -ENOMEM;
1428 		xc->hw_ipi = XIVE_BAD_IRQ;
1429 		xc->chip_id = XIVE_INVALID_CHIP_ID;
1430 		if (xive_ops->prepare_cpu)
1431 			xive_ops->prepare_cpu(cpu, xc);
1432 
1433 		per_cpu(xive_cpu, cpu) = xc;
1434 	}
1435 
1436 	/* Setup EQs if not already */
1437 	return xive_setup_cpu_queues(cpu, xc);
1438 }
1439 
1440 static void xive_setup_cpu(void)
1441 {
1442 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1443 
1444 	/* The backend might have additional things to do */
1445 	if (xive_ops->setup_cpu)
1446 		xive_ops->setup_cpu(smp_processor_id(), xc);
1447 
1448 	/* Set CPPR to 0xff to enable flow of interrupts */
1449 	xc->cppr = 0xff;
1450 	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1451 }
1452 
1453 #ifdef CONFIG_SMP
1454 void xive_smp_setup_cpu(void)
1455 {
1456 	pr_devel("SMP setup CPU %d\n", smp_processor_id());
1457 
1458 	/* This will have already been done on the boot CPU */
1459 	if (smp_processor_id() != boot_cpuid)
1460 		xive_setup_cpu();
1461 
1462 }
1463 
1464 int xive_smp_prepare_cpu(unsigned int cpu)
1465 {
1466 	int rc;
1467 
1468 	/* Allocate per-CPU data and queues */
1469 	rc = xive_prepare_cpu(cpu);
1470 	if (rc)
1471 		return rc;
1472 
1473 	/* Allocate and setup IPI for the new CPU */
1474 	return xive_setup_cpu_ipi(cpu);
1475 }
1476 
1477 #ifdef CONFIG_HOTPLUG_CPU
1478 static void xive_flush_cpu_queue(unsigned int cpu, struct xive_cpu *xc)
1479 {
1480 	u32 irq;
1481 
1482 	/* We assume local irqs are disabled */
1483 	WARN_ON(!irqs_disabled());
1484 
1485 	/* Check what's already in the CPU queue */
1486 	while ((irq = xive_scan_interrupts(xc, false)) != 0) {
1487 		/*
1488 		 * We need to re-route that interrupt to its new destination.
1489 		 * First get and lock the descriptor
1490 		 */
1491 		struct irq_desc *desc = irq_to_desc(irq);
1492 		struct irq_data *d = irq_desc_get_irq_data(desc);
1493 		struct xive_irq_data *xd;
1494 
1495 		/*
1496 		 * Ignore anything that isn't a XIVE irq and ignore
1497 		 * IPIs, so can just be dropped.
1498 		 */
1499 		if (d->domain != xive_irq_domain)
1500 			continue;
1501 
1502 		/*
1503 		 * The IRQ should have already been re-routed, it's just a
1504 		 * stale in the old queue, so re-trigger it in order to make
1505 		 * it reach is new destination.
1506 		 */
1507 #ifdef DEBUG_FLUSH
1508 		pr_info("CPU %d: Got irq %d while offline, re-sending...\n",
1509 			cpu, irq);
1510 #endif
1511 		raw_spin_lock(&desc->lock);
1512 		xd = irq_desc_get_handler_data(desc);
1513 
1514 		/*
1515 		 * Clear saved_p to indicate that it's no longer pending
1516 		 */
1517 		xd->saved_p = false;
1518 
1519 		/*
1520 		 * For LSIs, we EOI, this will cause a resend if it's
1521 		 * still asserted. Otherwise do an MSI retrigger.
1522 		 */
1523 		if (xd->flags & XIVE_IRQ_FLAG_LSI)
1524 			xive_do_source_eoi(xd);
1525 		else
1526 			xive_irq_retrigger(d);
1527 
1528 		raw_spin_unlock(&desc->lock);
1529 	}
1530 }
1531 
1532 void xive_smp_disable_cpu(void)
1533 {
1534 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1535 	unsigned int cpu = smp_processor_id();
1536 
1537 	/* Migrate interrupts away from the CPU */
1538 	irq_migrate_all_off_this_cpu();
1539 
1540 	/* Set CPPR to 0 to disable flow of interrupts */
1541 	xc->cppr = 0;
1542 	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1543 
1544 	/* Flush everything still in the queue */
1545 	xive_flush_cpu_queue(cpu, xc);
1546 
1547 	/* Re-enable CPPR  */
1548 	xc->cppr = 0xff;
1549 	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1550 }
1551 
1552 void xive_flush_interrupt(void)
1553 {
1554 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1555 	unsigned int cpu = smp_processor_id();
1556 
1557 	/* Called if an interrupt occurs while the CPU is hot unplugged */
1558 	xive_flush_cpu_queue(cpu, xc);
1559 }
1560 
1561 #endif /* CONFIG_HOTPLUG_CPU */
1562 
1563 #endif /* CONFIG_SMP */
1564 
1565 void xive_teardown_cpu(void)
1566 {
1567 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1568 	unsigned int cpu = smp_processor_id();
1569 
1570 	/* Set CPPR to 0 to disable flow of interrupts */
1571 	xc->cppr = 0;
1572 	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1573 
1574 	if (xive_ops->teardown_cpu)
1575 		xive_ops->teardown_cpu(cpu, xc);
1576 
1577 #ifdef CONFIG_SMP
1578 	/* Get rid of IPI */
1579 	xive_cleanup_cpu_ipi(cpu, xc);
1580 #endif
1581 
1582 	/* Disable and free the queues */
1583 	xive_cleanup_cpu_queues(cpu, xc);
1584 }
1585 
1586 void xive_shutdown(void)
1587 {
1588 	xive_ops->shutdown();
1589 }
1590 
1591 bool __init xive_core_init(struct device_node *np, const struct xive_ops *ops,
1592 			   void __iomem *area, u32 offset, u8 max_prio)
1593 {
1594 	xive_tima = area;
1595 	xive_tima_offset = offset;
1596 	xive_ops = ops;
1597 	xive_irq_priority = max_prio;
1598 
1599 	ppc_md.get_irq = xive_get_irq;
1600 	__xive_enabled = true;
1601 
1602 	pr_devel("Initializing host..\n");
1603 	xive_init_host(np);
1604 
1605 	pr_devel("Initializing boot CPU..\n");
1606 
1607 	/* Allocate per-CPU data and queues */
1608 	xive_prepare_cpu(smp_processor_id());
1609 
1610 	/* Get ready for interrupts */
1611 	xive_setup_cpu();
1612 
1613 	pr_info("Interrupt handling initialized with %s backend\n",
1614 		xive_ops->name);
1615 	pr_info("Using priority %d for all interrupts\n", max_prio);
1616 
1617 	return true;
1618 }
1619 
1620 __be32 *xive_queue_page_alloc(unsigned int cpu, u32 queue_shift)
1621 {
1622 	unsigned int alloc_order;
1623 	struct page *pages;
1624 	__be32 *qpage;
1625 
1626 	alloc_order = xive_alloc_order(queue_shift);
1627 	pages = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, alloc_order);
1628 	if (!pages)
1629 		return ERR_PTR(-ENOMEM);
1630 	qpage = (__be32 *)page_address(pages);
1631 	memset(qpage, 0, 1 << queue_shift);
1632 
1633 	return qpage;
1634 }
1635 
1636 static int __init xive_off(char *arg)
1637 {
1638 	xive_cmdline_disabled = true;
1639 	return 0;
1640 }
1641 __setup("xive=off", xive_off);
1642 
1643 static void xive_debug_show_cpu(struct seq_file *m, int cpu)
1644 {
1645 	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
1646 
1647 	seq_printf(m, "CPU %d:", cpu);
1648 	if (xc) {
1649 		seq_printf(m, "pp=%02x CPPR=%02x ", xc->pending_prio, xc->cppr);
1650 
1651 #ifdef CONFIG_SMP
1652 		{
1653 			u64 val = xive_esb_read(&xc->ipi_data, XIVE_ESB_GET);
1654 
1655 			seq_printf(m, "IPI=0x%08x PQ=%c%c ", xc->hw_ipi,
1656 				   val & XIVE_ESB_VAL_P ? 'P' : '-',
1657 				   val & XIVE_ESB_VAL_Q ? 'Q' : '-');
1658 		}
1659 #endif
1660 		{
1661 			struct xive_q *q = &xc->queue[xive_irq_priority];
1662 			u32 i0, i1, idx;
1663 
1664 			if (q->qpage) {
1665 				idx = q->idx;
1666 				i0 = be32_to_cpup(q->qpage + idx);
1667 				idx = (idx + 1) & q->msk;
1668 				i1 = be32_to_cpup(q->qpage + idx);
1669 				seq_printf(m, "EQ idx=%d T=%d %08x %08x ...",
1670 					   q->idx, q->toggle, i0, i1);
1671 			}
1672 		}
1673 	}
1674 	seq_puts(m, "\n");
1675 }
1676 
1677 static void xive_debug_show_irq(struct seq_file *m, struct irq_data *d)
1678 {
1679 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
1680 	int rc;
1681 	u32 target;
1682 	u8 prio;
1683 	u32 lirq;
1684 	struct xive_irq_data *xd;
1685 	u64 val;
1686 
1687 	rc = xive_ops->get_irq_config(hw_irq, &target, &prio, &lirq);
1688 	if (rc) {
1689 		seq_printf(m, "IRQ 0x%08x : no config rc=%d\n", hw_irq, rc);
1690 		return;
1691 	}
1692 
1693 	seq_printf(m, "IRQ 0x%08x : target=0x%x prio=%02x lirq=0x%x ",
1694 		   hw_irq, target, prio, lirq);
1695 
1696 	xd = irq_data_get_irq_handler_data(d);
1697 	val = xive_esb_read(xd, XIVE_ESB_GET);
1698 	seq_printf(m, "flags=%c%c%c PQ=%c%c",
1699 		   xd->flags & XIVE_IRQ_FLAG_STORE_EOI ? 'S' : ' ',
1700 		   xd->flags & XIVE_IRQ_FLAG_LSI ? 'L' : ' ',
1701 		   xd->flags & XIVE_IRQ_FLAG_H_INT_ESB ? 'H' : ' ',
1702 		   val & XIVE_ESB_VAL_P ? 'P' : '-',
1703 		   val & XIVE_ESB_VAL_Q ? 'Q' : '-');
1704 	seq_puts(m, "\n");
1705 }
1706 
1707 static int xive_core_debug_show(struct seq_file *m, void *private)
1708 {
1709 	unsigned int i;
1710 	struct irq_desc *desc;
1711 	int cpu;
1712 
1713 	if (xive_ops->debug_show)
1714 		xive_ops->debug_show(m, private);
1715 
1716 	for_each_possible_cpu(cpu)
1717 		xive_debug_show_cpu(m, cpu);
1718 
1719 	for_each_irq_desc(i, desc) {
1720 		struct irq_data *d = irq_desc_get_irq_data(desc);
1721 
1722 		if (d->domain == xive_irq_domain)
1723 			xive_debug_show_irq(m, d);
1724 	}
1725 	return 0;
1726 }
1727 DEFINE_SHOW_ATTRIBUTE(xive_core_debug);
1728 
1729 int xive_core_debug_init(void)
1730 {
1731 	if (xive_enabled())
1732 		debugfs_create_file("xive", 0400, powerpc_debugfs_root,
1733 				    NULL, &xive_core_debug_fops);
1734 	return 0;
1735 }
1736