xref: /openbmc/linux/arch/powerpc/sysdev/xive/common.c (revision 33e4bc59)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2016,2017 IBM Corporation.
4  */
5 
6 #define pr_fmt(fmt) "xive: " fmt
7 
8 #include <linux/types.h>
9 #include <linux/threads.h>
10 #include <linux/kernel.h>
11 #include <linux/irq.h>
12 #include <linux/debugfs.h>
13 #include <linux/smp.h>
14 #include <linux/interrupt.h>
15 #include <linux/seq_file.h>
16 #include <linux/init.h>
17 #include <linux/cpu.h>
18 #include <linux/of.h>
19 #include <linux/slab.h>
20 #include <linux/spinlock.h>
21 #include <linux/msi.h>
22 #include <linux/vmalloc.h>
23 
24 #include <asm/debugfs.h>
25 #include <asm/prom.h>
26 #include <asm/io.h>
27 #include <asm/smp.h>
28 #include <asm/machdep.h>
29 #include <asm/irq.h>
30 #include <asm/errno.h>
31 #include <asm/xive.h>
32 #include <asm/xive-regs.h>
33 #include <asm/xmon.h>
34 
35 #include "xive-internal.h"
36 
37 #undef DEBUG_FLUSH
38 #undef DEBUG_ALL
39 
40 #ifdef DEBUG_ALL
41 #define DBG_VERBOSE(fmt, ...)	pr_devel("cpu %d - " fmt, \
42 					 smp_processor_id(), ## __VA_ARGS__)
43 #else
44 #define DBG_VERBOSE(fmt...)	do { } while(0)
45 #endif
46 
47 bool __xive_enabled;
48 EXPORT_SYMBOL_GPL(__xive_enabled);
49 bool xive_cmdline_disabled;
50 
51 /* We use only one priority for now */
52 static u8 xive_irq_priority;
53 
54 /* TIMA exported to KVM */
55 void __iomem *xive_tima;
56 EXPORT_SYMBOL_GPL(xive_tima);
57 u32 xive_tima_offset;
58 
59 /* Backend ops */
60 static const struct xive_ops *xive_ops;
61 
62 /* Our global interrupt domain */
63 static struct irq_domain *xive_irq_domain;
64 
65 #ifdef CONFIG_SMP
66 /* The IPIs all use the same logical irq number */
67 static u32 xive_ipi_irq;
68 #endif
69 
70 /* Xive state for each CPU */
71 static DEFINE_PER_CPU(struct xive_cpu *, xive_cpu);
72 
73 /* An invalid CPU target */
74 #define XIVE_INVALID_TARGET	(-1)
75 
76 /*
77  * Read the next entry in a queue, return its content if it's valid
78  * or 0 if there is no new entry.
79  *
80  * The queue pointer is moved forward unless "just_peek" is set
81  */
82 static u32 xive_read_eq(struct xive_q *q, bool just_peek)
83 {
84 	u32 cur;
85 
86 	if (!q->qpage)
87 		return 0;
88 	cur = be32_to_cpup(q->qpage + q->idx);
89 
90 	/* Check valid bit (31) vs current toggle polarity */
91 	if ((cur >> 31) == q->toggle)
92 		return 0;
93 
94 	/* If consuming from the queue ... */
95 	if (!just_peek) {
96 		/* Next entry */
97 		q->idx = (q->idx + 1) & q->msk;
98 
99 		/* Wrap around: flip valid toggle */
100 		if (q->idx == 0)
101 			q->toggle ^= 1;
102 	}
103 	/* Mask out the valid bit (31) */
104 	return cur & 0x7fffffff;
105 }
106 
107 /*
108  * Scans all the queue that may have interrupts in them
109  * (based on "pending_prio") in priority order until an
110  * interrupt is found or all the queues are empty.
111  *
112  * Then updates the CPPR (Current Processor Priority
113  * Register) based on the most favored interrupt found
114  * (0xff if none) and return what was found (0 if none).
115  *
116  * If just_peek is set, return the most favored pending
117  * interrupt if any but don't update the queue pointers.
118  *
119  * Note: This function can operate generically on any number
120  * of queues (up to 8). The current implementation of the XIVE
121  * driver only uses a single queue however.
122  *
123  * Note2: This will also "flush" "the pending_count" of a queue
124  * into the "count" when that queue is observed to be empty.
125  * This is used to keep track of the amount of interrupts
126  * targetting a queue. When an interrupt is moved away from
127  * a queue, we only decrement that queue count once the queue
128  * has been observed empty to avoid races.
129  */
130 static u32 xive_scan_interrupts(struct xive_cpu *xc, bool just_peek)
131 {
132 	u32 irq = 0;
133 	u8 prio = 0;
134 
135 	/* Find highest pending priority */
136 	while (xc->pending_prio != 0) {
137 		struct xive_q *q;
138 
139 		prio = ffs(xc->pending_prio) - 1;
140 		DBG_VERBOSE("scan_irq: trying prio %d\n", prio);
141 
142 		/* Try to fetch */
143 		irq = xive_read_eq(&xc->queue[prio], just_peek);
144 
145 		/* Found something ? That's it */
146 		if (irq) {
147 			if (just_peek || irq_to_desc(irq))
148 				break;
149 			/*
150 			 * We should never get here; if we do then we must
151 			 * have failed to synchronize the interrupt properly
152 			 * when shutting it down.
153 			 */
154 			pr_crit("xive: got interrupt %d without descriptor, dropping\n",
155 				irq);
156 			WARN_ON(1);
157 			continue;
158 		}
159 
160 		/* Clear pending bits */
161 		xc->pending_prio &= ~(1 << prio);
162 
163 		/*
164 		 * Check if the queue count needs adjusting due to
165 		 * interrupts being moved away. See description of
166 		 * xive_dec_target_count()
167 		 */
168 		q = &xc->queue[prio];
169 		if (atomic_read(&q->pending_count)) {
170 			int p = atomic_xchg(&q->pending_count, 0);
171 			if (p) {
172 				WARN_ON(p > atomic_read(&q->count));
173 				atomic_sub(p, &q->count);
174 			}
175 		}
176 	}
177 
178 	/* If nothing was found, set CPPR to 0xff */
179 	if (irq == 0)
180 		prio = 0xff;
181 
182 	/* Update HW CPPR to match if necessary */
183 	if (prio != xc->cppr) {
184 		DBG_VERBOSE("scan_irq: adjusting CPPR to %d\n", prio);
185 		xc->cppr = prio;
186 		out_8(xive_tima + xive_tima_offset + TM_CPPR, prio);
187 	}
188 
189 	return irq;
190 }
191 
192 /*
193  * This is used to perform the magic loads from an ESB
194  * described in xive-regs.h
195  */
196 static notrace u8 xive_esb_read(struct xive_irq_data *xd, u32 offset)
197 {
198 	u64 val;
199 
200 	if (offset == XIVE_ESB_SET_PQ_10 && xd->flags & XIVE_IRQ_FLAG_STORE_EOI)
201 		offset |= XIVE_ESB_LD_ST_MO;
202 
203 	if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw)
204 		val = xive_ops->esb_rw(xd->hw_irq, offset, 0, 0);
205 	else
206 		val = in_be64(xd->eoi_mmio + offset);
207 
208 	return (u8)val;
209 }
210 
211 static void xive_esb_write(struct xive_irq_data *xd, u32 offset, u64 data)
212 {
213 	if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw)
214 		xive_ops->esb_rw(xd->hw_irq, offset, data, 1);
215 	else
216 		out_be64(xd->eoi_mmio + offset, data);
217 }
218 
219 #ifdef CONFIG_XMON
220 static notrace void xive_dump_eq(const char *name, struct xive_q *q)
221 {
222 	u32 i0, i1, idx;
223 
224 	if (!q->qpage)
225 		return;
226 	idx = q->idx;
227 	i0 = be32_to_cpup(q->qpage + idx);
228 	idx = (idx + 1) & q->msk;
229 	i1 = be32_to_cpup(q->qpage + idx);
230 	xmon_printf("%s idx=%d T=%d %08x %08x ...", name,
231 		     q->idx, q->toggle, i0, i1);
232 }
233 
234 notrace void xmon_xive_do_dump(int cpu)
235 {
236 	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
237 
238 	xmon_printf("CPU %d:", cpu);
239 	if (xc) {
240 		xmon_printf("pp=%02x CPPR=%02x ", xc->pending_prio, xc->cppr);
241 
242 #ifdef CONFIG_SMP
243 		{
244 			u64 val = xive_esb_read(&xc->ipi_data, XIVE_ESB_GET);
245 
246 			xmon_printf("IPI=0x%08x PQ=%c%c ", xc->hw_ipi,
247 				    val & XIVE_ESB_VAL_P ? 'P' : '-',
248 				    val & XIVE_ESB_VAL_Q ? 'Q' : '-');
249 		}
250 #endif
251 		xive_dump_eq("EQ", &xc->queue[xive_irq_priority]);
252 	}
253 	xmon_printf("\n");
254 }
255 
256 static struct irq_data *xive_get_irq_data(u32 hw_irq)
257 {
258 	unsigned int irq = irq_find_mapping(xive_irq_domain, hw_irq);
259 
260 	return irq ? irq_get_irq_data(irq) : NULL;
261 }
262 
263 int xmon_xive_get_irq_config(u32 hw_irq, struct irq_data *d)
264 {
265 	int rc;
266 	u32 target;
267 	u8 prio;
268 	u32 lirq;
269 
270 	rc = xive_ops->get_irq_config(hw_irq, &target, &prio, &lirq);
271 	if (rc) {
272 		xmon_printf("IRQ 0x%08x : no config rc=%d\n", hw_irq, rc);
273 		return rc;
274 	}
275 
276 	xmon_printf("IRQ 0x%08x : target=0x%x prio=%02x lirq=0x%x ",
277 		    hw_irq, target, prio, lirq);
278 
279 	if (!d)
280 		d = xive_get_irq_data(hw_irq);
281 
282 	if (d) {
283 		struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
284 		u64 val = xive_esb_read(xd, XIVE_ESB_GET);
285 
286 		xmon_printf("flags=%c%c%c PQ=%c%c",
287 			    xd->flags & XIVE_IRQ_FLAG_STORE_EOI ? 'S' : ' ',
288 			    xd->flags & XIVE_IRQ_FLAG_LSI ? 'L' : ' ',
289 			    xd->flags & XIVE_IRQ_FLAG_H_INT_ESB ? 'H' : ' ',
290 			    val & XIVE_ESB_VAL_P ? 'P' : '-',
291 			    val & XIVE_ESB_VAL_Q ? 'Q' : '-');
292 	}
293 
294 	xmon_printf("\n");
295 	return 0;
296 }
297 
298 void xmon_xive_get_irq_all(void)
299 {
300 	unsigned int i;
301 	struct irq_desc *desc;
302 
303 	for_each_irq_desc(i, desc) {
304 		struct irq_data *d = irq_desc_get_irq_data(desc);
305 		unsigned int hwirq = (unsigned int)irqd_to_hwirq(d);
306 
307 		if (d->domain == xive_irq_domain)
308 			xmon_xive_get_irq_config(hwirq, d);
309 	}
310 }
311 
312 #endif /* CONFIG_XMON */
313 
314 static unsigned int xive_get_irq(void)
315 {
316 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
317 	u32 irq;
318 
319 	/*
320 	 * This can be called either as a result of a HW interrupt or
321 	 * as a "replay" because EOI decided there was still something
322 	 * in one of the queues.
323 	 *
324 	 * First we perform an ACK cycle in order to update our mask
325 	 * of pending priorities. This will also have the effect of
326 	 * updating the CPPR to the most favored pending interrupts.
327 	 *
328 	 * In the future, if we have a way to differentiate a first
329 	 * entry (on HW interrupt) from a replay triggered by EOI,
330 	 * we could skip this on replays unless we soft-mask tells us
331 	 * that a new HW interrupt occurred.
332 	 */
333 	xive_ops->update_pending(xc);
334 
335 	DBG_VERBOSE("get_irq: pending=%02x\n", xc->pending_prio);
336 
337 	/* Scan our queue(s) for interrupts */
338 	irq = xive_scan_interrupts(xc, false);
339 
340 	DBG_VERBOSE("get_irq: got irq 0x%x, new pending=0x%02x\n",
341 	    irq, xc->pending_prio);
342 
343 	/* Return pending interrupt if any */
344 	if (irq == XIVE_BAD_IRQ)
345 		return 0;
346 	return irq;
347 }
348 
349 /*
350  * After EOI'ing an interrupt, we need to re-check the queue
351  * to see if another interrupt is pending since multiple
352  * interrupts can coalesce into a single notification to the
353  * CPU.
354  *
355  * If we find that there is indeed more in there, we call
356  * force_external_irq_replay() to make Linux synthetize an
357  * external interrupt on the next call to local_irq_restore().
358  */
359 static void xive_do_queue_eoi(struct xive_cpu *xc)
360 {
361 	if (xive_scan_interrupts(xc, true) != 0) {
362 		DBG_VERBOSE("eoi: pending=0x%02x\n", xc->pending_prio);
363 		force_external_irq_replay();
364 	}
365 }
366 
367 /*
368  * EOI an interrupt at the source. There are several methods
369  * to do this depending on the HW version and source type
370  */
371 static void xive_do_source_eoi(struct xive_irq_data *xd)
372 {
373 	u8 eoi_val;
374 
375 	xd->stale_p = false;
376 
377 	/* If the XIVE supports the new "store EOI facility, use it */
378 	if (xd->flags & XIVE_IRQ_FLAG_STORE_EOI) {
379 		xive_esb_write(xd, XIVE_ESB_STORE_EOI, 0);
380 		return;
381 	}
382 
383 	/*
384 	 * For LSIs, we use the "EOI cycle" special load rather than
385 	 * PQ bits, as they are automatically re-triggered in HW when
386 	 * still pending.
387 	 */
388 	if (xd->flags & XIVE_IRQ_FLAG_LSI) {
389 		xive_esb_read(xd, XIVE_ESB_LOAD_EOI);
390 		return;
391 	}
392 
393 	/*
394 	 * Otherwise, we use the special MMIO that does a clear of
395 	 * both P and Q and returns the old Q. This allows us to then
396 	 * do a re-trigger if Q was set rather than synthesizing an
397 	 * interrupt in software
398 	 */
399 	eoi_val = xive_esb_read(xd, XIVE_ESB_SET_PQ_00);
400 	DBG_VERBOSE("eoi_val=%x\n", eoi_val);
401 
402 	/* Re-trigger if needed */
403 	if ((eoi_val & XIVE_ESB_VAL_Q) && xd->trig_mmio)
404 		out_be64(xd->trig_mmio, 0);
405 }
406 
407 /* irq_chip eoi callback, called with irq descriptor lock held */
408 static void xive_irq_eoi(struct irq_data *d)
409 {
410 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
411 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
412 
413 	DBG_VERBOSE("eoi_irq: irq=%d [0x%lx] pending=%02x\n",
414 		    d->irq, irqd_to_hwirq(d), xc->pending_prio);
415 
416 	/*
417 	 * EOI the source if it hasn't been disabled and hasn't
418 	 * been passed-through to a KVM guest
419 	 */
420 	if (!irqd_irq_disabled(d) && !irqd_is_forwarded_to_vcpu(d) &&
421 	    !(xd->flags & XIVE_IRQ_FLAG_NO_EOI))
422 		xive_do_source_eoi(xd);
423 	else
424 		xd->stale_p = true;
425 
426 	/*
427 	 * Clear saved_p to indicate that it's no longer occupying
428 	 * a queue slot on the target queue
429 	 */
430 	xd->saved_p = false;
431 
432 	/* Check for more work in the queue */
433 	xive_do_queue_eoi(xc);
434 }
435 
436 /*
437  * Helper used to mask and unmask an interrupt source.
438  */
439 static void xive_do_source_set_mask(struct xive_irq_data *xd,
440 				    bool mask)
441 {
442 	u64 val;
443 
444 	/*
445 	 * If the interrupt had P set, it may be in a queue.
446 	 *
447 	 * We need to make sure we don't re-enable it until it
448 	 * has been fetched from that queue and EOId. We keep
449 	 * a copy of that P state and use it to restore the
450 	 * ESB accordingly on unmask.
451 	 */
452 	if (mask) {
453 		val = xive_esb_read(xd, XIVE_ESB_SET_PQ_01);
454 		if (!xd->stale_p && !!(val & XIVE_ESB_VAL_P))
455 			xd->saved_p = true;
456 		xd->stale_p = false;
457 	} else if (xd->saved_p) {
458 		xive_esb_read(xd, XIVE_ESB_SET_PQ_10);
459 		xd->saved_p = false;
460 	} else {
461 		xive_esb_read(xd, XIVE_ESB_SET_PQ_00);
462 		xd->stale_p = false;
463 	}
464 }
465 
466 /*
467  * Try to chose "cpu" as a new interrupt target. Increments
468  * the queue accounting for that target if it's not already
469  * full.
470  */
471 static bool xive_try_pick_target(int cpu)
472 {
473 	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
474 	struct xive_q *q = &xc->queue[xive_irq_priority];
475 	int max;
476 
477 	/*
478 	 * Calculate max number of interrupts in that queue.
479 	 *
480 	 * We leave a gap of 1 just in case...
481 	 */
482 	max = (q->msk + 1) - 1;
483 	return !!atomic_add_unless(&q->count, 1, max);
484 }
485 
486 /*
487  * Un-account an interrupt for a target CPU. We don't directly
488  * decrement q->count since the interrupt might still be present
489  * in the queue.
490  *
491  * Instead increment a separate counter "pending_count" which
492  * will be substracted from "count" later when that CPU observes
493  * the queue to be empty.
494  */
495 static void xive_dec_target_count(int cpu)
496 {
497 	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
498 	struct xive_q *q = &xc->queue[xive_irq_priority];
499 
500 	if (WARN_ON(cpu < 0 || !xc)) {
501 		pr_err("%s: cpu=%d xc=%p\n", __func__, cpu, xc);
502 		return;
503 	}
504 
505 	/*
506 	 * We increment the "pending count" which will be used
507 	 * to decrement the target queue count whenever it's next
508 	 * processed and found empty. This ensure that we don't
509 	 * decrement while we still have the interrupt there
510 	 * occupying a slot.
511 	 */
512 	atomic_inc(&q->pending_count);
513 }
514 
515 /* Find a tentative CPU target in a CPU mask */
516 static int xive_find_target_in_mask(const struct cpumask *mask,
517 				    unsigned int fuzz)
518 {
519 	int cpu, first, num, i;
520 
521 	/* Pick up a starting point CPU in the mask based on  fuzz */
522 	num = min_t(int, cpumask_weight(mask), nr_cpu_ids);
523 	first = fuzz % num;
524 
525 	/* Locate it */
526 	cpu = cpumask_first(mask);
527 	for (i = 0; i < first && cpu < nr_cpu_ids; i++)
528 		cpu = cpumask_next(cpu, mask);
529 
530 	/* Sanity check */
531 	if (WARN_ON(cpu >= nr_cpu_ids))
532 		cpu = cpumask_first(cpu_online_mask);
533 
534 	/* Remember first one to handle wrap-around */
535 	first = cpu;
536 
537 	/*
538 	 * Now go through the entire mask until we find a valid
539 	 * target.
540 	 */
541 	do {
542 		/*
543 		 * We re-check online as the fallback case passes us
544 		 * an untested affinity mask
545 		 */
546 		if (cpu_online(cpu) && xive_try_pick_target(cpu))
547 			return cpu;
548 		cpu = cpumask_next(cpu, mask);
549 		/* Wrap around */
550 		if (cpu >= nr_cpu_ids)
551 			cpu = cpumask_first(mask);
552 	} while (cpu != first);
553 
554 	return -1;
555 }
556 
557 /*
558  * Pick a target CPU for an interrupt. This is done at
559  * startup or if the affinity is changed in a way that
560  * invalidates the current target.
561  */
562 static int xive_pick_irq_target(struct irq_data *d,
563 				const struct cpumask *affinity)
564 {
565 	static unsigned int fuzz;
566 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
567 	cpumask_var_t mask;
568 	int cpu = -1;
569 
570 	/*
571 	 * If we have chip IDs, first we try to build a mask of
572 	 * CPUs matching the CPU and find a target in there
573 	 */
574 	if (xd->src_chip != XIVE_INVALID_CHIP_ID &&
575 		zalloc_cpumask_var(&mask, GFP_ATOMIC)) {
576 		/* Build a mask of matching chip IDs */
577 		for_each_cpu_and(cpu, affinity, cpu_online_mask) {
578 			struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
579 			if (xc->chip_id == xd->src_chip)
580 				cpumask_set_cpu(cpu, mask);
581 		}
582 		/* Try to find a target */
583 		if (cpumask_empty(mask))
584 			cpu = -1;
585 		else
586 			cpu = xive_find_target_in_mask(mask, fuzz++);
587 		free_cpumask_var(mask);
588 		if (cpu >= 0)
589 			return cpu;
590 		fuzz--;
591 	}
592 
593 	/* No chip IDs, fallback to using the affinity mask */
594 	return xive_find_target_in_mask(affinity, fuzz++);
595 }
596 
597 static unsigned int xive_irq_startup(struct irq_data *d)
598 {
599 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
600 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
601 	int target, rc;
602 
603 	xd->saved_p = false;
604 	xd->stale_p = false;
605 	pr_devel("xive_irq_startup: irq %d [0x%x] data @%p\n",
606 		 d->irq, hw_irq, d);
607 
608 #ifdef CONFIG_PCI_MSI
609 	/*
610 	 * The generic MSI code returns with the interrupt disabled on the
611 	 * card, using the MSI mask bits. Firmware doesn't appear to unmask
612 	 * at that level, so we do it here by hand.
613 	 */
614 	if (irq_data_get_msi_desc(d))
615 		pci_msi_unmask_irq(d);
616 #endif
617 
618 	/* Pick a target */
619 	target = xive_pick_irq_target(d, irq_data_get_affinity_mask(d));
620 	if (target == XIVE_INVALID_TARGET) {
621 		/* Try again breaking affinity */
622 		target = xive_pick_irq_target(d, cpu_online_mask);
623 		if (target == XIVE_INVALID_TARGET)
624 			return -ENXIO;
625 		pr_warn("irq %d started with broken affinity\n", d->irq);
626 	}
627 
628 	/* Sanity check */
629 	if (WARN_ON(target == XIVE_INVALID_TARGET ||
630 		    target >= nr_cpu_ids))
631 		target = smp_processor_id();
632 
633 	xd->target = target;
634 
635 	/*
636 	 * Configure the logical number to be the Linux IRQ number
637 	 * and set the target queue
638 	 */
639 	rc = xive_ops->configure_irq(hw_irq,
640 				     get_hard_smp_processor_id(target),
641 				     xive_irq_priority, d->irq);
642 	if (rc)
643 		return rc;
644 
645 	/* Unmask the ESB */
646 	xive_do_source_set_mask(xd, false);
647 
648 	return 0;
649 }
650 
651 /* called with irq descriptor lock held */
652 static void xive_irq_shutdown(struct irq_data *d)
653 {
654 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
655 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
656 
657 	pr_devel("xive_irq_shutdown: irq %d [0x%x] data @%p\n",
658 		 d->irq, hw_irq, d);
659 
660 	if (WARN_ON(xd->target == XIVE_INVALID_TARGET))
661 		return;
662 
663 	/* Mask the interrupt at the source */
664 	xive_do_source_set_mask(xd, true);
665 
666 	/*
667 	 * Mask the interrupt in HW in the IVT/EAS and set the number
668 	 * to be the "bad" IRQ number
669 	 */
670 	xive_ops->configure_irq(hw_irq,
671 				get_hard_smp_processor_id(xd->target),
672 				0xff, XIVE_BAD_IRQ);
673 
674 	xive_dec_target_count(xd->target);
675 	xd->target = XIVE_INVALID_TARGET;
676 }
677 
678 static void xive_irq_unmask(struct irq_data *d)
679 {
680 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
681 
682 	pr_devel("xive_irq_unmask: irq %d data @%p\n", d->irq, xd);
683 
684 	xive_do_source_set_mask(xd, false);
685 }
686 
687 static void xive_irq_mask(struct irq_data *d)
688 {
689 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
690 
691 	pr_devel("xive_irq_mask: irq %d data @%p\n", d->irq, xd);
692 
693 	xive_do_source_set_mask(xd, true);
694 }
695 
696 static int xive_irq_set_affinity(struct irq_data *d,
697 				 const struct cpumask *cpumask,
698 				 bool force)
699 {
700 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
701 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
702 	u32 target, old_target;
703 	int rc = 0;
704 
705 	pr_devel("xive_irq_set_affinity: irq %d\n", d->irq);
706 
707 	/* Is this valid ? */
708 	if (cpumask_any_and(cpumask, cpu_online_mask) >= nr_cpu_ids)
709 		return -EINVAL;
710 
711 	/* Don't do anything if the interrupt isn't started */
712 	if (!irqd_is_started(d))
713 		return IRQ_SET_MASK_OK;
714 
715 	/*
716 	 * If existing target is already in the new mask, and is
717 	 * online then do nothing.
718 	 */
719 	if (xd->target != XIVE_INVALID_TARGET &&
720 	    cpu_online(xd->target) &&
721 	    cpumask_test_cpu(xd->target, cpumask))
722 		return IRQ_SET_MASK_OK;
723 
724 	/* Pick a new target */
725 	target = xive_pick_irq_target(d, cpumask);
726 
727 	/* No target found */
728 	if (target == XIVE_INVALID_TARGET)
729 		return -ENXIO;
730 
731 	/* Sanity check */
732 	if (WARN_ON(target >= nr_cpu_ids))
733 		target = smp_processor_id();
734 
735 	old_target = xd->target;
736 
737 	/*
738 	 * Only configure the irq if it's not currently passed-through to
739 	 * a KVM guest
740 	 */
741 	if (!irqd_is_forwarded_to_vcpu(d))
742 		rc = xive_ops->configure_irq(hw_irq,
743 					     get_hard_smp_processor_id(target),
744 					     xive_irq_priority, d->irq);
745 	if (rc < 0) {
746 		pr_err("Error %d reconfiguring irq %d\n", rc, d->irq);
747 		return rc;
748 	}
749 
750 	pr_devel("  target: 0x%x\n", target);
751 	xd->target = target;
752 
753 	/* Give up previous target */
754 	if (old_target != XIVE_INVALID_TARGET)
755 	    xive_dec_target_count(old_target);
756 
757 	return IRQ_SET_MASK_OK;
758 }
759 
760 static int xive_irq_set_type(struct irq_data *d, unsigned int flow_type)
761 {
762 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
763 
764 	/*
765 	 * We only support these. This has really no effect other than setting
766 	 * the corresponding descriptor bits mind you but those will in turn
767 	 * affect the resend function when re-enabling an edge interrupt.
768 	 *
769 	 * Set set the default to edge as explained in map().
770 	 */
771 	if (flow_type == IRQ_TYPE_DEFAULT || flow_type == IRQ_TYPE_NONE)
772 		flow_type = IRQ_TYPE_EDGE_RISING;
773 
774 	if (flow_type != IRQ_TYPE_EDGE_RISING &&
775 	    flow_type != IRQ_TYPE_LEVEL_LOW)
776 		return -EINVAL;
777 
778 	irqd_set_trigger_type(d, flow_type);
779 
780 	/*
781 	 * Double check it matches what the FW thinks
782 	 *
783 	 * NOTE: We don't know yet if the PAPR interface will provide
784 	 * the LSI vs MSI information apart from the device-tree so
785 	 * this check might have to move into an optional backend call
786 	 * that is specific to the native backend
787 	 */
788 	if ((flow_type == IRQ_TYPE_LEVEL_LOW) !=
789 	    !!(xd->flags & XIVE_IRQ_FLAG_LSI)) {
790 		pr_warn("Interrupt %d (HW 0x%x) type mismatch, Linux says %s, FW says %s\n",
791 			d->irq, (u32)irqd_to_hwirq(d),
792 			(flow_type == IRQ_TYPE_LEVEL_LOW) ? "Level" : "Edge",
793 			(xd->flags & XIVE_IRQ_FLAG_LSI) ? "Level" : "Edge");
794 	}
795 
796 	return IRQ_SET_MASK_OK_NOCOPY;
797 }
798 
799 static int xive_irq_retrigger(struct irq_data *d)
800 {
801 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
802 
803 	/* This should be only for MSIs */
804 	if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
805 		return 0;
806 
807 	/*
808 	 * To perform a retrigger, we first set the PQ bits to
809 	 * 11, then perform an EOI.
810 	 */
811 	xive_esb_read(xd, XIVE_ESB_SET_PQ_11);
812 	xive_do_source_eoi(xd);
813 
814 	return 1;
815 }
816 
817 /*
818  * Caller holds the irq descriptor lock, so this won't be called
819  * concurrently with xive_get_irqchip_state on the same interrupt.
820  */
821 static int xive_irq_set_vcpu_affinity(struct irq_data *d, void *state)
822 {
823 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
824 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
825 	int rc;
826 	u8 pq;
827 
828 	/*
829 	 * This is called by KVM with state non-NULL for enabling
830 	 * pass-through or NULL for disabling it
831 	 */
832 	if (state) {
833 		irqd_set_forwarded_to_vcpu(d);
834 
835 		/* Set it to PQ=10 state to prevent further sends */
836 		pq = xive_esb_read(xd, XIVE_ESB_SET_PQ_10);
837 		if (!xd->stale_p) {
838 			xd->saved_p = !!(pq & XIVE_ESB_VAL_P);
839 			xd->stale_p = !xd->saved_p;
840 		}
841 
842 		/* No target ? nothing to do */
843 		if (xd->target == XIVE_INVALID_TARGET) {
844 			/*
845 			 * An untargetted interrupt should have been
846 			 * also masked at the source
847 			 */
848 			WARN_ON(xd->saved_p);
849 
850 			return 0;
851 		}
852 
853 		/*
854 		 * If P was set, adjust state to PQ=11 to indicate
855 		 * that a resend is needed for the interrupt to reach
856 		 * the guest. Also remember the value of P.
857 		 *
858 		 * This also tells us that it's in flight to a host queue
859 		 * or has already been fetched but hasn't been EOIed yet
860 		 * by the host. This it's potentially using up a host
861 		 * queue slot. This is important to know because as long
862 		 * as this is the case, we must not hard-unmask it when
863 		 * "returning" that interrupt to the host.
864 		 *
865 		 * This saved_p is cleared by the host EOI, when we know
866 		 * for sure the queue slot is no longer in use.
867 		 */
868 		if (xd->saved_p) {
869 			xive_esb_read(xd, XIVE_ESB_SET_PQ_11);
870 
871 			/*
872 			 * Sync the XIVE source HW to ensure the interrupt
873 			 * has gone through the EAS before we change its
874 			 * target to the guest. That should guarantee us
875 			 * that we *will* eventually get an EOI for it on
876 			 * the host. Otherwise there would be a small window
877 			 * for P to be seen here but the interrupt going
878 			 * to the guest queue.
879 			 */
880 			if (xive_ops->sync_source)
881 				xive_ops->sync_source(hw_irq);
882 		}
883 	} else {
884 		irqd_clr_forwarded_to_vcpu(d);
885 
886 		/* No host target ? hard mask and return */
887 		if (xd->target == XIVE_INVALID_TARGET) {
888 			xive_do_source_set_mask(xd, true);
889 			return 0;
890 		}
891 
892 		/*
893 		 * Sync the XIVE source HW to ensure the interrupt
894 		 * has gone through the EAS before we change its
895 		 * target to the host.
896 		 */
897 		if (xive_ops->sync_source)
898 			xive_ops->sync_source(hw_irq);
899 
900 		/*
901 		 * By convention we are called with the interrupt in
902 		 * a PQ=10 or PQ=11 state, ie, it won't fire and will
903 		 * have latched in Q whether there's a pending HW
904 		 * interrupt or not.
905 		 *
906 		 * First reconfigure the target.
907 		 */
908 		rc = xive_ops->configure_irq(hw_irq,
909 					     get_hard_smp_processor_id(xd->target),
910 					     xive_irq_priority, d->irq);
911 		if (rc)
912 			return rc;
913 
914 		/*
915 		 * Then if saved_p is not set, effectively re-enable the
916 		 * interrupt with an EOI. If it is set, we know there is
917 		 * still a message in a host queue somewhere that will be
918 		 * EOId eventually.
919 		 *
920 		 * Note: We don't check irqd_irq_disabled(). Effectively,
921 		 * we *will* let the irq get through even if masked if the
922 		 * HW is still firing it in order to deal with the whole
923 		 * saved_p business properly. If the interrupt triggers
924 		 * while masked, the generic code will re-mask it anyway.
925 		 */
926 		if (!xd->saved_p)
927 			xive_do_source_eoi(xd);
928 
929 	}
930 	return 0;
931 }
932 
933 /* Called with irq descriptor lock held. */
934 static int xive_get_irqchip_state(struct irq_data *data,
935 				  enum irqchip_irq_state which, bool *state)
936 {
937 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(data);
938 	u8 pq;
939 
940 	switch (which) {
941 	case IRQCHIP_STATE_ACTIVE:
942 		pq = xive_esb_read(xd, XIVE_ESB_GET);
943 
944 		/*
945 		 * The esb value being all 1's means we couldn't get
946 		 * the PQ state of the interrupt through mmio. It may
947 		 * happen, for example when querying a PHB interrupt
948 		 * while the PHB is in an error state. We consider the
949 		 * interrupt to be inactive in that case.
950 		 */
951 		*state = (pq != XIVE_ESB_INVALID) && !xd->stale_p &&
952 			(xd->saved_p || !!(pq & XIVE_ESB_VAL_P));
953 		return 0;
954 	default:
955 		return -EINVAL;
956 	}
957 }
958 
959 static struct irq_chip xive_irq_chip = {
960 	.name = "XIVE-IRQ",
961 	.irq_startup = xive_irq_startup,
962 	.irq_shutdown = xive_irq_shutdown,
963 	.irq_eoi = xive_irq_eoi,
964 	.irq_mask = xive_irq_mask,
965 	.irq_unmask = xive_irq_unmask,
966 	.irq_set_affinity = xive_irq_set_affinity,
967 	.irq_set_type = xive_irq_set_type,
968 	.irq_retrigger = xive_irq_retrigger,
969 	.irq_set_vcpu_affinity = xive_irq_set_vcpu_affinity,
970 	.irq_get_irqchip_state = xive_get_irqchip_state,
971 };
972 
973 bool is_xive_irq(struct irq_chip *chip)
974 {
975 	return chip == &xive_irq_chip;
976 }
977 EXPORT_SYMBOL_GPL(is_xive_irq);
978 
979 void xive_cleanup_irq_data(struct xive_irq_data *xd)
980 {
981 	if (xd->eoi_mmio) {
982 		unmap_kernel_range((unsigned long)xd->eoi_mmio,
983 				   1u << xd->esb_shift);
984 		iounmap(xd->eoi_mmio);
985 		if (xd->eoi_mmio == xd->trig_mmio)
986 			xd->trig_mmio = NULL;
987 		xd->eoi_mmio = NULL;
988 	}
989 	if (xd->trig_mmio) {
990 		unmap_kernel_range((unsigned long)xd->trig_mmio,
991 				   1u << xd->esb_shift);
992 		iounmap(xd->trig_mmio);
993 		xd->trig_mmio = NULL;
994 	}
995 }
996 EXPORT_SYMBOL_GPL(xive_cleanup_irq_data);
997 
998 static int xive_irq_alloc_data(unsigned int virq, irq_hw_number_t hw)
999 {
1000 	struct xive_irq_data *xd;
1001 	int rc;
1002 
1003 	xd = kzalloc(sizeof(struct xive_irq_data), GFP_KERNEL);
1004 	if (!xd)
1005 		return -ENOMEM;
1006 	rc = xive_ops->populate_irq_data(hw, xd);
1007 	if (rc) {
1008 		kfree(xd);
1009 		return rc;
1010 	}
1011 	xd->target = XIVE_INVALID_TARGET;
1012 	irq_set_handler_data(virq, xd);
1013 
1014 	/*
1015 	 * Turn OFF by default the interrupt being mapped. A side
1016 	 * effect of this check is the mapping the ESB page of the
1017 	 * interrupt in the Linux address space. This prevents page
1018 	 * fault issues in the crash handler which masks all
1019 	 * interrupts.
1020 	 */
1021 	xive_esb_read(xd, XIVE_ESB_SET_PQ_01);
1022 
1023 	return 0;
1024 }
1025 
1026 static void xive_irq_free_data(unsigned int virq)
1027 {
1028 	struct xive_irq_data *xd = irq_get_handler_data(virq);
1029 
1030 	if (!xd)
1031 		return;
1032 	irq_set_handler_data(virq, NULL);
1033 	xive_cleanup_irq_data(xd);
1034 	kfree(xd);
1035 }
1036 
1037 #ifdef CONFIG_SMP
1038 
1039 static void xive_cause_ipi(int cpu)
1040 {
1041 	struct xive_cpu *xc;
1042 	struct xive_irq_data *xd;
1043 
1044 	xc = per_cpu(xive_cpu, cpu);
1045 
1046 	DBG_VERBOSE("IPI CPU %d -> %d (HW IRQ 0x%x)\n",
1047 		    smp_processor_id(), cpu, xc->hw_ipi);
1048 
1049 	xd = &xc->ipi_data;
1050 	if (WARN_ON(!xd->trig_mmio))
1051 		return;
1052 	out_be64(xd->trig_mmio, 0);
1053 }
1054 
1055 static irqreturn_t xive_muxed_ipi_action(int irq, void *dev_id)
1056 {
1057 	return smp_ipi_demux();
1058 }
1059 
1060 static void xive_ipi_eoi(struct irq_data *d)
1061 {
1062 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1063 
1064 	/* Handle possible race with unplug and drop stale IPIs */
1065 	if (!xc)
1066 		return;
1067 
1068 	DBG_VERBOSE("IPI eoi: irq=%d [0x%lx] (HW IRQ 0x%x) pending=%02x\n",
1069 		    d->irq, irqd_to_hwirq(d), xc->hw_ipi, xc->pending_prio);
1070 
1071 	xive_do_source_eoi(&xc->ipi_data);
1072 	xive_do_queue_eoi(xc);
1073 }
1074 
1075 static void xive_ipi_do_nothing(struct irq_data *d)
1076 {
1077 	/*
1078 	 * Nothing to do, we never mask/unmask IPIs, but the callback
1079 	 * has to exist for the struct irq_chip.
1080 	 */
1081 }
1082 
1083 static struct irq_chip xive_ipi_chip = {
1084 	.name = "XIVE-IPI",
1085 	.irq_eoi = xive_ipi_eoi,
1086 	.irq_mask = xive_ipi_do_nothing,
1087 	.irq_unmask = xive_ipi_do_nothing,
1088 };
1089 
1090 /*
1091  * IPIs are marked per-cpu. We use separate HW interrupts under the
1092  * hood but associated with the same "linux" interrupt
1093  */
1094 static int xive_ipi_irq_domain_map(struct irq_domain *h, unsigned int virq,
1095 				   irq_hw_number_t hw)
1096 {
1097 	irq_set_chip_and_handler(virq, &xive_ipi_chip, handle_percpu_irq);
1098 	return 0;
1099 }
1100 
1101 static const struct irq_domain_ops xive_ipi_irq_domain_ops = {
1102 	.map = xive_ipi_irq_domain_map,
1103 };
1104 
1105 static int __init xive_request_ipi(void)
1106 {
1107 	struct fwnode_handle *fwnode;
1108 	struct irq_domain *ipi_domain;
1109 	unsigned int virq;
1110 	int ret = -ENOMEM;
1111 
1112 	fwnode = irq_domain_alloc_named_fwnode("XIVE-IPI");
1113 	if (!fwnode)
1114 		goto out;
1115 
1116 	ipi_domain = irq_domain_create_linear(fwnode, 1,
1117 					      &xive_ipi_irq_domain_ops, NULL);
1118 	if (!ipi_domain)
1119 		goto out_free_fwnode;
1120 
1121 	/* Initialize it */
1122 	virq = irq_create_mapping(ipi_domain, XIVE_IPI_HW_IRQ);
1123 	if (!virq) {
1124 		ret = -EINVAL;
1125 		goto out_free_domain;
1126 	}
1127 
1128 	xive_ipi_irq = virq;
1129 
1130 	ret = request_irq(virq, xive_muxed_ipi_action,
1131 			  IRQF_PERCPU | IRQF_NO_THREAD, "IPI", NULL);
1132 
1133 	WARN(ret < 0, "Failed to request IPI %d: %d\n", virq, ret);
1134 	return ret;
1135 
1136 out_free_domain:
1137 	irq_domain_remove(ipi_domain);
1138 out_free_fwnode:
1139 	irq_domain_free_fwnode(fwnode);
1140 out:
1141 	return ret;
1142 }
1143 
1144 static int xive_setup_cpu_ipi(unsigned int cpu)
1145 {
1146 	struct xive_cpu *xc;
1147 	int rc;
1148 
1149 	pr_debug("Setting up IPI for CPU %d\n", cpu);
1150 
1151 	xc = per_cpu(xive_cpu, cpu);
1152 
1153 	/* Check if we are already setup */
1154 	if (xc->hw_ipi != XIVE_BAD_IRQ)
1155 		return 0;
1156 
1157 	/* Grab an IPI from the backend, this will populate xc->hw_ipi */
1158 	if (xive_ops->get_ipi(cpu, xc))
1159 		return -EIO;
1160 
1161 	/*
1162 	 * Populate the IRQ data in the xive_cpu structure and
1163 	 * configure the HW / enable the IPIs.
1164 	 */
1165 	rc = xive_ops->populate_irq_data(xc->hw_ipi, &xc->ipi_data);
1166 	if (rc) {
1167 		pr_err("Failed to populate IPI data on CPU %d\n", cpu);
1168 		return -EIO;
1169 	}
1170 	rc = xive_ops->configure_irq(xc->hw_ipi,
1171 				     get_hard_smp_processor_id(cpu),
1172 				     xive_irq_priority, xive_ipi_irq);
1173 	if (rc) {
1174 		pr_err("Failed to map IPI CPU %d\n", cpu);
1175 		return -EIO;
1176 	}
1177 	pr_devel("CPU %d HW IPI %x, virq %d, trig_mmio=%p\n", cpu,
1178 	    xc->hw_ipi, xive_ipi_irq, xc->ipi_data.trig_mmio);
1179 
1180 	/* Unmask it */
1181 	xive_do_source_set_mask(&xc->ipi_data, false);
1182 
1183 	return 0;
1184 }
1185 
1186 static void xive_cleanup_cpu_ipi(unsigned int cpu, struct xive_cpu *xc)
1187 {
1188 	/* Disable the IPI and free the IRQ data */
1189 
1190 	/* Already cleaned up ? */
1191 	if (xc->hw_ipi == XIVE_BAD_IRQ)
1192 		return;
1193 
1194 	/* Mask the IPI */
1195 	xive_do_source_set_mask(&xc->ipi_data, true);
1196 
1197 	/*
1198 	 * Note: We don't call xive_cleanup_irq_data() to free
1199 	 * the mappings as this is called from an IPI on kexec
1200 	 * which is not a safe environment to call iounmap()
1201 	 */
1202 
1203 	/* Deconfigure/mask in the backend */
1204 	xive_ops->configure_irq(xc->hw_ipi, hard_smp_processor_id(),
1205 				0xff, xive_ipi_irq);
1206 
1207 	/* Free the IPIs in the backend */
1208 	xive_ops->put_ipi(cpu, xc);
1209 }
1210 
1211 void __init xive_smp_probe(void)
1212 {
1213 	smp_ops->cause_ipi = xive_cause_ipi;
1214 
1215 	/* Register the IPI */
1216 	xive_request_ipi();
1217 
1218 	/* Allocate and setup IPI for the boot CPU */
1219 	xive_setup_cpu_ipi(smp_processor_id());
1220 }
1221 
1222 #endif /* CONFIG_SMP */
1223 
1224 static int xive_irq_domain_map(struct irq_domain *h, unsigned int virq,
1225 			       irq_hw_number_t hw)
1226 {
1227 	int rc;
1228 
1229 	/*
1230 	 * Mark interrupts as edge sensitive by default so that resend
1231 	 * actually works. Will fix that up below if needed.
1232 	 */
1233 	irq_clear_status_flags(virq, IRQ_LEVEL);
1234 
1235 	rc = xive_irq_alloc_data(virq, hw);
1236 	if (rc)
1237 		return rc;
1238 
1239 	irq_set_chip_and_handler(virq, &xive_irq_chip, handle_fasteoi_irq);
1240 
1241 	return 0;
1242 }
1243 
1244 static void xive_irq_domain_unmap(struct irq_domain *d, unsigned int virq)
1245 {
1246 	xive_irq_free_data(virq);
1247 }
1248 
1249 static int xive_irq_domain_xlate(struct irq_domain *h, struct device_node *ct,
1250 				 const u32 *intspec, unsigned int intsize,
1251 				 irq_hw_number_t *out_hwirq, unsigned int *out_flags)
1252 
1253 {
1254 	*out_hwirq = intspec[0];
1255 
1256 	/*
1257 	 * If intsize is at least 2, we look for the type in the second cell,
1258 	 * we assume the LSB indicates a level interrupt.
1259 	 */
1260 	if (intsize > 1) {
1261 		if (intspec[1] & 1)
1262 			*out_flags = IRQ_TYPE_LEVEL_LOW;
1263 		else
1264 			*out_flags = IRQ_TYPE_EDGE_RISING;
1265 	} else
1266 		*out_flags = IRQ_TYPE_LEVEL_LOW;
1267 
1268 	return 0;
1269 }
1270 
1271 static int xive_irq_domain_match(struct irq_domain *h, struct device_node *node,
1272 				 enum irq_domain_bus_token bus_token)
1273 {
1274 	return xive_ops->match(node);
1275 }
1276 
1277 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS
1278 static const char * const esb_names[] = { "RESET", "OFF", "PENDING", "QUEUED" };
1279 
1280 static const struct {
1281 	u64  mask;
1282 	char *name;
1283 } xive_irq_flags[] = {
1284 	{ XIVE_IRQ_FLAG_STORE_EOI, "STORE_EOI" },
1285 	{ XIVE_IRQ_FLAG_LSI,       "LSI"       },
1286 	{ XIVE_IRQ_FLAG_H_INT_ESB, "H_INT_ESB" },
1287 	{ XIVE_IRQ_FLAG_NO_EOI,    "NO_EOI"    },
1288 };
1289 
1290 static void xive_irq_domain_debug_show(struct seq_file *m, struct irq_domain *d,
1291 				       struct irq_data *irqd, int ind)
1292 {
1293 	struct xive_irq_data *xd;
1294 	u64 val;
1295 	int i;
1296 
1297 	/* No IRQ domain level information. To be done */
1298 	if (!irqd)
1299 		return;
1300 
1301 	if (!is_xive_irq(irq_data_get_irq_chip(irqd)))
1302 		return;
1303 
1304 	seq_printf(m, "%*sXIVE:\n", ind, "");
1305 	ind++;
1306 
1307 	xd = irq_data_get_irq_handler_data(irqd);
1308 	if (!xd) {
1309 		seq_printf(m, "%*snot assigned\n", ind, "");
1310 		return;
1311 	}
1312 
1313 	val = xive_esb_read(xd, XIVE_ESB_GET);
1314 	seq_printf(m, "%*sESB:      %s\n", ind, "", esb_names[val & 0x3]);
1315 	seq_printf(m, "%*sPstate:   %s %s\n", ind, "", xd->stale_p ? "stale" : "",
1316 		   xd->saved_p ? "saved" : "");
1317 	seq_printf(m, "%*sTarget:   %d\n", ind, "", xd->target);
1318 	seq_printf(m, "%*sChip:     %d\n", ind, "", xd->src_chip);
1319 	seq_printf(m, "%*sTrigger:  0x%016llx\n", ind, "", xd->trig_page);
1320 	seq_printf(m, "%*sEOI:      0x%016llx\n", ind, "", xd->eoi_page);
1321 	seq_printf(m, "%*sFlags:    0x%llx\n", ind, "", xd->flags);
1322 	for (i = 0; i < ARRAY_SIZE(xive_irq_flags); i++) {
1323 		if (xd->flags & xive_irq_flags[i].mask)
1324 			seq_printf(m, "%*s%s\n", ind + 12, "", xive_irq_flags[i].name);
1325 	}
1326 }
1327 #endif
1328 
1329 static const struct irq_domain_ops xive_irq_domain_ops = {
1330 	.match = xive_irq_domain_match,
1331 	.map = xive_irq_domain_map,
1332 	.unmap = xive_irq_domain_unmap,
1333 	.xlate = xive_irq_domain_xlate,
1334 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS
1335 	.debug_show = xive_irq_domain_debug_show,
1336 #endif
1337 };
1338 
1339 static void __init xive_init_host(struct device_node *np)
1340 {
1341 	xive_irq_domain = irq_domain_add_nomap(np, XIVE_MAX_IRQ,
1342 					       &xive_irq_domain_ops, NULL);
1343 	if (WARN_ON(xive_irq_domain == NULL))
1344 		return;
1345 	irq_set_default_host(xive_irq_domain);
1346 }
1347 
1348 static void xive_cleanup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1349 {
1350 	if (xc->queue[xive_irq_priority].qpage)
1351 		xive_ops->cleanup_queue(cpu, xc, xive_irq_priority);
1352 }
1353 
1354 static int xive_setup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1355 {
1356 	int rc = 0;
1357 
1358 	/* We setup 1 queues for now with a 64k page */
1359 	if (!xc->queue[xive_irq_priority].qpage)
1360 		rc = xive_ops->setup_queue(cpu, xc, xive_irq_priority);
1361 
1362 	return rc;
1363 }
1364 
1365 static int xive_prepare_cpu(unsigned int cpu)
1366 {
1367 	struct xive_cpu *xc;
1368 
1369 	xc = per_cpu(xive_cpu, cpu);
1370 	if (!xc) {
1371 		struct device_node *np;
1372 
1373 		xc = kzalloc_node(sizeof(struct xive_cpu),
1374 				  GFP_KERNEL, cpu_to_node(cpu));
1375 		if (!xc)
1376 			return -ENOMEM;
1377 		np = of_get_cpu_node(cpu, NULL);
1378 		if (np)
1379 			xc->chip_id = of_get_ibm_chip_id(np);
1380 		of_node_put(np);
1381 		xc->hw_ipi = XIVE_BAD_IRQ;
1382 
1383 		per_cpu(xive_cpu, cpu) = xc;
1384 	}
1385 
1386 	/* Setup EQs if not already */
1387 	return xive_setup_cpu_queues(cpu, xc);
1388 }
1389 
1390 static void xive_setup_cpu(void)
1391 {
1392 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1393 
1394 	/* The backend might have additional things to do */
1395 	if (xive_ops->setup_cpu)
1396 		xive_ops->setup_cpu(smp_processor_id(), xc);
1397 
1398 	/* Set CPPR to 0xff to enable flow of interrupts */
1399 	xc->cppr = 0xff;
1400 	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1401 }
1402 
1403 #ifdef CONFIG_SMP
1404 void xive_smp_setup_cpu(void)
1405 {
1406 	pr_devel("SMP setup CPU %d\n", smp_processor_id());
1407 
1408 	/* This will have already been done on the boot CPU */
1409 	if (smp_processor_id() != boot_cpuid)
1410 		xive_setup_cpu();
1411 
1412 }
1413 
1414 int xive_smp_prepare_cpu(unsigned int cpu)
1415 {
1416 	int rc;
1417 
1418 	/* Allocate per-CPU data and queues */
1419 	rc = xive_prepare_cpu(cpu);
1420 	if (rc)
1421 		return rc;
1422 
1423 	/* Allocate and setup IPI for the new CPU */
1424 	return xive_setup_cpu_ipi(cpu);
1425 }
1426 
1427 #ifdef CONFIG_HOTPLUG_CPU
1428 static void xive_flush_cpu_queue(unsigned int cpu, struct xive_cpu *xc)
1429 {
1430 	u32 irq;
1431 
1432 	/* We assume local irqs are disabled */
1433 	WARN_ON(!irqs_disabled());
1434 
1435 	/* Check what's already in the CPU queue */
1436 	while ((irq = xive_scan_interrupts(xc, false)) != 0) {
1437 		/*
1438 		 * We need to re-route that interrupt to its new destination.
1439 		 * First get and lock the descriptor
1440 		 */
1441 		struct irq_desc *desc = irq_to_desc(irq);
1442 		struct irq_data *d = irq_desc_get_irq_data(desc);
1443 		struct xive_irq_data *xd;
1444 
1445 		/*
1446 		 * Ignore anything that isn't a XIVE irq and ignore
1447 		 * IPIs, so can just be dropped.
1448 		 */
1449 		if (d->domain != xive_irq_domain)
1450 			continue;
1451 
1452 		/*
1453 		 * The IRQ should have already been re-routed, it's just a
1454 		 * stale in the old queue, so re-trigger it in order to make
1455 		 * it reach is new destination.
1456 		 */
1457 #ifdef DEBUG_FLUSH
1458 		pr_info("CPU %d: Got irq %d while offline, re-sending...\n",
1459 			cpu, irq);
1460 #endif
1461 		raw_spin_lock(&desc->lock);
1462 		xd = irq_desc_get_handler_data(desc);
1463 
1464 		/*
1465 		 * Clear saved_p to indicate that it's no longer pending
1466 		 */
1467 		xd->saved_p = false;
1468 
1469 		/*
1470 		 * For LSIs, we EOI, this will cause a resend if it's
1471 		 * still asserted. Otherwise do an MSI retrigger.
1472 		 */
1473 		if (xd->flags & XIVE_IRQ_FLAG_LSI)
1474 			xive_do_source_eoi(xd);
1475 		else
1476 			xive_irq_retrigger(d);
1477 
1478 		raw_spin_unlock(&desc->lock);
1479 	}
1480 }
1481 
1482 void xive_smp_disable_cpu(void)
1483 {
1484 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1485 	unsigned int cpu = smp_processor_id();
1486 
1487 	/* Migrate interrupts away from the CPU */
1488 	irq_migrate_all_off_this_cpu();
1489 
1490 	/* Set CPPR to 0 to disable flow of interrupts */
1491 	xc->cppr = 0;
1492 	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1493 
1494 	/* Flush everything still in the queue */
1495 	xive_flush_cpu_queue(cpu, xc);
1496 
1497 	/* Re-enable CPPR  */
1498 	xc->cppr = 0xff;
1499 	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1500 }
1501 
1502 void xive_flush_interrupt(void)
1503 {
1504 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1505 	unsigned int cpu = smp_processor_id();
1506 
1507 	/* Called if an interrupt occurs while the CPU is hot unplugged */
1508 	xive_flush_cpu_queue(cpu, xc);
1509 }
1510 
1511 #endif /* CONFIG_HOTPLUG_CPU */
1512 
1513 #endif /* CONFIG_SMP */
1514 
1515 void xive_teardown_cpu(void)
1516 {
1517 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1518 	unsigned int cpu = smp_processor_id();
1519 
1520 	/* Set CPPR to 0 to disable flow of interrupts */
1521 	xc->cppr = 0;
1522 	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1523 
1524 	if (xive_ops->teardown_cpu)
1525 		xive_ops->teardown_cpu(cpu, xc);
1526 
1527 #ifdef CONFIG_SMP
1528 	/* Get rid of IPI */
1529 	xive_cleanup_cpu_ipi(cpu, xc);
1530 #endif
1531 
1532 	/* Disable and free the queues */
1533 	xive_cleanup_cpu_queues(cpu, xc);
1534 }
1535 
1536 void xive_shutdown(void)
1537 {
1538 	xive_ops->shutdown();
1539 }
1540 
1541 bool __init xive_core_init(struct device_node *np, const struct xive_ops *ops,
1542 			   void __iomem *area, u32 offset, u8 max_prio)
1543 {
1544 	xive_tima = area;
1545 	xive_tima_offset = offset;
1546 	xive_ops = ops;
1547 	xive_irq_priority = max_prio;
1548 
1549 	ppc_md.get_irq = xive_get_irq;
1550 	__xive_enabled = true;
1551 
1552 	pr_devel("Initializing host..\n");
1553 	xive_init_host(np);
1554 
1555 	pr_devel("Initializing boot CPU..\n");
1556 
1557 	/* Allocate per-CPU data and queues */
1558 	xive_prepare_cpu(smp_processor_id());
1559 
1560 	/* Get ready for interrupts */
1561 	xive_setup_cpu();
1562 
1563 	pr_info("Interrupt handling initialized with %s backend\n",
1564 		xive_ops->name);
1565 	pr_info("Using priority %d for all interrupts\n", max_prio);
1566 
1567 	return true;
1568 }
1569 
1570 __be32 *xive_queue_page_alloc(unsigned int cpu, u32 queue_shift)
1571 {
1572 	unsigned int alloc_order;
1573 	struct page *pages;
1574 	__be32 *qpage;
1575 
1576 	alloc_order = xive_alloc_order(queue_shift);
1577 	pages = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, alloc_order);
1578 	if (!pages)
1579 		return ERR_PTR(-ENOMEM);
1580 	qpage = (__be32 *)page_address(pages);
1581 	memset(qpage, 0, 1 << queue_shift);
1582 
1583 	return qpage;
1584 }
1585 
1586 static int __init xive_off(char *arg)
1587 {
1588 	xive_cmdline_disabled = true;
1589 	return 0;
1590 }
1591 __setup("xive=off", xive_off);
1592 
1593 static void xive_debug_show_cpu(struct seq_file *m, int cpu)
1594 {
1595 	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
1596 
1597 	seq_printf(m, "CPU %d:", cpu);
1598 	if (xc) {
1599 		seq_printf(m, "pp=%02x CPPR=%02x ", xc->pending_prio, xc->cppr);
1600 
1601 #ifdef CONFIG_SMP
1602 		{
1603 			u64 val = xive_esb_read(&xc->ipi_data, XIVE_ESB_GET);
1604 
1605 			seq_printf(m, "IPI=0x%08x PQ=%c%c ", xc->hw_ipi,
1606 				   val & XIVE_ESB_VAL_P ? 'P' : '-',
1607 				   val & XIVE_ESB_VAL_Q ? 'Q' : '-');
1608 		}
1609 #endif
1610 		{
1611 			struct xive_q *q = &xc->queue[xive_irq_priority];
1612 			u32 i0, i1, idx;
1613 
1614 			if (q->qpage) {
1615 				idx = q->idx;
1616 				i0 = be32_to_cpup(q->qpage + idx);
1617 				idx = (idx + 1) & q->msk;
1618 				i1 = be32_to_cpup(q->qpage + idx);
1619 				seq_printf(m, "EQ idx=%d T=%d %08x %08x ...",
1620 					   q->idx, q->toggle, i0, i1);
1621 			}
1622 		}
1623 	}
1624 	seq_puts(m, "\n");
1625 }
1626 
1627 static void xive_debug_show_irq(struct seq_file *m, struct irq_data *d)
1628 {
1629 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
1630 	int rc;
1631 	u32 target;
1632 	u8 prio;
1633 	u32 lirq;
1634 	struct xive_irq_data *xd;
1635 	u64 val;
1636 
1637 	rc = xive_ops->get_irq_config(hw_irq, &target, &prio, &lirq);
1638 	if (rc) {
1639 		seq_printf(m, "IRQ 0x%08x : no config rc=%d\n", hw_irq, rc);
1640 		return;
1641 	}
1642 
1643 	seq_printf(m, "IRQ 0x%08x : target=0x%x prio=%02x lirq=0x%x ",
1644 		   hw_irq, target, prio, lirq);
1645 
1646 	xd = irq_data_get_irq_handler_data(d);
1647 	val = xive_esb_read(xd, XIVE_ESB_GET);
1648 	seq_printf(m, "flags=%c%c%c PQ=%c%c",
1649 		   xd->flags & XIVE_IRQ_FLAG_STORE_EOI ? 'S' : ' ',
1650 		   xd->flags & XIVE_IRQ_FLAG_LSI ? 'L' : ' ',
1651 		   xd->flags & XIVE_IRQ_FLAG_H_INT_ESB ? 'H' : ' ',
1652 		   val & XIVE_ESB_VAL_P ? 'P' : '-',
1653 		   val & XIVE_ESB_VAL_Q ? 'Q' : '-');
1654 	seq_puts(m, "\n");
1655 }
1656 
1657 static int xive_core_debug_show(struct seq_file *m, void *private)
1658 {
1659 	unsigned int i;
1660 	struct irq_desc *desc;
1661 	int cpu;
1662 
1663 	if (xive_ops->debug_show)
1664 		xive_ops->debug_show(m, private);
1665 
1666 	for_each_possible_cpu(cpu)
1667 		xive_debug_show_cpu(m, cpu);
1668 
1669 	for_each_irq_desc(i, desc) {
1670 		struct irq_data *d = irq_desc_get_irq_data(desc);
1671 
1672 		if (d->domain == xive_irq_domain)
1673 			xive_debug_show_irq(m, d);
1674 	}
1675 	return 0;
1676 }
1677 DEFINE_SHOW_ATTRIBUTE(xive_core_debug);
1678 
1679 int xive_core_debug_init(void)
1680 {
1681 	if (xive_enabled())
1682 		debugfs_create_file("xive", 0400, powerpc_debugfs_root,
1683 				    NULL, &xive_core_debug_fops);
1684 	return 0;
1685 }
1686