xref: /openbmc/linux/arch/powerpc/sysdev/xive/common.c (revision 3381df09)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2016,2017 IBM Corporation.
4  */
5 
6 #define pr_fmt(fmt) "xive: " fmt
7 
8 #include <linux/types.h>
9 #include <linux/threads.h>
10 #include <linux/kernel.h>
11 #include <linux/irq.h>
12 #include <linux/debugfs.h>
13 #include <linux/smp.h>
14 #include <linux/interrupt.h>
15 #include <linux/seq_file.h>
16 #include <linux/init.h>
17 #include <linux/cpu.h>
18 #include <linux/of.h>
19 #include <linux/slab.h>
20 #include <linux/spinlock.h>
21 #include <linux/msi.h>
22 
23 #include <asm/debugfs.h>
24 #include <asm/prom.h>
25 #include <asm/io.h>
26 #include <asm/smp.h>
27 #include <asm/machdep.h>
28 #include <asm/irq.h>
29 #include <asm/errno.h>
30 #include <asm/xive.h>
31 #include <asm/xive-regs.h>
32 #include <asm/xmon.h>
33 
34 #include "xive-internal.h"
35 
36 #undef DEBUG_FLUSH
37 #undef DEBUG_ALL
38 
39 #ifdef DEBUG_ALL
40 #define DBG_VERBOSE(fmt, ...)	pr_devel("cpu %d - " fmt, \
41 					 smp_processor_id(), ## __VA_ARGS__)
42 #else
43 #define DBG_VERBOSE(fmt...)	do { } while(0)
44 #endif
45 
46 bool __xive_enabled;
47 EXPORT_SYMBOL_GPL(__xive_enabled);
48 bool xive_cmdline_disabled;
49 
50 /* We use only one priority for now */
51 static u8 xive_irq_priority;
52 
53 /* TIMA exported to KVM */
54 void __iomem *xive_tima;
55 EXPORT_SYMBOL_GPL(xive_tima);
56 u32 xive_tima_offset;
57 
58 /* Backend ops */
59 static const struct xive_ops *xive_ops;
60 
61 /* Our global interrupt domain */
62 static struct irq_domain *xive_irq_domain;
63 
64 #ifdef CONFIG_SMP
65 /* The IPIs all use the same logical irq number */
66 static u32 xive_ipi_irq;
67 #endif
68 
69 /* Xive state for each CPU */
70 static DEFINE_PER_CPU(struct xive_cpu *, xive_cpu);
71 
72 /* An invalid CPU target */
73 #define XIVE_INVALID_TARGET	(-1)
74 
75 /*
76  * Read the next entry in a queue, return its content if it's valid
77  * or 0 if there is no new entry.
78  *
79  * The queue pointer is moved forward unless "just_peek" is set
80  */
81 static u32 xive_read_eq(struct xive_q *q, bool just_peek)
82 {
83 	u32 cur;
84 
85 	if (!q->qpage)
86 		return 0;
87 	cur = be32_to_cpup(q->qpage + q->idx);
88 
89 	/* Check valid bit (31) vs current toggle polarity */
90 	if ((cur >> 31) == q->toggle)
91 		return 0;
92 
93 	/* If consuming from the queue ... */
94 	if (!just_peek) {
95 		/* Next entry */
96 		q->idx = (q->idx + 1) & q->msk;
97 
98 		/* Wrap around: flip valid toggle */
99 		if (q->idx == 0)
100 			q->toggle ^= 1;
101 	}
102 	/* Mask out the valid bit (31) */
103 	return cur & 0x7fffffff;
104 }
105 
106 /*
107  * Scans all the queue that may have interrupts in them
108  * (based on "pending_prio") in priority order until an
109  * interrupt is found or all the queues are empty.
110  *
111  * Then updates the CPPR (Current Processor Priority
112  * Register) based on the most favored interrupt found
113  * (0xff if none) and return what was found (0 if none).
114  *
115  * If just_peek is set, return the most favored pending
116  * interrupt if any but don't update the queue pointers.
117  *
118  * Note: This function can operate generically on any number
119  * of queues (up to 8). The current implementation of the XIVE
120  * driver only uses a single queue however.
121  *
122  * Note2: This will also "flush" "the pending_count" of a queue
123  * into the "count" when that queue is observed to be empty.
124  * This is used to keep track of the amount of interrupts
125  * targetting a queue. When an interrupt is moved away from
126  * a queue, we only decrement that queue count once the queue
127  * has been observed empty to avoid races.
128  */
129 static u32 xive_scan_interrupts(struct xive_cpu *xc, bool just_peek)
130 {
131 	u32 irq = 0;
132 	u8 prio = 0;
133 
134 	/* Find highest pending priority */
135 	while (xc->pending_prio != 0) {
136 		struct xive_q *q;
137 
138 		prio = ffs(xc->pending_prio) - 1;
139 		DBG_VERBOSE("scan_irq: trying prio %d\n", prio);
140 
141 		/* Try to fetch */
142 		irq = xive_read_eq(&xc->queue[prio], just_peek);
143 
144 		/* Found something ? That's it */
145 		if (irq) {
146 			if (just_peek || irq_to_desc(irq))
147 				break;
148 			/*
149 			 * We should never get here; if we do then we must
150 			 * have failed to synchronize the interrupt properly
151 			 * when shutting it down.
152 			 */
153 			pr_crit("xive: got interrupt %d without descriptor, dropping\n",
154 				irq);
155 			WARN_ON(1);
156 			continue;
157 		}
158 
159 		/* Clear pending bits */
160 		xc->pending_prio &= ~(1 << prio);
161 
162 		/*
163 		 * Check if the queue count needs adjusting due to
164 		 * interrupts being moved away. See description of
165 		 * xive_dec_target_count()
166 		 */
167 		q = &xc->queue[prio];
168 		if (atomic_read(&q->pending_count)) {
169 			int p = atomic_xchg(&q->pending_count, 0);
170 			if (p) {
171 				WARN_ON(p > atomic_read(&q->count));
172 				atomic_sub(p, &q->count);
173 			}
174 		}
175 	}
176 
177 	/* If nothing was found, set CPPR to 0xff */
178 	if (irq == 0)
179 		prio = 0xff;
180 
181 	/* Update HW CPPR to match if necessary */
182 	if (prio != xc->cppr) {
183 		DBG_VERBOSE("scan_irq: adjusting CPPR to %d\n", prio);
184 		xc->cppr = prio;
185 		out_8(xive_tima + xive_tima_offset + TM_CPPR, prio);
186 	}
187 
188 	return irq;
189 }
190 
191 /*
192  * This is used to perform the magic loads from an ESB
193  * described in xive-regs.h
194  */
195 static notrace u8 xive_esb_read(struct xive_irq_data *xd, u32 offset)
196 {
197 	u64 val;
198 
199 	/* Handle HW errata */
200 	if (xd->flags & XIVE_IRQ_FLAG_SHIFT_BUG)
201 		offset |= offset << 4;
202 
203 	if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw)
204 		val = xive_ops->esb_rw(xd->hw_irq, offset, 0, 0);
205 	else
206 		val = in_be64(xd->eoi_mmio + offset);
207 
208 	return (u8)val;
209 }
210 
211 static void xive_esb_write(struct xive_irq_data *xd, u32 offset, u64 data)
212 {
213 	/* Handle HW errata */
214 	if (xd->flags & XIVE_IRQ_FLAG_SHIFT_BUG)
215 		offset |= offset << 4;
216 
217 	if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw)
218 		xive_ops->esb_rw(xd->hw_irq, offset, data, 1);
219 	else
220 		out_be64(xd->eoi_mmio + offset, data);
221 }
222 
223 #ifdef CONFIG_XMON
224 static notrace void xive_dump_eq(const char *name, struct xive_q *q)
225 {
226 	u32 i0, i1, idx;
227 
228 	if (!q->qpage)
229 		return;
230 	idx = q->idx;
231 	i0 = be32_to_cpup(q->qpage + idx);
232 	idx = (idx + 1) & q->msk;
233 	i1 = be32_to_cpup(q->qpage + idx);
234 	xmon_printf("%s idx=%d T=%d %08x %08x ...", name,
235 		     q->idx, q->toggle, i0, i1);
236 }
237 
238 notrace void xmon_xive_do_dump(int cpu)
239 {
240 	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
241 
242 	xmon_printf("CPU %d:", cpu);
243 	if (xc) {
244 		xmon_printf("pp=%02x CPPR=%02x ", xc->pending_prio, xc->cppr);
245 
246 #ifdef CONFIG_SMP
247 		{
248 			u64 val = xive_esb_read(&xc->ipi_data, XIVE_ESB_GET);
249 
250 			xmon_printf("IPI=0x%08x PQ=%c%c ", xc->hw_ipi,
251 				    val & XIVE_ESB_VAL_P ? 'P' : '-',
252 				    val & XIVE_ESB_VAL_Q ? 'Q' : '-');
253 		}
254 #endif
255 		xive_dump_eq("EQ", &xc->queue[xive_irq_priority]);
256 	}
257 	xmon_printf("\n");
258 }
259 
260 int xmon_xive_get_irq_config(u32 hw_irq, struct irq_data *d)
261 {
262 	struct irq_chip *chip = irq_data_get_irq_chip(d);
263 	int rc;
264 	u32 target;
265 	u8 prio;
266 	u32 lirq;
267 
268 	if (!is_xive_irq(chip))
269 		return -EINVAL;
270 
271 	rc = xive_ops->get_irq_config(hw_irq, &target, &prio, &lirq);
272 	if (rc) {
273 		xmon_printf("IRQ 0x%08x : no config rc=%d\n", hw_irq, rc);
274 		return rc;
275 	}
276 
277 	xmon_printf("IRQ 0x%08x : target=0x%x prio=%02x lirq=0x%x ",
278 		    hw_irq, target, prio, lirq);
279 
280 	if (d) {
281 		struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
282 		u64 val = xive_esb_read(xd, XIVE_ESB_GET);
283 
284 		xmon_printf("flags=%c%c%c PQ=%c%c",
285 			    xd->flags & XIVE_IRQ_FLAG_STORE_EOI ? 'S' : ' ',
286 			    xd->flags & XIVE_IRQ_FLAG_LSI ? 'L' : ' ',
287 			    xd->flags & XIVE_IRQ_FLAG_H_INT_ESB ? 'H' : ' ',
288 			    val & XIVE_ESB_VAL_P ? 'P' : '-',
289 			    val & XIVE_ESB_VAL_Q ? 'Q' : '-');
290 	}
291 
292 	xmon_printf("\n");
293 	return 0;
294 }
295 
296 #endif /* CONFIG_XMON */
297 
298 static unsigned int xive_get_irq(void)
299 {
300 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
301 	u32 irq;
302 
303 	/*
304 	 * This can be called either as a result of a HW interrupt or
305 	 * as a "replay" because EOI decided there was still something
306 	 * in one of the queues.
307 	 *
308 	 * First we perform an ACK cycle in order to update our mask
309 	 * of pending priorities. This will also have the effect of
310 	 * updating the CPPR to the most favored pending interrupts.
311 	 *
312 	 * In the future, if we have a way to differentiate a first
313 	 * entry (on HW interrupt) from a replay triggered by EOI,
314 	 * we could skip this on replays unless we soft-mask tells us
315 	 * that a new HW interrupt occurred.
316 	 */
317 	xive_ops->update_pending(xc);
318 
319 	DBG_VERBOSE("get_irq: pending=%02x\n", xc->pending_prio);
320 
321 	/* Scan our queue(s) for interrupts */
322 	irq = xive_scan_interrupts(xc, false);
323 
324 	DBG_VERBOSE("get_irq: got irq 0x%x, new pending=0x%02x\n",
325 	    irq, xc->pending_prio);
326 
327 	/* Return pending interrupt if any */
328 	if (irq == XIVE_BAD_IRQ)
329 		return 0;
330 	return irq;
331 }
332 
333 /*
334  * After EOI'ing an interrupt, we need to re-check the queue
335  * to see if another interrupt is pending since multiple
336  * interrupts can coalesce into a single notification to the
337  * CPU.
338  *
339  * If we find that there is indeed more in there, we call
340  * force_external_irq_replay() to make Linux synthetize an
341  * external interrupt on the next call to local_irq_restore().
342  */
343 static void xive_do_queue_eoi(struct xive_cpu *xc)
344 {
345 	if (xive_scan_interrupts(xc, true) != 0) {
346 		DBG_VERBOSE("eoi: pending=0x%02x\n", xc->pending_prio);
347 		force_external_irq_replay();
348 	}
349 }
350 
351 /*
352  * EOI an interrupt at the source. There are several methods
353  * to do this depending on the HW version and source type
354  */
355 static void xive_do_source_eoi(u32 hw_irq, struct xive_irq_data *xd)
356 {
357 	xd->stale_p = false;
358 	/* If the XIVE supports the new "store EOI facility, use it */
359 	if (xd->flags & XIVE_IRQ_FLAG_STORE_EOI)
360 		xive_esb_write(xd, XIVE_ESB_STORE_EOI, 0);
361 	else if (hw_irq && xd->flags & XIVE_IRQ_FLAG_EOI_FW) {
362 		/*
363 		 * The FW told us to call it. This happens for some
364 		 * interrupt sources that need additional HW whacking
365 		 * beyond the ESB manipulation. For example LPC interrupts
366 		 * on P9 DD1.0 needed a latch to be clared in the LPC bridge
367 		 * itself. The Firmware will take care of it.
368 		 */
369 		if (WARN_ON_ONCE(!xive_ops->eoi))
370 			return;
371 		xive_ops->eoi(hw_irq);
372 	} else {
373 		u8 eoi_val;
374 
375 		/*
376 		 * Otherwise for EOI, we use the special MMIO that does
377 		 * a clear of both P and Q and returns the old Q,
378 		 * except for LSIs where we use the "EOI cycle" special
379 		 * load.
380 		 *
381 		 * This allows us to then do a re-trigger if Q was set
382 		 * rather than synthesizing an interrupt in software
383 		 *
384 		 * For LSIs the HW EOI cycle is used rather than PQ bits,
385 		 * as they are automatically re-triggred in HW when still
386 		 * pending.
387 		 */
388 		if (xd->flags & XIVE_IRQ_FLAG_LSI)
389 			xive_esb_read(xd, XIVE_ESB_LOAD_EOI);
390 		else {
391 			eoi_val = xive_esb_read(xd, XIVE_ESB_SET_PQ_00);
392 			DBG_VERBOSE("eoi_val=%x\n", eoi_val);
393 
394 			/* Re-trigger if needed */
395 			if ((eoi_val & XIVE_ESB_VAL_Q) && xd->trig_mmio)
396 				out_be64(xd->trig_mmio, 0);
397 		}
398 	}
399 }
400 
401 /* irq_chip eoi callback, called with irq descriptor lock held */
402 static void xive_irq_eoi(struct irq_data *d)
403 {
404 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
405 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
406 
407 	DBG_VERBOSE("eoi_irq: irq=%d [0x%lx] pending=%02x\n",
408 		    d->irq, irqd_to_hwirq(d), xc->pending_prio);
409 
410 	/*
411 	 * EOI the source if it hasn't been disabled and hasn't
412 	 * been passed-through to a KVM guest
413 	 */
414 	if (!irqd_irq_disabled(d) && !irqd_is_forwarded_to_vcpu(d) &&
415 	    !(xd->flags & XIVE_IRQ_NO_EOI))
416 		xive_do_source_eoi(irqd_to_hwirq(d), xd);
417 	else
418 		xd->stale_p = true;
419 
420 	/*
421 	 * Clear saved_p to indicate that it's no longer occupying
422 	 * a queue slot on the target queue
423 	 */
424 	xd->saved_p = false;
425 
426 	/* Check for more work in the queue */
427 	xive_do_queue_eoi(xc);
428 }
429 
430 /*
431  * Helper used to mask and unmask an interrupt source. This
432  * is only called for normal interrupts that do not require
433  * masking/unmasking via firmware.
434  */
435 static void xive_do_source_set_mask(struct xive_irq_data *xd,
436 				    bool mask)
437 {
438 	u64 val;
439 
440 	/*
441 	 * If the interrupt had P set, it may be in a queue.
442 	 *
443 	 * We need to make sure we don't re-enable it until it
444 	 * has been fetched from that queue and EOId. We keep
445 	 * a copy of that P state and use it to restore the
446 	 * ESB accordingly on unmask.
447 	 */
448 	if (mask) {
449 		val = xive_esb_read(xd, XIVE_ESB_SET_PQ_01);
450 		if (!xd->stale_p && !!(val & XIVE_ESB_VAL_P))
451 			xd->saved_p = true;
452 		xd->stale_p = false;
453 	} else if (xd->saved_p) {
454 		xive_esb_read(xd, XIVE_ESB_SET_PQ_10);
455 		xd->saved_p = false;
456 	} else {
457 		xive_esb_read(xd, XIVE_ESB_SET_PQ_00);
458 		xd->stale_p = false;
459 	}
460 }
461 
462 /*
463  * Try to chose "cpu" as a new interrupt target. Increments
464  * the queue accounting for that target if it's not already
465  * full.
466  */
467 static bool xive_try_pick_target(int cpu)
468 {
469 	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
470 	struct xive_q *q = &xc->queue[xive_irq_priority];
471 	int max;
472 
473 	/*
474 	 * Calculate max number of interrupts in that queue.
475 	 *
476 	 * We leave a gap of 1 just in case...
477 	 */
478 	max = (q->msk + 1) - 1;
479 	return !!atomic_add_unless(&q->count, 1, max);
480 }
481 
482 /*
483  * Un-account an interrupt for a target CPU. We don't directly
484  * decrement q->count since the interrupt might still be present
485  * in the queue.
486  *
487  * Instead increment a separate counter "pending_count" which
488  * will be substracted from "count" later when that CPU observes
489  * the queue to be empty.
490  */
491 static void xive_dec_target_count(int cpu)
492 {
493 	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
494 	struct xive_q *q = &xc->queue[xive_irq_priority];
495 
496 	if (WARN_ON(cpu < 0 || !xc)) {
497 		pr_err("%s: cpu=%d xc=%p\n", __func__, cpu, xc);
498 		return;
499 	}
500 
501 	/*
502 	 * We increment the "pending count" which will be used
503 	 * to decrement the target queue count whenever it's next
504 	 * processed and found empty. This ensure that we don't
505 	 * decrement while we still have the interrupt there
506 	 * occupying a slot.
507 	 */
508 	atomic_inc(&q->pending_count);
509 }
510 
511 /* Find a tentative CPU target in a CPU mask */
512 static int xive_find_target_in_mask(const struct cpumask *mask,
513 				    unsigned int fuzz)
514 {
515 	int cpu, first, num, i;
516 
517 	/* Pick up a starting point CPU in the mask based on  fuzz */
518 	num = min_t(int, cpumask_weight(mask), nr_cpu_ids);
519 	first = fuzz % num;
520 
521 	/* Locate it */
522 	cpu = cpumask_first(mask);
523 	for (i = 0; i < first && cpu < nr_cpu_ids; i++)
524 		cpu = cpumask_next(cpu, mask);
525 
526 	/* Sanity check */
527 	if (WARN_ON(cpu >= nr_cpu_ids))
528 		cpu = cpumask_first(cpu_online_mask);
529 
530 	/* Remember first one to handle wrap-around */
531 	first = cpu;
532 
533 	/*
534 	 * Now go through the entire mask until we find a valid
535 	 * target.
536 	 */
537 	do {
538 		/*
539 		 * We re-check online as the fallback case passes us
540 		 * an untested affinity mask
541 		 */
542 		if (cpu_online(cpu) && xive_try_pick_target(cpu))
543 			return cpu;
544 		cpu = cpumask_next(cpu, mask);
545 		/* Wrap around */
546 		if (cpu >= nr_cpu_ids)
547 			cpu = cpumask_first(mask);
548 	} while (cpu != first);
549 
550 	return -1;
551 }
552 
553 /*
554  * Pick a target CPU for an interrupt. This is done at
555  * startup or if the affinity is changed in a way that
556  * invalidates the current target.
557  */
558 static int xive_pick_irq_target(struct irq_data *d,
559 				const struct cpumask *affinity)
560 {
561 	static unsigned int fuzz;
562 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
563 	cpumask_var_t mask;
564 	int cpu = -1;
565 
566 	/*
567 	 * If we have chip IDs, first we try to build a mask of
568 	 * CPUs matching the CPU and find a target in there
569 	 */
570 	if (xd->src_chip != XIVE_INVALID_CHIP_ID &&
571 		zalloc_cpumask_var(&mask, GFP_ATOMIC)) {
572 		/* Build a mask of matching chip IDs */
573 		for_each_cpu_and(cpu, affinity, cpu_online_mask) {
574 			struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
575 			if (xc->chip_id == xd->src_chip)
576 				cpumask_set_cpu(cpu, mask);
577 		}
578 		/* Try to find a target */
579 		if (cpumask_empty(mask))
580 			cpu = -1;
581 		else
582 			cpu = xive_find_target_in_mask(mask, fuzz++);
583 		free_cpumask_var(mask);
584 		if (cpu >= 0)
585 			return cpu;
586 		fuzz--;
587 	}
588 
589 	/* No chip IDs, fallback to using the affinity mask */
590 	return xive_find_target_in_mask(affinity, fuzz++);
591 }
592 
593 static unsigned int xive_irq_startup(struct irq_data *d)
594 {
595 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
596 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
597 	int target, rc;
598 
599 	xd->saved_p = false;
600 	xd->stale_p = false;
601 	pr_devel("xive_irq_startup: irq %d [0x%x] data @%p\n",
602 		 d->irq, hw_irq, d);
603 
604 #ifdef CONFIG_PCI_MSI
605 	/*
606 	 * The generic MSI code returns with the interrupt disabled on the
607 	 * card, using the MSI mask bits. Firmware doesn't appear to unmask
608 	 * at that level, so we do it here by hand.
609 	 */
610 	if (irq_data_get_msi_desc(d))
611 		pci_msi_unmask_irq(d);
612 #endif
613 
614 	/* Pick a target */
615 	target = xive_pick_irq_target(d, irq_data_get_affinity_mask(d));
616 	if (target == XIVE_INVALID_TARGET) {
617 		/* Try again breaking affinity */
618 		target = xive_pick_irq_target(d, cpu_online_mask);
619 		if (target == XIVE_INVALID_TARGET)
620 			return -ENXIO;
621 		pr_warn("irq %d started with broken affinity\n", d->irq);
622 	}
623 
624 	/* Sanity check */
625 	if (WARN_ON(target == XIVE_INVALID_TARGET ||
626 		    target >= nr_cpu_ids))
627 		target = smp_processor_id();
628 
629 	xd->target = target;
630 
631 	/*
632 	 * Configure the logical number to be the Linux IRQ number
633 	 * and set the target queue
634 	 */
635 	rc = xive_ops->configure_irq(hw_irq,
636 				     get_hard_smp_processor_id(target),
637 				     xive_irq_priority, d->irq);
638 	if (rc)
639 		return rc;
640 
641 	/* Unmask the ESB */
642 	xive_do_source_set_mask(xd, false);
643 
644 	return 0;
645 }
646 
647 /* called with irq descriptor lock held */
648 static void xive_irq_shutdown(struct irq_data *d)
649 {
650 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
651 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
652 
653 	pr_devel("xive_irq_shutdown: irq %d [0x%x] data @%p\n",
654 		 d->irq, hw_irq, d);
655 
656 	if (WARN_ON(xd->target == XIVE_INVALID_TARGET))
657 		return;
658 
659 	/* Mask the interrupt at the source */
660 	xive_do_source_set_mask(xd, true);
661 
662 	/*
663 	 * Mask the interrupt in HW in the IVT/EAS and set the number
664 	 * to be the "bad" IRQ number
665 	 */
666 	xive_ops->configure_irq(hw_irq,
667 				get_hard_smp_processor_id(xd->target),
668 				0xff, XIVE_BAD_IRQ);
669 
670 	xive_dec_target_count(xd->target);
671 	xd->target = XIVE_INVALID_TARGET;
672 }
673 
674 static void xive_irq_unmask(struct irq_data *d)
675 {
676 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
677 
678 	pr_devel("xive_irq_unmask: irq %d data @%p\n", d->irq, xd);
679 
680 	/*
681 	 * This is a workaround for PCI LSI problems on P9, for
682 	 * these, we call FW to set the mask. The problems might
683 	 * be fixed by P9 DD2.0, if that is the case, firmware
684 	 * will no longer set that flag.
685 	 */
686 	if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) {
687 		unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
688 		xive_ops->configure_irq(hw_irq,
689 					get_hard_smp_processor_id(xd->target),
690 					xive_irq_priority, d->irq);
691 		return;
692 	}
693 
694 	xive_do_source_set_mask(xd, false);
695 }
696 
697 static void xive_irq_mask(struct irq_data *d)
698 {
699 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
700 
701 	pr_devel("xive_irq_mask: irq %d data @%p\n", d->irq, xd);
702 
703 	/*
704 	 * This is a workaround for PCI LSI problems on P9, for
705 	 * these, we call OPAL to set the mask. The problems might
706 	 * be fixed by P9 DD2.0, if that is the case, firmware
707 	 * will no longer set that flag.
708 	 */
709 	if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) {
710 		unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
711 		xive_ops->configure_irq(hw_irq,
712 					get_hard_smp_processor_id(xd->target),
713 					0xff, d->irq);
714 		return;
715 	}
716 
717 	xive_do_source_set_mask(xd, true);
718 }
719 
720 static int xive_irq_set_affinity(struct irq_data *d,
721 				 const struct cpumask *cpumask,
722 				 bool force)
723 {
724 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
725 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
726 	u32 target, old_target;
727 	int rc = 0;
728 
729 	pr_devel("xive_irq_set_affinity: irq %d\n", d->irq);
730 
731 	/* Is this valid ? */
732 	if (cpumask_any_and(cpumask, cpu_online_mask) >= nr_cpu_ids)
733 		return -EINVAL;
734 
735 	/* Don't do anything if the interrupt isn't started */
736 	if (!irqd_is_started(d))
737 		return IRQ_SET_MASK_OK;
738 
739 	/*
740 	 * If existing target is already in the new mask, and is
741 	 * online then do nothing.
742 	 */
743 	if (xd->target != XIVE_INVALID_TARGET &&
744 	    cpu_online(xd->target) &&
745 	    cpumask_test_cpu(xd->target, cpumask))
746 		return IRQ_SET_MASK_OK;
747 
748 	/* Pick a new target */
749 	target = xive_pick_irq_target(d, cpumask);
750 
751 	/* No target found */
752 	if (target == XIVE_INVALID_TARGET)
753 		return -ENXIO;
754 
755 	/* Sanity check */
756 	if (WARN_ON(target >= nr_cpu_ids))
757 		target = smp_processor_id();
758 
759 	old_target = xd->target;
760 
761 	/*
762 	 * Only configure the irq if it's not currently passed-through to
763 	 * a KVM guest
764 	 */
765 	if (!irqd_is_forwarded_to_vcpu(d))
766 		rc = xive_ops->configure_irq(hw_irq,
767 					     get_hard_smp_processor_id(target),
768 					     xive_irq_priority, d->irq);
769 	if (rc < 0) {
770 		pr_err("Error %d reconfiguring irq %d\n", rc, d->irq);
771 		return rc;
772 	}
773 
774 	pr_devel("  target: 0x%x\n", target);
775 	xd->target = target;
776 
777 	/* Give up previous target */
778 	if (old_target != XIVE_INVALID_TARGET)
779 	    xive_dec_target_count(old_target);
780 
781 	return IRQ_SET_MASK_OK;
782 }
783 
784 static int xive_irq_set_type(struct irq_data *d, unsigned int flow_type)
785 {
786 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
787 
788 	/*
789 	 * We only support these. This has really no effect other than setting
790 	 * the corresponding descriptor bits mind you but those will in turn
791 	 * affect the resend function when re-enabling an edge interrupt.
792 	 *
793 	 * Set set the default to edge as explained in map().
794 	 */
795 	if (flow_type == IRQ_TYPE_DEFAULT || flow_type == IRQ_TYPE_NONE)
796 		flow_type = IRQ_TYPE_EDGE_RISING;
797 
798 	if (flow_type != IRQ_TYPE_EDGE_RISING &&
799 	    flow_type != IRQ_TYPE_LEVEL_LOW)
800 		return -EINVAL;
801 
802 	irqd_set_trigger_type(d, flow_type);
803 
804 	/*
805 	 * Double check it matches what the FW thinks
806 	 *
807 	 * NOTE: We don't know yet if the PAPR interface will provide
808 	 * the LSI vs MSI information apart from the device-tree so
809 	 * this check might have to move into an optional backend call
810 	 * that is specific to the native backend
811 	 */
812 	if ((flow_type == IRQ_TYPE_LEVEL_LOW) !=
813 	    !!(xd->flags & XIVE_IRQ_FLAG_LSI)) {
814 		pr_warn("Interrupt %d (HW 0x%x) type mismatch, Linux says %s, FW says %s\n",
815 			d->irq, (u32)irqd_to_hwirq(d),
816 			(flow_type == IRQ_TYPE_LEVEL_LOW) ? "Level" : "Edge",
817 			(xd->flags & XIVE_IRQ_FLAG_LSI) ? "Level" : "Edge");
818 	}
819 
820 	return IRQ_SET_MASK_OK_NOCOPY;
821 }
822 
823 static int xive_irq_retrigger(struct irq_data *d)
824 {
825 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
826 
827 	/* This should be only for MSIs */
828 	if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
829 		return 0;
830 
831 	/*
832 	 * To perform a retrigger, we first set the PQ bits to
833 	 * 11, then perform an EOI.
834 	 */
835 	xive_esb_read(xd, XIVE_ESB_SET_PQ_11);
836 
837 	/*
838 	 * Note: We pass "0" to the hw_irq argument in order to
839 	 * avoid calling into the backend EOI code which we don't
840 	 * want to do in the case of a re-trigger. Backends typically
841 	 * only do EOI for LSIs anyway.
842 	 */
843 	xive_do_source_eoi(0, xd);
844 
845 	return 1;
846 }
847 
848 /*
849  * Caller holds the irq descriptor lock, so this won't be called
850  * concurrently with xive_get_irqchip_state on the same interrupt.
851  */
852 static int xive_irq_set_vcpu_affinity(struct irq_data *d, void *state)
853 {
854 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
855 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
856 	int rc;
857 	u8 pq;
858 
859 	/*
860 	 * We only support this on interrupts that do not require
861 	 * firmware calls for masking and unmasking
862 	 */
863 	if (xd->flags & XIVE_IRQ_FLAG_MASK_FW)
864 		return -EIO;
865 
866 	/*
867 	 * This is called by KVM with state non-NULL for enabling
868 	 * pass-through or NULL for disabling it
869 	 */
870 	if (state) {
871 		irqd_set_forwarded_to_vcpu(d);
872 
873 		/* Set it to PQ=10 state to prevent further sends */
874 		pq = xive_esb_read(xd, XIVE_ESB_SET_PQ_10);
875 		if (!xd->stale_p) {
876 			xd->saved_p = !!(pq & XIVE_ESB_VAL_P);
877 			xd->stale_p = !xd->saved_p;
878 		}
879 
880 		/* No target ? nothing to do */
881 		if (xd->target == XIVE_INVALID_TARGET) {
882 			/*
883 			 * An untargetted interrupt should have been
884 			 * also masked at the source
885 			 */
886 			WARN_ON(xd->saved_p);
887 
888 			return 0;
889 		}
890 
891 		/*
892 		 * If P was set, adjust state to PQ=11 to indicate
893 		 * that a resend is needed for the interrupt to reach
894 		 * the guest. Also remember the value of P.
895 		 *
896 		 * This also tells us that it's in flight to a host queue
897 		 * or has already been fetched but hasn't been EOIed yet
898 		 * by the host. This it's potentially using up a host
899 		 * queue slot. This is important to know because as long
900 		 * as this is the case, we must not hard-unmask it when
901 		 * "returning" that interrupt to the host.
902 		 *
903 		 * This saved_p is cleared by the host EOI, when we know
904 		 * for sure the queue slot is no longer in use.
905 		 */
906 		if (xd->saved_p) {
907 			xive_esb_read(xd, XIVE_ESB_SET_PQ_11);
908 
909 			/*
910 			 * Sync the XIVE source HW to ensure the interrupt
911 			 * has gone through the EAS before we change its
912 			 * target to the guest. That should guarantee us
913 			 * that we *will* eventually get an EOI for it on
914 			 * the host. Otherwise there would be a small window
915 			 * for P to be seen here but the interrupt going
916 			 * to the guest queue.
917 			 */
918 			if (xive_ops->sync_source)
919 				xive_ops->sync_source(hw_irq);
920 		}
921 	} else {
922 		irqd_clr_forwarded_to_vcpu(d);
923 
924 		/* No host target ? hard mask and return */
925 		if (xd->target == XIVE_INVALID_TARGET) {
926 			xive_do_source_set_mask(xd, true);
927 			return 0;
928 		}
929 
930 		/*
931 		 * Sync the XIVE source HW to ensure the interrupt
932 		 * has gone through the EAS before we change its
933 		 * target to the host.
934 		 */
935 		if (xive_ops->sync_source)
936 			xive_ops->sync_source(hw_irq);
937 
938 		/*
939 		 * By convention we are called with the interrupt in
940 		 * a PQ=10 or PQ=11 state, ie, it won't fire and will
941 		 * have latched in Q whether there's a pending HW
942 		 * interrupt or not.
943 		 *
944 		 * First reconfigure the target.
945 		 */
946 		rc = xive_ops->configure_irq(hw_irq,
947 					     get_hard_smp_processor_id(xd->target),
948 					     xive_irq_priority, d->irq);
949 		if (rc)
950 			return rc;
951 
952 		/*
953 		 * Then if saved_p is not set, effectively re-enable the
954 		 * interrupt with an EOI. If it is set, we know there is
955 		 * still a message in a host queue somewhere that will be
956 		 * EOId eventually.
957 		 *
958 		 * Note: We don't check irqd_irq_disabled(). Effectively,
959 		 * we *will* let the irq get through even if masked if the
960 		 * HW is still firing it in order to deal with the whole
961 		 * saved_p business properly. If the interrupt triggers
962 		 * while masked, the generic code will re-mask it anyway.
963 		 */
964 		if (!xd->saved_p)
965 			xive_do_source_eoi(hw_irq, xd);
966 
967 	}
968 	return 0;
969 }
970 
971 /* Called with irq descriptor lock held. */
972 static int xive_get_irqchip_state(struct irq_data *data,
973 				  enum irqchip_irq_state which, bool *state)
974 {
975 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(data);
976 	u8 pq;
977 
978 	switch (which) {
979 	case IRQCHIP_STATE_ACTIVE:
980 		pq = xive_esb_read(xd, XIVE_ESB_GET);
981 
982 		/*
983 		 * The esb value being all 1's means we couldn't get
984 		 * the PQ state of the interrupt through mmio. It may
985 		 * happen, for example when querying a PHB interrupt
986 		 * while the PHB is in an error state. We consider the
987 		 * interrupt to be inactive in that case.
988 		 */
989 		*state = (pq != XIVE_ESB_INVALID) && !xd->stale_p &&
990 			(xd->saved_p || !!(pq & XIVE_ESB_VAL_P));
991 		return 0;
992 	default:
993 		return -EINVAL;
994 	}
995 }
996 
997 static struct irq_chip xive_irq_chip = {
998 	.name = "XIVE-IRQ",
999 	.irq_startup = xive_irq_startup,
1000 	.irq_shutdown = xive_irq_shutdown,
1001 	.irq_eoi = xive_irq_eoi,
1002 	.irq_mask = xive_irq_mask,
1003 	.irq_unmask = xive_irq_unmask,
1004 	.irq_set_affinity = xive_irq_set_affinity,
1005 	.irq_set_type = xive_irq_set_type,
1006 	.irq_retrigger = xive_irq_retrigger,
1007 	.irq_set_vcpu_affinity = xive_irq_set_vcpu_affinity,
1008 	.irq_get_irqchip_state = xive_get_irqchip_state,
1009 };
1010 
1011 bool is_xive_irq(struct irq_chip *chip)
1012 {
1013 	return chip == &xive_irq_chip;
1014 }
1015 EXPORT_SYMBOL_GPL(is_xive_irq);
1016 
1017 void xive_cleanup_irq_data(struct xive_irq_data *xd)
1018 {
1019 	if (xd->eoi_mmio) {
1020 		iounmap(xd->eoi_mmio);
1021 		if (xd->eoi_mmio == xd->trig_mmio)
1022 			xd->trig_mmio = NULL;
1023 		xd->eoi_mmio = NULL;
1024 	}
1025 	if (xd->trig_mmio) {
1026 		iounmap(xd->trig_mmio);
1027 		xd->trig_mmio = NULL;
1028 	}
1029 }
1030 EXPORT_SYMBOL_GPL(xive_cleanup_irq_data);
1031 
1032 static int xive_irq_alloc_data(unsigned int virq, irq_hw_number_t hw)
1033 {
1034 	struct xive_irq_data *xd;
1035 	int rc;
1036 
1037 	xd = kzalloc(sizeof(struct xive_irq_data), GFP_KERNEL);
1038 	if (!xd)
1039 		return -ENOMEM;
1040 	rc = xive_ops->populate_irq_data(hw, xd);
1041 	if (rc) {
1042 		kfree(xd);
1043 		return rc;
1044 	}
1045 	xd->target = XIVE_INVALID_TARGET;
1046 	irq_set_handler_data(virq, xd);
1047 
1048 	/*
1049 	 * Turn OFF by default the interrupt being mapped. A side
1050 	 * effect of this check is the mapping the ESB page of the
1051 	 * interrupt in the Linux address space. This prevents page
1052 	 * fault issues in the crash handler which masks all
1053 	 * interrupts.
1054 	 */
1055 	xive_esb_read(xd, XIVE_ESB_SET_PQ_01);
1056 
1057 	return 0;
1058 }
1059 
1060 static void xive_irq_free_data(unsigned int virq)
1061 {
1062 	struct xive_irq_data *xd = irq_get_handler_data(virq);
1063 
1064 	if (!xd)
1065 		return;
1066 	irq_set_handler_data(virq, NULL);
1067 	xive_cleanup_irq_data(xd);
1068 	kfree(xd);
1069 }
1070 
1071 #ifdef CONFIG_SMP
1072 
1073 static void xive_cause_ipi(int cpu)
1074 {
1075 	struct xive_cpu *xc;
1076 	struct xive_irq_data *xd;
1077 
1078 	xc = per_cpu(xive_cpu, cpu);
1079 
1080 	DBG_VERBOSE("IPI CPU %d -> %d (HW IRQ 0x%x)\n",
1081 		    smp_processor_id(), cpu, xc->hw_ipi);
1082 
1083 	xd = &xc->ipi_data;
1084 	if (WARN_ON(!xd->trig_mmio))
1085 		return;
1086 	out_be64(xd->trig_mmio, 0);
1087 }
1088 
1089 static irqreturn_t xive_muxed_ipi_action(int irq, void *dev_id)
1090 {
1091 	return smp_ipi_demux();
1092 }
1093 
1094 static void xive_ipi_eoi(struct irq_data *d)
1095 {
1096 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1097 
1098 	/* Handle possible race with unplug and drop stale IPIs */
1099 	if (!xc)
1100 		return;
1101 
1102 	DBG_VERBOSE("IPI eoi: irq=%d [0x%lx] (HW IRQ 0x%x) pending=%02x\n",
1103 		    d->irq, irqd_to_hwirq(d), xc->hw_ipi, xc->pending_prio);
1104 
1105 	xive_do_source_eoi(xc->hw_ipi, &xc->ipi_data);
1106 	xive_do_queue_eoi(xc);
1107 }
1108 
1109 static void xive_ipi_do_nothing(struct irq_data *d)
1110 {
1111 	/*
1112 	 * Nothing to do, we never mask/unmask IPIs, but the callback
1113 	 * has to exist for the struct irq_chip.
1114 	 */
1115 }
1116 
1117 static struct irq_chip xive_ipi_chip = {
1118 	.name = "XIVE-IPI",
1119 	.irq_eoi = xive_ipi_eoi,
1120 	.irq_mask = xive_ipi_do_nothing,
1121 	.irq_unmask = xive_ipi_do_nothing,
1122 };
1123 
1124 static void __init xive_request_ipi(void)
1125 {
1126 	unsigned int virq;
1127 
1128 	/*
1129 	 * Initialization failed, move on, we might manage to
1130 	 * reach the point where we display our errors before
1131 	 * the system falls appart
1132 	 */
1133 	if (!xive_irq_domain)
1134 		return;
1135 
1136 	/* Initialize it */
1137 	virq = irq_create_mapping(xive_irq_domain, 0);
1138 	xive_ipi_irq = virq;
1139 
1140 	WARN_ON(request_irq(virq, xive_muxed_ipi_action,
1141 			    IRQF_PERCPU | IRQF_NO_THREAD, "IPI", NULL));
1142 }
1143 
1144 static int xive_setup_cpu_ipi(unsigned int cpu)
1145 {
1146 	struct xive_cpu *xc;
1147 	int rc;
1148 
1149 	pr_debug("Setting up IPI for CPU %d\n", cpu);
1150 
1151 	xc = per_cpu(xive_cpu, cpu);
1152 
1153 	/* Check if we are already setup */
1154 	if (xc->hw_ipi != XIVE_BAD_IRQ)
1155 		return 0;
1156 
1157 	/* Grab an IPI from the backend, this will populate xc->hw_ipi */
1158 	if (xive_ops->get_ipi(cpu, xc))
1159 		return -EIO;
1160 
1161 	/*
1162 	 * Populate the IRQ data in the xive_cpu structure and
1163 	 * configure the HW / enable the IPIs.
1164 	 */
1165 	rc = xive_ops->populate_irq_data(xc->hw_ipi, &xc->ipi_data);
1166 	if (rc) {
1167 		pr_err("Failed to populate IPI data on CPU %d\n", cpu);
1168 		return -EIO;
1169 	}
1170 	rc = xive_ops->configure_irq(xc->hw_ipi,
1171 				     get_hard_smp_processor_id(cpu),
1172 				     xive_irq_priority, xive_ipi_irq);
1173 	if (rc) {
1174 		pr_err("Failed to map IPI CPU %d\n", cpu);
1175 		return -EIO;
1176 	}
1177 	pr_devel("CPU %d HW IPI %x, virq %d, trig_mmio=%p\n", cpu,
1178 	    xc->hw_ipi, xive_ipi_irq, xc->ipi_data.trig_mmio);
1179 
1180 	/* Unmask it */
1181 	xive_do_source_set_mask(&xc->ipi_data, false);
1182 
1183 	return 0;
1184 }
1185 
1186 static void xive_cleanup_cpu_ipi(unsigned int cpu, struct xive_cpu *xc)
1187 {
1188 	/* Disable the IPI and free the IRQ data */
1189 
1190 	/* Already cleaned up ? */
1191 	if (xc->hw_ipi == XIVE_BAD_IRQ)
1192 		return;
1193 
1194 	/* Mask the IPI */
1195 	xive_do_source_set_mask(&xc->ipi_data, true);
1196 
1197 	/*
1198 	 * Note: We don't call xive_cleanup_irq_data() to free
1199 	 * the mappings as this is called from an IPI on kexec
1200 	 * which is not a safe environment to call iounmap()
1201 	 */
1202 
1203 	/* Deconfigure/mask in the backend */
1204 	xive_ops->configure_irq(xc->hw_ipi, hard_smp_processor_id(),
1205 				0xff, xive_ipi_irq);
1206 
1207 	/* Free the IPIs in the backend */
1208 	xive_ops->put_ipi(cpu, xc);
1209 }
1210 
1211 void __init xive_smp_probe(void)
1212 {
1213 	smp_ops->cause_ipi = xive_cause_ipi;
1214 
1215 	/* Register the IPI */
1216 	xive_request_ipi();
1217 
1218 	/* Allocate and setup IPI for the boot CPU */
1219 	xive_setup_cpu_ipi(smp_processor_id());
1220 }
1221 
1222 #endif /* CONFIG_SMP */
1223 
1224 static int xive_irq_domain_map(struct irq_domain *h, unsigned int virq,
1225 			       irq_hw_number_t hw)
1226 {
1227 	int rc;
1228 
1229 	/*
1230 	 * Mark interrupts as edge sensitive by default so that resend
1231 	 * actually works. Will fix that up below if needed.
1232 	 */
1233 	irq_clear_status_flags(virq, IRQ_LEVEL);
1234 
1235 #ifdef CONFIG_SMP
1236 	/* IPIs are special and come up with HW number 0 */
1237 	if (hw == 0) {
1238 		/*
1239 		 * IPIs are marked per-cpu. We use separate HW interrupts under
1240 		 * the hood but associated with the same "linux" interrupt
1241 		 */
1242 		irq_set_chip_and_handler(virq, &xive_ipi_chip,
1243 					 handle_percpu_irq);
1244 		return 0;
1245 	}
1246 #endif
1247 
1248 	rc = xive_irq_alloc_data(virq, hw);
1249 	if (rc)
1250 		return rc;
1251 
1252 	irq_set_chip_and_handler(virq, &xive_irq_chip, handle_fasteoi_irq);
1253 
1254 	return 0;
1255 }
1256 
1257 static void xive_irq_domain_unmap(struct irq_domain *d, unsigned int virq)
1258 {
1259 	struct irq_data *data = irq_get_irq_data(virq);
1260 	unsigned int hw_irq;
1261 
1262 	/* XXX Assign BAD number */
1263 	if (!data)
1264 		return;
1265 	hw_irq = (unsigned int)irqd_to_hwirq(data);
1266 	if (hw_irq)
1267 		xive_irq_free_data(virq);
1268 }
1269 
1270 static int xive_irq_domain_xlate(struct irq_domain *h, struct device_node *ct,
1271 				 const u32 *intspec, unsigned int intsize,
1272 				 irq_hw_number_t *out_hwirq, unsigned int *out_flags)
1273 
1274 {
1275 	*out_hwirq = intspec[0];
1276 
1277 	/*
1278 	 * If intsize is at least 2, we look for the type in the second cell,
1279 	 * we assume the LSB indicates a level interrupt.
1280 	 */
1281 	if (intsize > 1) {
1282 		if (intspec[1] & 1)
1283 			*out_flags = IRQ_TYPE_LEVEL_LOW;
1284 		else
1285 			*out_flags = IRQ_TYPE_EDGE_RISING;
1286 	} else
1287 		*out_flags = IRQ_TYPE_LEVEL_LOW;
1288 
1289 	return 0;
1290 }
1291 
1292 static int xive_irq_domain_match(struct irq_domain *h, struct device_node *node,
1293 				 enum irq_domain_bus_token bus_token)
1294 {
1295 	return xive_ops->match(node);
1296 }
1297 
1298 static const struct irq_domain_ops xive_irq_domain_ops = {
1299 	.match = xive_irq_domain_match,
1300 	.map = xive_irq_domain_map,
1301 	.unmap = xive_irq_domain_unmap,
1302 	.xlate = xive_irq_domain_xlate,
1303 };
1304 
1305 static void __init xive_init_host(void)
1306 {
1307 	xive_irq_domain = irq_domain_add_nomap(NULL, XIVE_MAX_IRQ,
1308 					       &xive_irq_domain_ops, NULL);
1309 	if (WARN_ON(xive_irq_domain == NULL))
1310 		return;
1311 	irq_set_default_host(xive_irq_domain);
1312 }
1313 
1314 static void xive_cleanup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1315 {
1316 	if (xc->queue[xive_irq_priority].qpage)
1317 		xive_ops->cleanup_queue(cpu, xc, xive_irq_priority);
1318 }
1319 
1320 static int xive_setup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1321 {
1322 	int rc = 0;
1323 
1324 	/* We setup 1 queues for now with a 64k page */
1325 	if (!xc->queue[xive_irq_priority].qpage)
1326 		rc = xive_ops->setup_queue(cpu, xc, xive_irq_priority);
1327 
1328 	return rc;
1329 }
1330 
1331 static int xive_prepare_cpu(unsigned int cpu)
1332 {
1333 	struct xive_cpu *xc;
1334 
1335 	xc = per_cpu(xive_cpu, cpu);
1336 	if (!xc) {
1337 		struct device_node *np;
1338 
1339 		xc = kzalloc_node(sizeof(struct xive_cpu),
1340 				  GFP_KERNEL, cpu_to_node(cpu));
1341 		if (!xc)
1342 			return -ENOMEM;
1343 		np = of_get_cpu_node(cpu, NULL);
1344 		if (np)
1345 			xc->chip_id = of_get_ibm_chip_id(np);
1346 		of_node_put(np);
1347 		xc->hw_ipi = XIVE_BAD_IRQ;
1348 
1349 		per_cpu(xive_cpu, cpu) = xc;
1350 	}
1351 
1352 	/* Setup EQs if not already */
1353 	return xive_setup_cpu_queues(cpu, xc);
1354 }
1355 
1356 static void xive_setup_cpu(void)
1357 {
1358 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1359 
1360 	/* The backend might have additional things to do */
1361 	if (xive_ops->setup_cpu)
1362 		xive_ops->setup_cpu(smp_processor_id(), xc);
1363 
1364 	/* Set CPPR to 0xff to enable flow of interrupts */
1365 	xc->cppr = 0xff;
1366 	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1367 }
1368 
1369 #ifdef CONFIG_SMP
1370 void xive_smp_setup_cpu(void)
1371 {
1372 	pr_devel("SMP setup CPU %d\n", smp_processor_id());
1373 
1374 	/* This will have already been done on the boot CPU */
1375 	if (smp_processor_id() != boot_cpuid)
1376 		xive_setup_cpu();
1377 
1378 }
1379 
1380 int xive_smp_prepare_cpu(unsigned int cpu)
1381 {
1382 	int rc;
1383 
1384 	/* Allocate per-CPU data and queues */
1385 	rc = xive_prepare_cpu(cpu);
1386 	if (rc)
1387 		return rc;
1388 
1389 	/* Allocate and setup IPI for the new CPU */
1390 	return xive_setup_cpu_ipi(cpu);
1391 }
1392 
1393 #ifdef CONFIG_HOTPLUG_CPU
1394 static void xive_flush_cpu_queue(unsigned int cpu, struct xive_cpu *xc)
1395 {
1396 	u32 irq;
1397 
1398 	/* We assume local irqs are disabled */
1399 	WARN_ON(!irqs_disabled());
1400 
1401 	/* Check what's already in the CPU queue */
1402 	while ((irq = xive_scan_interrupts(xc, false)) != 0) {
1403 		/*
1404 		 * We need to re-route that interrupt to its new destination.
1405 		 * First get and lock the descriptor
1406 		 */
1407 		struct irq_desc *desc = irq_to_desc(irq);
1408 		struct irq_data *d = irq_desc_get_irq_data(desc);
1409 		struct xive_irq_data *xd;
1410 		unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
1411 
1412 		/*
1413 		 * Ignore anything that isn't a XIVE irq and ignore
1414 		 * IPIs, so can just be dropped.
1415 		 */
1416 		if (d->domain != xive_irq_domain || hw_irq == 0)
1417 			continue;
1418 
1419 		/*
1420 		 * The IRQ should have already been re-routed, it's just a
1421 		 * stale in the old queue, so re-trigger it in order to make
1422 		 * it reach is new destination.
1423 		 */
1424 #ifdef DEBUG_FLUSH
1425 		pr_info("CPU %d: Got irq %d while offline, re-sending...\n",
1426 			cpu, irq);
1427 #endif
1428 		raw_spin_lock(&desc->lock);
1429 		xd = irq_desc_get_handler_data(desc);
1430 
1431 		/*
1432 		 * Clear saved_p to indicate that it's no longer pending
1433 		 */
1434 		xd->saved_p = false;
1435 
1436 		/*
1437 		 * For LSIs, we EOI, this will cause a resend if it's
1438 		 * still asserted. Otherwise do an MSI retrigger.
1439 		 */
1440 		if (xd->flags & XIVE_IRQ_FLAG_LSI)
1441 			xive_do_source_eoi(irqd_to_hwirq(d), xd);
1442 		else
1443 			xive_irq_retrigger(d);
1444 
1445 		raw_spin_unlock(&desc->lock);
1446 	}
1447 }
1448 
1449 void xive_smp_disable_cpu(void)
1450 {
1451 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1452 	unsigned int cpu = smp_processor_id();
1453 
1454 	/* Migrate interrupts away from the CPU */
1455 	irq_migrate_all_off_this_cpu();
1456 
1457 	/* Set CPPR to 0 to disable flow of interrupts */
1458 	xc->cppr = 0;
1459 	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1460 
1461 	/* Flush everything still in the queue */
1462 	xive_flush_cpu_queue(cpu, xc);
1463 
1464 	/* Re-enable CPPR  */
1465 	xc->cppr = 0xff;
1466 	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1467 }
1468 
1469 void xive_flush_interrupt(void)
1470 {
1471 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1472 	unsigned int cpu = smp_processor_id();
1473 
1474 	/* Called if an interrupt occurs while the CPU is hot unplugged */
1475 	xive_flush_cpu_queue(cpu, xc);
1476 }
1477 
1478 #endif /* CONFIG_HOTPLUG_CPU */
1479 
1480 #endif /* CONFIG_SMP */
1481 
1482 void xive_teardown_cpu(void)
1483 {
1484 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1485 	unsigned int cpu = smp_processor_id();
1486 
1487 	/* Set CPPR to 0 to disable flow of interrupts */
1488 	xc->cppr = 0;
1489 	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1490 
1491 	if (xive_ops->teardown_cpu)
1492 		xive_ops->teardown_cpu(cpu, xc);
1493 
1494 #ifdef CONFIG_SMP
1495 	/* Get rid of IPI */
1496 	xive_cleanup_cpu_ipi(cpu, xc);
1497 #endif
1498 
1499 	/* Disable and free the queues */
1500 	xive_cleanup_cpu_queues(cpu, xc);
1501 }
1502 
1503 void xive_shutdown(void)
1504 {
1505 	xive_ops->shutdown();
1506 }
1507 
1508 bool __init xive_core_init(const struct xive_ops *ops, void __iomem *area, u32 offset,
1509 			   u8 max_prio)
1510 {
1511 	xive_tima = area;
1512 	xive_tima_offset = offset;
1513 	xive_ops = ops;
1514 	xive_irq_priority = max_prio;
1515 
1516 	ppc_md.get_irq = xive_get_irq;
1517 	__xive_enabled = true;
1518 
1519 	pr_devel("Initializing host..\n");
1520 	xive_init_host();
1521 
1522 	pr_devel("Initializing boot CPU..\n");
1523 
1524 	/* Allocate per-CPU data and queues */
1525 	xive_prepare_cpu(smp_processor_id());
1526 
1527 	/* Get ready for interrupts */
1528 	xive_setup_cpu();
1529 
1530 	pr_info("Interrupt handling initialized with %s backend\n",
1531 		xive_ops->name);
1532 	pr_info("Using priority %d for all interrupts\n", max_prio);
1533 
1534 	return true;
1535 }
1536 
1537 __be32 *xive_queue_page_alloc(unsigned int cpu, u32 queue_shift)
1538 {
1539 	unsigned int alloc_order;
1540 	struct page *pages;
1541 	__be32 *qpage;
1542 
1543 	alloc_order = xive_alloc_order(queue_shift);
1544 	pages = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, alloc_order);
1545 	if (!pages)
1546 		return ERR_PTR(-ENOMEM);
1547 	qpage = (__be32 *)page_address(pages);
1548 	memset(qpage, 0, 1 << queue_shift);
1549 
1550 	return qpage;
1551 }
1552 
1553 static int __init xive_off(char *arg)
1554 {
1555 	xive_cmdline_disabled = true;
1556 	return 0;
1557 }
1558 __setup("xive=off", xive_off);
1559 
1560 void xive_debug_show_cpu(struct seq_file *m, int cpu)
1561 {
1562 	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
1563 
1564 	seq_printf(m, "CPU %d:", cpu);
1565 	if (xc) {
1566 		seq_printf(m, "pp=%02x CPPR=%02x ", xc->pending_prio, xc->cppr);
1567 
1568 #ifdef CONFIG_SMP
1569 		{
1570 			u64 val = xive_esb_read(&xc->ipi_data, XIVE_ESB_GET);
1571 
1572 			seq_printf(m, "IPI=0x%08x PQ=%c%c ", xc->hw_ipi,
1573 				   val & XIVE_ESB_VAL_P ? 'P' : '-',
1574 				   val & XIVE_ESB_VAL_Q ? 'Q' : '-');
1575 		}
1576 #endif
1577 		{
1578 			struct xive_q *q = &xc->queue[xive_irq_priority];
1579 			u32 i0, i1, idx;
1580 
1581 			if (q->qpage) {
1582 				idx = q->idx;
1583 				i0 = be32_to_cpup(q->qpage + idx);
1584 				idx = (idx + 1) & q->msk;
1585 				i1 = be32_to_cpup(q->qpage + idx);
1586 				seq_printf(m, "EQ idx=%d T=%d %08x %08x ...",
1587 					   q->idx, q->toggle, i0, i1);
1588 			}
1589 		}
1590 	}
1591 	seq_puts(m, "\n");
1592 }
1593 
1594 void xive_debug_show_irq(struct seq_file *m, u32 hw_irq, struct irq_data *d)
1595 {
1596 	struct irq_chip *chip = irq_data_get_irq_chip(d);
1597 	int rc;
1598 	u32 target;
1599 	u8 prio;
1600 	u32 lirq;
1601 
1602 	if (!is_xive_irq(chip))
1603 		return;
1604 
1605 	rc = xive_ops->get_irq_config(hw_irq, &target, &prio, &lirq);
1606 	if (rc) {
1607 		seq_printf(m, "IRQ 0x%08x : no config rc=%d\n", hw_irq, rc);
1608 		return;
1609 	}
1610 
1611 	seq_printf(m, "IRQ 0x%08x : target=0x%x prio=%02x lirq=0x%x ",
1612 		   hw_irq, target, prio, lirq);
1613 
1614 	if (d) {
1615 		struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
1616 		u64 val = xive_esb_read(xd, XIVE_ESB_GET);
1617 
1618 		seq_printf(m, "flags=%c%c%c PQ=%c%c",
1619 			   xd->flags & XIVE_IRQ_FLAG_STORE_EOI ? 'S' : ' ',
1620 			   xd->flags & XIVE_IRQ_FLAG_LSI ? 'L' : ' ',
1621 			   xd->flags & XIVE_IRQ_FLAG_H_INT_ESB ? 'H' : ' ',
1622 			   val & XIVE_ESB_VAL_P ? 'P' : '-',
1623 			   val & XIVE_ESB_VAL_Q ? 'Q' : '-');
1624 	}
1625 	seq_puts(m, "\n");
1626 }
1627 
1628 static int xive_core_debug_show(struct seq_file *m, void *private)
1629 {
1630 	unsigned int i;
1631 	struct irq_desc *desc;
1632 	int cpu;
1633 
1634 	if (xive_ops->debug_show)
1635 		xive_ops->debug_show(m, private);
1636 
1637 	for_each_possible_cpu(cpu)
1638 		xive_debug_show_cpu(m, cpu);
1639 
1640 	for_each_irq_desc(i, desc) {
1641 		struct irq_data *d = irq_desc_get_irq_data(desc);
1642 		unsigned int hw_irq;
1643 
1644 		if (!d)
1645 			continue;
1646 
1647 		hw_irq = (unsigned int)irqd_to_hwirq(d);
1648 
1649 		/* IPIs are special (HW number 0) */
1650 		if (hw_irq)
1651 			xive_debug_show_irq(m, hw_irq, d);
1652 	}
1653 	return 0;
1654 }
1655 DEFINE_SHOW_ATTRIBUTE(xive_core_debug);
1656 
1657 int xive_core_debug_init(void)
1658 {
1659 	debugfs_create_file("xive", 0400, powerpc_debugfs_root,
1660 			    NULL, &xive_core_debug_fops);
1661 	return 0;
1662 }
1663