1 /* 2 * Copyright 2016,2017 IBM Corporation. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 */ 9 10 #define pr_fmt(fmt) "xive: " fmt 11 12 #include <linux/types.h> 13 #include <linux/threads.h> 14 #include <linux/kernel.h> 15 #include <linux/irq.h> 16 #include <linux/debugfs.h> 17 #include <linux/smp.h> 18 #include <linux/interrupt.h> 19 #include <linux/seq_file.h> 20 #include <linux/init.h> 21 #include <linux/cpu.h> 22 #include <linux/of.h> 23 #include <linux/slab.h> 24 #include <linux/spinlock.h> 25 #include <linux/msi.h> 26 27 #include <asm/prom.h> 28 #include <asm/io.h> 29 #include <asm/smp.h> 30 #include <asm/machdep.h> 31 #include <asm/irq.h> 32 #include <asm/errno.h> 33 #include <asm/xive.h> 34 #include <asm/xive-regs.h> 35 #include <asm/xmon.h> 36 37 #include "xive-internal.h" 38 39 #undef DEBUG_FLUSH 40 #undef DEBUG_ALL 41 42 #ifdef DEBUG_ALL 43 #define DBG_VERBOSE(fmt, ...) pr_devel("cpu %d - " fmt, \ 44 smp_processor_id(), ## __VA_ARGS__) 45 #else 46 #define DBG_VERBOSE(fmt...) do { } while(0) 47 #endif 48 49 bool __xive_enabled; 50 EXPORT_SYMBOL_GPL(__xive_enabled); 51 bool xive_cmdline_disabled; 52 53 /* We use only one priority for now */ 54 static u8 xive_irq_priority; 55 56 /* TIMA exported to KVM */ 57 void __iomem *xive_tima; 58 EXPORT_SYMBOL_GPL(xive_tima); 59 u32 xive_tima_offset; 60 61 /* Backend ops */ 62 static const struct xive_ops *xive_ops; 63 64 /* Our global interrupt domain */ 65 static struct irq_domain *xive_irq_domain; 66 67 #ifdef CONFIG_SMP 68 /* The IPIs all use the same logical irq number */ 69 static u32 xive_ipi_irq; 70 #endif 71 72 /* Xive state for each CPU */ 73 static DEFINE_PER_CPU(struct xive_cpu *, xive_cpu); 74 75 /* 76 * A "disabled" interrupt should never fire, to catch problems 77 * we set its logical number to this 78 */ 79 #define XIVE_BAD_IRQ 0x7fffffff 80 #define XIVE_MAX_IRQ (XIVE_BAD_IRQ - 1) 81 82 /* An invalid CPU target */ 83 #define XIVE_INVALID_TARGET (-1) 84 85 /* 86 * Read the next entry in a queue, return its content if it's valid 87 * or 0 if there is no new entry. 88 * 89 * The queue pointer is moved forward unless "just_peek" is set 90 */ 91 static u32 xive_read_eq(struct xive_q *q, bool just_peek) 92 { 93 u32 cur; 94 95 if (!q->qpage) 96 return 0; 97 cur = be32_to_cpup(q->qpage + q->idx); 98 99 /* Check valid bit (31) vs current toggle polarity */ 100 if ((cur >> 31) == q->toggle) 101 return 0; 102 103 /* If consuming from the queue ... */ 104 if (!just_peek) { 105 /* Next entry */ 106 q->idx = (q->idx + 1) & q->msk; 107 108 /* Wrap around: flip valid toggle */ 109 if (q->idx == 0) 110 q->toggle ^= 1; 111 } 112 /* Mask out the valid bit (31) */ 113 return cur & 0x7fffffff; 114 } 115 116 /* 117 * Scans all the queue that may have interrupts in them 118 * (based on "pending_prio") in priority order until an 119 * interrupt is found or all the queues are empty. 120 * 121 * Then updates the CPPR (Current Processor Priority 122 * Register) based on the most favored interrupt found 123 * (0xff if none) and return what was found (0 if none). 124 * 125 * If just_peek is set, return the most favored pending 126 * interrupt if any but don't update the queue pointers. 127 * 128 * Note: This function can operate generically on any number 129 * of queues (up to 8). The current implementation of the XIVE 130 * driver only uses a single queue however. 131 * 132 * Note2: This will also "flush" "the pending_count" of a queue 133 * into the "count" when that queue is observed to be empty. 134 * This is used to keep track of the amount of interrupts 135 * targetting a queue. When an interrupt is moved away from 136 * a queue, we only decrement that queue count once the queue 137 * has been observed empty to avoid races. 138 */ 139 static u32 xive_scan_interrupts(struct xive_cpu *xc, bool just_peek) 140 { 141 u32 irq = 0; 142 u8 prio; 143 144 /* Find highest pending priority */ 145 while (xc->pending_prio != 0) { 146 struct xive_q *q; 147 148 prio = ffs(xc->pending_prio) - 1; 149 DBG_VERBOSE("scan_irq: trying prio %d\n", prio); 150 151 /* Try to fetch */ 152 irq = xive_read_eq(&xc->queue[prio], just_peek); 153 154 /* Found something ? That's it */ 155 if (irq) 156 break; 157 158 /* Clear pending bits */ 159 xc->pending_prio &= ~(1 << prio); 160 161 /* 162 * Check if the queue count needs adjusting due to 163 * interrupts being moved away. See description of 164 * xive_dec_target_count() 165 */ 166 q = &xc->queue[prio]; 167 if (atomic_read(&q->pending_count)) { 168 int p = atomic_xchg(&q->pending_count, 0); 169 if (p) { 170 WARN_ON(p > atomic_read(&q->count)); 171 atomic_sub(p, &q->count); 172 } 173 } 174 } 175 176 /* If nothing was found, set CPPR to 0xff */ 177 if (irq == 0) 178 prio = 0xff; 179 180 /* Update HW CPPR to match if necessary */ 181 if (prio != xc->cppr) { 182 DBG_VERBOSE("scan_irq: adjusting CPPR to %d\n", prio); 183 xc->cppr = prio; 184 out_8(xive_tima + xive_tima_offset + TM_CPPR, prio); 185 } 186 187 return irq; 188 } 189 190 /* 191 * This is used to perform the magic loads from an ESB 192 * described in xive.h 193 */ 194 static notrace u8 xive_esb_read(struct xive_irq_data *xd, u32 offset) 195 { 196 u64 val; 197 198 /* Handle HW errata */ 199 if (xd->flags & XIVE_IRQ_FLAG_SHIFT_BUG) 200 offset |= offset << 4; 201 202 if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw) 203 val = xive_ops->esb_rw(xd->hw_irq, offset, 0, 0); 204 else 205 val = in_be64(xd->eoi_mmio + offset); 206 207 return (u8)val; 208 } 209 210 static void xive_esb_write(struct xive_irq_data *xd, u32 offset, u64 data) 211 { 212 /* Handle HW errata */ 213 if (xd->flags & XIVE_IRQ_FLAG_SHIFT_BUG) 214 offset |= offset << 4; 215 216 if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw) 217 xive_ops->esb_rw(xd->hw_irq, offset, data, 1); 218 else 219 out_be64(xd->eoi_mmio + offset, data); 220 } 221 222 #ifdef CONFIG_XMON 223 static notrace void xive_dump_eq(const char *name, struct xive_q *q) 224 { 225 u32 i0, i1, idx; 226 227 if (!q->qpage) 228 return; 229 idx = q->idx; 230 i0 = be32_to_cpup(q->qpage + idx); 231 idx = (idx + 1) & q->msk; 232 i1 = be32_to_cpup(q->qpage + idx); 233 xmon_printf(" %s Q T=%d %08x %08x ...\n", name, 234 q->toggle, i0, i1); 235 } 236 237 notrace void xmon_xive_do_dump(int cpu) 238 { 239 struct xive_cpu *xc = per_cpu(xive_cpu, cpu); 240 241 xmon_printf("XIVE state for CPU %d:\n", cpu); 242 xmon_printf(" pp=%02x cppr=%02x\n", xc->pending_prio, xc->cppr); 243 xive_dump_eq("IRQ", &xc->queue[xive_irq_priority]); 244 #ifdef CONFIG_SMP 245 { 246 u64 val = xive_esb_read(&xc->ipi_data, XIVE_ESB_GET); 247 xmon_printf(" IPI state: %x:%c%c\n", xc->hw_ipi, 248 val & XIVE_ESB_VAL_P ? 'P' : 'p', 249 val & XIVE_ESB_VAL_Q ? 'Q' : 'q'); 250 } 251 #endif 252 } 253 #endif /* CONFIG_XMON */ 254 255 static unsigned int xive_get_irq(void) 256 { 257 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 258 u32 irq; 259 260 /* 261 * This can be called either as a result of a HW interrupt or 262 * as a "replay" because EOI decided there was still something 263 * in one of the queues. 264 * 265 * First we perform an ACK cycle in order to update our mask 266 * of pending priorities. This will also have the effect of 267 * updating the CPPR to the most favored pending interrupts. 268 * 269 * In the future, if we have a way to differentiate a first 270 * entry (on HW interrupt) from a replay triggered by EOI, 271 * we could skip this on replays unless we soft-mask tells us 272 * that a new HW interrupt occurred. 273 */ 274 xive_ops->update_pending(xc); 275 276 DBG_VERBOSE("get_irq: pending=%02x\n", xc->pending_prio); 277 278 /* Scan our queue(s) for interrupts */ 279 irq = xive_scan_interrupts(xc, false); 280 281 DBG_VERBOSE("get_irq: got irq 0x%x, new pending=0x%02x\n", 282 irq, xc->pending_prio); 283 284 /* Return pending interrupt if any */ 285 if (irq == XIVE_BAD_IRQ) 286 return 0; 287 return irq; 288 } 289 290 /* 291 * After EOI'ing an interrupt, we need to re-check the queue 292 * to see if another interrupt is pending since multiple 293 * interrupts can coalesce into a single notification to the 294 * CPU. 295 * 296 * If we find that there is indeed more in there, we call 297 * force_external_irq_replay() to make Linux synthetize an 298 * external interrupt on the next call to local_irq_restore(). 299 */ 300 static void xive_do_queue_eoi(struct xive_cpu *xc) 301 { 302 if (xive_scan_interrupts(xc, true) != 0) { 303 DBG_VERBOSE("eoi: pending=0x%02x\n", xc->pending_prio); 304 force_external_irq_replay(); 305 } 306 } 307 308 /* 309 * EOI an interrupt at the source. There are several methods 310 * to do this depending on the HW version and source type 311 */ 312 static void xive_do_source_eoi(u32 hw_irq, struct xive_irq_data *xd) 313 { 314 /* If the XIVE supports the new "store EOI facility, use it */ 315 if (xd->flags & XIVE_IRQ_FLAG_STORE_EOI) 316 xive_esb_write(xd, XIVE_ESB_STORE_EOI, 0); 317 else if (hw_irq && xd->flags & XIVE_IRQ_FLAG_EOI_FW) { 318 /* 319 * The FW told us to call it. This happens for some 320 * interrupt sources that need additional HW whacking 321 * beyond the ESB manipulation. For example LPC interrupts 322 * on P9 DD1.0 needed a latch to be clared in the LPC bridge 323 * itself. The Firmware will take care of it. 324 */ 325 if (WARN_ON_ONCE(!xive_ops->eoi)) 326 return; 327 xive_ops->eoi(hw_irq); 328 } else { 329 u8 eoi_val; 330 331 /* 332 * Otherwise for EOI, we use the special MMIO that does 333 * a clear of both P and Q and returns the old Q, 334 * except for LSIs where we use the "EOI cycle" special 335 * load. 336 * 337 * This allows us to then do a re-trigger if Q was set 338 * rather than synthesizing an interrupt in software 339 * 340 * For LSIs the HW EOI cycle is used rather than PQ bits, 341 * as they are automatically re-triggred in HW when still 342 * pending. 343 */ 344 if (xd->flags & XIVE_IRQ_FLAG_LSI) 345 xive_esb_read(xd, XIVE_ESB_LOAD_EOI); 346 else { 347 eoi_val = xive_esb_read(xd, XIVE_ESB_SET_PQ_00); 348 DBG_VERBOSE("eoi_val=%x\n", eoi_val); 349 350 /* Re-trigger if needed */ 351 if ((eoi_val & XIVE_ESB_VAL_Q) && xd->trig_mmio) 352 out_be64(xd->trig_mmio, 0); 353 } 354 } 355 } 356 357 /* irq_chip eoi callback */ 358 static void xive_irq_eoi(struct irq_data *d) 359 { 360 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 361 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 362 363 DBG_VERBOSE("eoi_irq: irq=%d [0x%lx] pending=%02x\n", 364 d->irq, irqd_to_hwirq(d), xc->pending_prio); 365 366 /* 367 * EOI the source if it hasn't been disabled and hasn't 368 * been passed-through to a KVM guest 369 */ 370 if (!irqd_irq_disabled(d) && !irqd_is_forwarded_to_vcpu(d) && 371 !(xd->flags & XIVE_IRQ_NO_EOI)) 372 xive_do_source_eoi(irqd_to_hwirq(d), xd); 373 374 /* 375 * Clear saved_p to indicate that it's no longer occupying 376 * a queue slot on the target queue 377 */ 378 xd->saved_p = false; 379 380 /* Check for more work in the queue */ 381 xive_do_queue_eoi(xc); 382 } 383 384 /* 385 * Helper used to mask and unmask an interrupt source. This 386 * is only called for normal interrupts that do not require 387 * masking/unmasking via firmware. 388 */ 389 static void xive_do_source_set_mask(struct xive_irq_data *xd, 390 bool mask) 391 { 392 u64 val; 393 394 /* 395 * If the interrupt had P set, it may be in a queue. 396 * 397 * We need to make sure we don't re-enable it until it 398 * has been fetched from that queue and EOId. We keep 399 * a copy of that P state and use it to restore the 400 * ESB accordingly on unmask. 401 */ 402 if (mask) { 403 val = xive_esb_read(xd, XIVE_ESB_SET_PQ_01); 404 xd->saved_p = !!(val & XIVE_ESB_VAL_P); 405 } else if (xd->saved_p) 406 xive_esb_read(xd, XIVE_ESB_SET_PQ_10); 407 else 408 xive_esb_read(xd, XIVE_ESB_SET_PQ_00); 409 } 410 411 /* 412 * Try to chose "cpu" as a new interrupt target. Increments 413 * the queue accounting for that target if it's not already 414 * full. 415 */ 416 static bool xive_try_pick_target(int cpu) 417 { 418 struct xive_cpu *xc = per_cpu(xive_cpu, cpu); 419 struct xive_q *q = &xc->queue[xive_irq_priority]; 420 int max; 421 422 /* 423 * Calculate max number of interrupts in that queue. 424 * 425 * We leave a gap of 1 just in case... 426 */ 427 max = (q->msk + 1) - 1; 428 return !!atomic_add_unless(&q->count, 1, max); 429 } 430 431 /* 432 * Un-account an interrupt for a target CPU. We don't directly 433 * decrement q->count since the interrupt might still be present 434 * in the queue. 435 * 436 * Instead increment a separate counter "pending_count" which 437 * will be substracted from "count" later when that CPU observes 438 * the queue to be empty. 439 */ 440 static void xive_dec_target_count(int cpu) 441 { 442 struct xive_cpu *xc = per_cpu(xive_cpu, cpu); 443 struct xive_q *q = &xc->queue[xive_irq_priority]; 444 445 if (WARN_ON(cpu < 0 || !xc)) { 446 pr_err("%s: cpu=%d xc=%p\n", __func__, cpu, xc); 447 return; 448 } 449 450 /* 451 * We increment the "pending count" which will be used 452 * to decrement the target queue count whenever it's next 453 * processed and found empty. This ensure that we don't 454 * decrement while we still have the interrupt there 455 * occupying a slot. 456 */ 457 atomic_inc(&q->pending_count); 458 } 459 460 /* Find a tentative CPU target in a CPU mask */ 461 static int xive_find_target_in_mask(const struct cpumask *mask, 462 unsigned int fuzz) 463 { 464 int cpu, first, num, i; 465 466 /* Pick up a starting point CPU in the mask based on fuzz */ 467 num = min_t(int, cpumask_weight(mask), nr_cpu_ids); 468 first = fuzz % num; 469 470 /* Locate it */ 471 cpu = cpumask_first(mask); 472 for (i = 0; i < first && cpu < nr_cpu_ids; i++) 473 cpu = cpumask_next(cpu, mask); 474 475 /* Sanity check */ 476 if (WARN_ON(cpu >= nr_cpu_ids)) 477 cpu = cpumask_first(cpu_online_mask); 478 479 /* Remember first one to handle wrap-around */ 480 first = cpu; 481 482 /* 483 * Now go through the entire mask until we find a valid 484 * target. 485 */ 486 for (;;) { 487 /* 488 * We re-check online as the fallback case passes us 489 * an untested affinity mask 490 */ 491 if (cpu_online(cpu) && xive_try_pick_target(cpu)) 492 return cpu; 493 cpu = cpumask_next(cpu, mask); 494 if (cpu == first) 495 break; 496 /* Wrap around */ 497 if (cpu >= nr_cpu_ids) 498 cpu = cpumask_first(mask); 499 } 500 return -1; 501 } 502 503 /* 504 * Pick a target CPU for an interrupt. This is done at 505 * startup or if the affinity is changed in a way that 506 * invalidates the current target. 507 */ 508 static int xive_pick_irq_target(struct irq_data *d, 509 const struct cpumask *affinity) 510 { 511 static unsigned int fuzz; 512 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 513 cpumask_var_t mask; 514 int cpu = -1; 515 516 /* 517 * If we have chip IDs, first we try to build a mask of 518 * CPUs matching the CPU and find a target in there 519 */ 520 if (xd->src_chip != XIVE_INVALID_CHIP_ID && 521 zalloc_cpumask_var(&mask, GFP_ATOMIC)) { 522 /* Build a mask of matching chip IDs */ 523 for_each_cpu_and(cpu, affinity, cpu_online_mask) { 524 struct xive_cpu *xc = per_cpu(xive_cpu, cpu); 525 if (xc->chip_id == xd->src_chip) 526 cpumask_set_cpu(cpu, mask); 527 } 528 /* Try to find a target */ 529 if (cpumask_empty(mask)) 530 cpu = -1; 531 else 532 cpu = xive_find_target_in_mask(mask, fuzz++); 533 free_cpumask_var(mask); 534 if (cpu >= 0) 535 return cpu; 536 fuzz--; 537 } 538 539 /* No chip IDs, fallback to using the affinity mask */ 540 return xive_find_target_in_mask(affinity, fuzz++); 541 } 542 543 static unsigned int xive_irq_startup(struct irq_data *d) 544 { 545 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 546 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 547 int target, rc; 548 549 pr_devel("xive_irq_startup: irq %d [0x%x] data @%p\n", 550 d->irq, hw_irq, d); 551 552 #ifdef CONFIG_PCI_MSI 553 /* 554 * The generic MSI code returns with the interrupt disabled on the 555 * card, using the MSI mask bits. Firmware doesn't appear to unmask 556 * at that level, so we do it here by hand. 557 */ 558 if (irq_data_get_msi_desc(d)) 559 pci_msi_unmask_irq(d); 560 #endif 561 562 /* Pick a target */ 563 target = xive_pick_irq_target(d, irq_data_get_affinity_mask(d)); 564 if (target == XIVE_INVALID_TARGET) { 565 /* Try again breaking affinity */ 566 target = xive_pick_irq_target(d, cpu_online_mask); 567 if (target == XIVE_INVALID_TARGET) 568 return -ENXIO; 569 pr_warn("irq %d started with broken affinity\n", d->irq); 570 } 571 572 /* Sanity check */ 573 if (WARN_ON(target == XIVE_INVALID_TARGET || 574 target >= nr_cpu_ids)) 575 target = smp_processor_id(); 576 577 xd->target = target; 578 579 /* 580 * Configure the logical number to be the Linux IRQ number 581 * and set the target queue 582 */ 583 rc = xive_ops->configure_irq(hw_irq, 584 get_hard_smp_processor_id(target), 585 xive_irq_priority, d->irq); 586 if (rc) 587 return rc; 588 589 /* Unmask the ESB */ 590 xive_do_source_set_mask(xd, false); 591 592 return 0; 593 } 594 595 static void xive_irq_shutdown(struct irq_data *d) 596 { 597 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 598 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 599 600 pr_devel("xive_irq_shutdown: irq %d [0x%x] data @%p\n", 601 d->irq, hw_irq, d); 602 603 if (WARN_ON(xd->target == XIVE_INVALID_TARGET)) 604 return; 605 606 /* Mask the interrupt at the source */ 607 xive_do_source_set_mask(xd, true); 608 609 /* 610 * The above may have set saved_p. We clear it otherwise it 611 * will prevent re-enabling later on. It is ok to forget the 612 * fact that the interrupt might be in a queue because we are 613 * accounting that already in xive_dec_target_count() and will 614 * be re-routing it to a new queue with proper accounting when 615 * it's started up again 616 */ 617 xd->saved_p = false; 618 619 /* 620 * Mask the interrupt in HW in the IVT/EAS and set the number 621 * to be the "bad" IRQ number 622 */ 623 xive_ops->configure_irq(hw_irq, 624 get_hard_smp_processor_id(xd->target), 625 0xff, XIVE_BAD_IRQ); 626 627 xive_dec_target_count(xd->target); 628 xd->target = XIVE_INVALID_TARGET; 629 } 630 631 static void xive_irq_unmask(struct irq_data *d) 632 { 633 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 634 635 pr_devel("xive_irq_unmask: irq %d data @%p\n", d->irq, xd); 636 637 /* 638 * This is a workaround for PCI LSI problems on P9, for 639 * these, we call FW to set the mask. The problems might 640 * be fixed by P9 DD2.0, if that is the case, firmware 641 * will no longer set that flag. 642 */ 643 if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) { 644 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 645 xive_ops->configure_irq(hw_irq, 646 get_hard_smp_processor_id(xd->target), 647 xive_irq_priority, d->irq); 648 return; 649 } 650 651 xive_do_source_set_mask(xd, false); 652 } 653 654 static void xive_irq_mask(struct irq_data *d) 655 { 656 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 657 658 pr_devel("xive_irq_mask: irq %d data @%p\n", d->irq, xd); 659 660 /* 661 * This is a workaround for PCI LSI problems on P9, for 662 * these, we call OPAL to set the mask. The problems might 663 * be fixed by P9 DD2.0, if that is the case, firmware 664 * will no longer set that flag. 665 */ 666 if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) { 667 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 668 xive_ops->configure_irq(hw_irq, 669 get_hard_smp_processor_id(xd->target), 670 0xff, d->irq); 671 return; 672 } 673 674 xive_do_source_set_mask(xd, true); 675 } 676 677 static int xive_irq_set_affinity(struct irq_data *d, 678 const struct cpumask *cpumask, 679 bool force) 680 { 681 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 682 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 683 u32 target, old_target; 684 int rc = 0; 685 686 pr_devel("xive_irq_set_affinity: irq %d\n", d->irq); 687 688 /* Is this valid ? */ 689 if (cpumask_any_and(cpumask, cpu_online_mask) >= nr_cpu_ids) 690 return -EINVAL; 691 692 /* Don't do anything if the interrupt isn't started */ 693 if (!irqd_is_started(d)) 694 return IRQ_SET_MASK_OK; 695 696 /* 697 * If existing target is already in the new mask, and is 698 * online then do nothing. 699 */ 700 if (xd->target != XIVE_INVALID_TARGET && 701 cpu_online(xd->target) && 702 cpumask_test_cpu(xd->target, cpumask)) 703 return IRQ_SET_MASK_OK; 704 705 /* Pick a new target */ 706 target = xive_pick_irq_target(d, cpumask); 707 708 /* No target found */ 709 if (target == XIVE_INVALID_TARGET) 710 return -ENXIO; 711 712 /* Sanity check */ 713 if (WARN_ON(target >= nr_cpu_ids)) 714 target = smp_processor_id(); 715 716 old_target = xd->target; 717 718 /* 719 * Only configure the irq if it's not currently passed-through to 720 * a KVM guest 721 */ 722 if (!irqd_is_forwarded_to_vcpu(d)) 723 rc = xive_ops->configure_irq(hw_irq, 724 get_hard_smp_processor_id(target), 725 xive_irq_priority, d->irq); 726 if (rc < 0) { 727 pr_err("Error %d reconfiguring irq %d\n", rc, d->irq); 728 return rc; 729 } 730 731 pr_devel(" target: 0x%x\n", target); 732 xd->target = target; 733 734 /* Give up previous target */ 735 if (old_target != XIVE_INVALID_TARGET) 736 xive_dec_target_count(old_target); 737 738 return IRQ_SET_MASK_OK; 739 } 740 741 static int xive_irq_set_type(struct irq_data *d, unsigned int flow_type) 742 { 743 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 744 745 /* 746 * We only support these. This has really no effect other than setting 747 * the corresponding descriptor bits mind you but those will in turn 748 * affect the resend function when re-enabling an edge interrupt. 749 * 750 * Set set the default to edge as explained in map(). 751 */ 752 if (flow_type == IRQ_TYPE_DEFAULT || flow_type == IRQ_TYPE_NONE) 753 flow_type = IRQ_TYPE_EDGE_RISING; 754 755 if (flow_type != IRQ_TYPE_EDGE_RISING && 756 flow_type != IRQ_TYPE_LEVEL_LOW) 757 return -EINVAL; 758 759 irqd_set_trigger_type(d, flow_type); 760 761 /* 762 * Double check it matches what the FW thinks 763 * 764 * NOTE: We don't know yet if the PAPR interface will provide 765 * the LSI vs MSI information apart from the device-tree so 766 * this check might have to move into an optional backend call 767 * that is specific to the native backend 768 */ 769 if ((flow_type == IRQ_TYPE_LEVEL_LOW) != 770 !!(xd->flags & XIVE_IRQ_FLAG_LSI)) { 771 pr_warn("Interrupt %d (HW 0x%x) type mismatch, Linux says %s, FW says %s\n", 772 d->irq, (u32)irqd_to_hwirq(d), 773 (flow_type == IRQ_TYPE_LEVEL_LOW) ? "Level" : "Edge", 774 (xd->flags & XIVE_IRQ_FLAG_LSI) ? "Level" : "Edge"); 775 } 776 777 return IRQ_SET_MASK_OK_NOCOPY; 778 } 779 780 static int xive_irq_retrigger(struct irq_data *d) 781 { 782 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 783 784 /* This should be only for MSIs */ 785 if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI)) 786 return 0; 787 788 /* 789 * To perform a retrigger, we first set the PQ bits to 790 * 11, then perform an EOI. 791 */ 792 xive_esb_read(xd, XIVE_ESB_SET_PQ_11); 793 794 /* 795 * Note: We pass "0" to the hw_irq argument in order to 796 * avoid calling into the backend EOI code which we don't 797 * want to do in the case of a re-trigger. Backends typically 798 * only do EOI for LSIs anyway. 799 */ 800 xive_do_source_eoi(0, xd); 801 802 return 1; 803 } 804 805 static int xive_irq_set_vcpu_affinity(struct irq_data *d, void *state) 806 { 807 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 808 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 809 int rc; 810 u8 pq; 811 812 /* 813 * We only support this on interrupts that do not require 814 * firmware calls for masking and unmasking 815 */ 816 if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) 817 return -EIO; 818 819 /* 820 * This is called by KVM with state non-NULL for enabling 821 * pass-through or NULL for disabling it 822 */ 823 if (state) { 824 irqd_set_forwarded_to_vcpu(d); 825 826 /* Set it to PQ=10 state to prevent further sends */ 827 pq = xive_esb_read(xd, XIVE_ESB_SET_PQ_10); 828 829 /* No target ? nothing to do */ 830 if (xd->target == XIVE_INVALID_TARGET) { 831 /* 832 * An untargetted interrupt should have been 833 * also masked at the source 834 */ 835 WARN_ON(pq & 2); 836 837 return 0; 838 } 839 840 /* 841 * If P was set, adjust state to PQ=11 to indicate 842 * that a resend is needed for the interrupt to reach 843 * the guest. Also remember the value of P. 844 * 845 * This also tells us that it's in flight to a host queue 846 * or has already been fetched but hasn't been EOIed yet 847 * by the host. This it's potentially using up a host 848 * queue slot. This is important to know because as long 849 * as this is the case, we must not hard-unmask it when 850 * "returning" that interrupt to the host. 851 * 852 * This saved_p is cleared by the host EOI, when we know 853 * for sure the queue slot is no longer in use. 854 */ 855 if (pq & 2) { 856 pq = xive_esb_read(xd, XIVE_ESB_SET_PQ_11); 857 xd->saved_p = true; 858 859 /* 860 * Sync the XIVE source HW to ensure the interrupt 861 * has gone through the EAS before we change its 862 * target to the guest. That should guarantee us 863 * that we *will* eventually get an EOI for it on 864 * the host. Otherwise there would be a small window 865 * for P to be seen here but the interrupt going 866 * to the guest queue. 867 */ 868 if (xive_ops->sync_source) 869 xive_ops->sync_source(hw_irq); 870 } else 871 xd->saved_p = false; 872 } else { 873 irqd_clr_forwarded_to_vcpu(d); 874 875 /* No host target ? hard mask and return */ 876 if (xd->target == XIVE_INVALID_TARGET) { 877 xive_do_source_set_mask(xd, true); 878 return 0; 879 } 880 881 /* 882 * Sync the XIVE source HW to ensure the interrupt 883 * has gone through the EAS before we change its 884 * target to the host. 885 */ 886 if (xive_ops->sync_source) 887 xive_ops->sync_source(hw_irq); 888 889 /* 890 * By convention we are called with the interrupt in 891 * a PQ=10 or PQ=11 state, ie, it won't fire and will 892 * have latched in Q whether there's a pending HW 893 * interrupt or not. 894 * 895 * First reconfigure the target. 896 */ 897 rc = xive_ops->configure_irq(hw_irq, 898 get_hard_smp_processor_id(xd->target), 899 xive_irq_priority, d->irq); 900 if (rc) 901 return rc; 902 903 /* 904 * Then if saved_p is not set, effectively re-enable the 905 * interrupt with an EOI. If it is set, we know there is 906 * still a message in a host queue somewhere that will be 907 * EOId eventually. 908 * 909 * Note: We don't check irqd_irq_disabled(). Effectively, 910 * we *will* let the irq get through even if masked if the 911 * HW is still firing it in order to deal with the whole 912 * saved_p business properly. If the interrupt triggers 913 * while masked, the generic code will re-mask it anyway. 914 */ 915 if (!xd->saved_p) 916 xive_do_source_eoi(hw_irq, xd); 917 918 } 919 return 0; 920 } 921 922 static struct irq_chip xive_irq_chip = { 923 .name = "XIVE-IRQ", 924 .irq_startup = xive_irq_startup, 925 .irq_shutdown = xive_irq_shutdown, 926 .irq_eoi = xive_irq_eoi, 927 .irq_mask = xive_irq_mask, 928 .irq_unmask = xive_irq_unmask, 929 .irq_set_affinity = xive_irq_set_affinity, 930 .irq_set_type = xive_irq_set_type, 931 .irq_retrigger = xive_irq_retrigger, 932 .irq_set_vcpu_affinity = xive_irq_set_vcpu_affinity, 933 }; 934 935 bool is_xive_irq(struct irq_chip *chip) 936 { 937 return chip == &xive_irq_chip; 938 } 939 EXPORT_SYMBOL_GPL(is_xive_irq); 940 941 void xive_cleanup_irq_data(struct xive_irq_data *xd) 942 { 943 if (xd->eoi_mmio) { 944 iounmap(xd->eoi_mmio); 945 if (xd->eoi_mmio == xd->trig_mmio) 946 xd->trig_mmio = NULL; 947 xd->eoi_mmio = NULL; 948 } 949 if (xd->trig_mmio) { 950 iounmap(xd->trig_mmio); 951 xd->trig_mmio = NULL; 952 } 953 } 954 EXPORT_SYMBOL_GPL(xive_cleanup_irq_data); 955 956 static int xive_irq_alloc_data(unsigned int virq, irq_hw_number_t hw) 957 { 958 struct xive_irq_data *xd; 959 int rc; 960 961 xd = kzalloc(sizeof(struct xive_irq_data), GFP_KERNEL); 962 if (!xd) 963 return -ENOMEM; 964 rc = xive_ops->populate_irq_data(hw, xd); 965 if (rc) { 966 kfree(xd); 967 return rc; 968 } 969 xd->target = XIVE_INVALID_TARGET; 970 irq_set_handler_data(virq, xd); 971 972 return 0; 973 } 974 975 static void xive_irq_free_data(unsigned int virq) 976 { 977 struct xive_irq_data *xd = irq_get_handler_data(virq); 978 979 if (!xd) 980 return; 981 irq_set_handler_data(virq, NULL); 982 xive_cleanup_irq_data(xd); 983 kfree(xd); 984 } 985 986 #ifdef CONFIG_SMP 987 988 static void xive_cause_ipi(int cpu) 989 { 990 struct xive_cpu *xc; 991 struct xive_irq_data *xd; 992 993 xc = per_cpu(xive_cpu, cpu); 994 995 DBG_VERBOSE("IPI CPU %d -> %d (HW IRQ 0x%x)\n", 996 smp_processor_id(), cpu, xc->hw_ipi); 997 998 xd = &xc->ipi_data; 999 if (WARN_ON(!xd->trig_mmio)) 1000 return; 1001 out_be64(xd->trig_mmio, 0); 1002 } 1003 1004 static irqreturn_t xive_muxed_ipi_action(int irq, void *dev_id) 1005 { 1006 return smp_ipi_demux(); 1007 } 1008 1009 static void xive_ipi_eoi(struct irq_data *d) 1010 { 1011 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 1012 1013 /* Handle possible race with unplug and drop stale IPIs */ 1014 if (!xc) 1015 return; 1016 1017 DBG_VERBOSE("IPI eoi: irq=%d [0x%lx] (HW IRQ 0x%x) pending=%02x\n", 1018 d->irq, irqd_to_hwirq(d), xc->hw_ipi, xc->pending_prio); 1019 1020 xive_do_source_eoi(xc->hw_ipi, &xc->ipi_data); 1021 xive_do_queue_eoi(xc); 1022 } 1023 1024 static void xive_ipi_do_nothing(struct irq_data *d) 1025 { 1026 /* 1027 * Nothing to do, we never mask/unmask IPIs, but the callback 1028 * has to exist for the struct irq_chip. 1029 */ 1030 } 1031 1032 static struct irq_chip xive_ipi_chip = { 1033 .name = "XIVE-IPI", 1034 .irq_eoi = xive_ipi_eoi, 1035 .irq_mask = xive_ipi_do_nothing, 1036 .irq_unmask = xive_ipi_do_nothing, 1037 }; 1038 1039 static void __init xive_request_ipi(void) 1040 { 1041 unsigned int virq; 1042 1043 /* 1044 * Initialization failed, move on, we might manage to 1045 * reach the point where we display our errors before 1046 * the system falls appart 1047 */ 1048 if (!xive_irq_domain) 1049 return; 1050 1051 /* Initialize it */ 1052 virq = irq_create_mapping(xive_irq_domain, 0); 1053 xive_ipi_irq = virq; 1054 1055 WARN_ON(request_irq(virq, xive_muxed_ipi_action, 1056 IRQF_PERCPU | IRQF_NO_THREAD, "IPI", NULL)); 1057 } 1058 1059 static int xive_setup_cpu_ipi(unsigned int cpu) 1060 { 1061 struct xive_cpu *xc; 1062 int rc; 1063 1064 pr_debug("Setting up IPI for CPU %d\n", cpu); 1065 1066 xc = per_cpu(xive_cpu, cpu); 1067 1068 /* Check if we are already setup */ 1069 if (xc->hw_ipi != 0) 1070 return 0; 1071 1072 /* Grab an IPI from the backend, this will populate xc->hw_ipi */ 1073 if (xive_ops->get_ipi(cpu, xc)) 1074 return -EIO; 1075 1076 /* 1077 * Populate the IRQ data in the xive_cpu structure and 1078 * configure the HW / enable the IPIs. 1079 */ 1080 rc = xive_ops->populate_irq_data(xc->hw_ipi, &xc->ipi_data); 1081 if (rc) { 1082 pr_err("Failed to populate IPI data on CPU %d\n", cpu); 1083 return -EIO; 1084 } 1085 rc = xive_ops->configure_irq(xc->hw_ipi, 1086 get_hard_smp_processor_id(cpu), 1087 xive_irq_priority, xive_ipi_irq); 1088 if (rc) { 1089 pr_err("Failed to map IPI CPU %d\n", cpu); 1090 return -EIO; 1091 } 1092 pr_devel("CPU %d HW IPI %x, virq %d, trig_mmio=%p\n", cpu, 1093 xc->hw_ipi, xive_ipi_irq, xc->ipi_data.trig_mmio); 1094 1095 /* Unmask it */ 1096 xive_do_source_set_mask(&xc->ipi_data, false); 1097 1098 return 0; 1099 } 1100 1101 static void xive_cleanup_cpu_ipi(unsigned int cpu, struct xive_cpu *xc) 1102 { 1103 /* Disable the IPI and free the IRQ data */ 1104 1105 /* Already cleaned up ? */ 1106 if (xc->hw_ipi == 0) 1107 return; 1108 1109 /* Mask the IPI */ 1110 xive_do_source_set_mask(&xc->ipi_data, true); 1111 1112 /* 1113 * Note: We don't call xive_cleanup_irq_data() to free 1114 * the mappings as this is called from an IPI on kexec 1115 * which is not a safe environment to call iounmap() 1116 */ 1117 1118 /* Deconfigure/mask in the backend */ 1119 xive_ops->configure_irq(xc->hw_ipi, hard_smp_processor_id(), 1120 0xff, xive_ipi_irq); 1121 1122 /* Free the IPIs in the backend */ 1123 xive_ops->put_ipi(cpu, xc); 1124 } 1125 1126 void __init xive_smp_probe(void) 1127 { 1128 smp_ops->cause_ipi = xive_cause_ipi; 1129 1130 /* Register the IPI */ 1131 xive_request_ipi(); 1132 1133 /* Allocate and setup IPI for the boot CPU */ 1134 xive_setup_cpu_ipi(smp_processor_id()); 1135 } 1136 1137 #endif /* CONFIG_SMP */ 1138 1139 static int xive_irq_domain_map(struct irq_domain *h, unsigned int virq, 1140 irq_hw_number_t hw) 1141 { 1142 int rc; 1143 1144 /* 1145 * Mark interrupts as edge sensitive by default so that resend 1146 * actually works. Will fix that up below if needed. 1147 */ 1148 irq_clear_status_flags(virq, IRQ_LEVEL); 1149 1150 #ifdef CONFIG_SMP 1151 /* IPIs are special and come up with HW number 0 */ 1152 if (hw == 0) { 1153 /* 1154 * IPIs are marked per-cpu. We use separate HW interrupts under 1155 * the hood but associated with the same "linux" interrupt 1156 */ 1157 irq_set_chip_and_handler(virq, &xive_ipi_chip, 1158 handle_percpu_irq); 1159 return 0; 1160 } 1161 #endif 1162 1163 rc = xive_irq_alloc_data(virq, hw); 1164 if (rc) 1165 return rc; 1166 1167 irq_set_chip_and_handler(virq, &xive_irq_chip, handle_fasteoi_irq); 1168 1169 return 0; 1170 } 1171 1172 static void xive_irq_domain_unmap(struct irq_domain *d, unsigned int virq) 1173 { 1174 struct irq_data *data = irq_get_irq_data(virq); 1175 unsigned int hw_irq; 1176 1177 /* XXX Assign BAD number */ 1178 if (!data) 1179 return; 1180 hw_irq = (unsigned int)irqd_to_hwirq(data); 1181 if (hw_irq) 1182 xive_irq_free_data(virq); 1183 } 1184 1185 static int xive_irq_domain_xlate(struct irq_domain *h, struct device_node *ct, 1186 const u32 *intspec, unsigned int intsize, 1187 irq_hw_number_t *out_hwirq, unsigned int *out_flags) 1188 1189 { 1190 *out_hwirq = intspec[0]; 1191 1192 /* 1193 * If intsize is at least 2, we look for the type in the second cell, 1194 * we assume the LSB indicates a level interrupt. 1195 */ 1196 if (intsize > 1) { 1197 if (intspec[1] & 1) 1198 *out_flags = IRQ_TYPE_LEVEL_LOW; 1199 else 1200 *out_flags = IRQ_TYPE_EDGE_RISING; 1201 } else 1202 *out_flags = IRQ_TYPE_LEVEL_LOW; 1203 1204 return 0; 1205 } 1206 1207 static int xive_irq_domain_match(struct irq_domain *h, struct device_node *node, 1208 enum irq_domain_bus_token bus_token) 1209 { 1210 return xive_ops->match(node); 1211 } 1212 1213 static const struct irq_domain_ops xive_irq_domain_ops = { 1214 .match = xive_irq_domain_match, 1215 .map = xive_irq_domain_map, 1216 .unmap = xive_irq_domain_unmap, 1217 .xlate = xive_irq_domain_xlate, 1218 }; 1219 1220 static void __init xive_init_host(void) 1221 { 1222 xive_irq_domain = irq_domain_add_nomap(NULL, XIVE_MAX_IRQ, 1223 &xive_irq_domain_ops, NULL); 1224 if (WARN_ON(xive_irq_domain == NULL)) 1225 return; 1226 irq_set_default_host(xive_irq_domain); 1227 } 1228 1229 static void xive_cleanup_cpu_queues(unsigned int cpu, struct xive_cpu *xc) 1230 { 1231 if (xc->queue[xive_irq_priority].qpage) 1232 xive_ops->cleanup_queue(cpu, xc, xive_irq_priority); 1233 } 1234 1235 static int xive_setup_cpu_queues(unsigned int cpu, struct xive_cpu *xc) 1236 { 1237 int rc = 0; 1238 1239 /* We setup 1 queues for now with a 64k page */ 1240 if (!xc->queue[xive_irq_priority].qpage) 1241 rc = xive_ops->setup_queue(cpu, xc, xive_irq_priority); 1242 1243 return rc; 1244 } 1245 1246 static int xive_prepare_cpu(unsigned int cpu) 1247 { 1248 struct xive_cpu *xc; 1249 1250 xc = per_cpu(xive_cpu, cpu); 1251 if (!xc) { 1252 struct device_node *np; 1253 1254 xc = kzalloc_node(sizeof(struct xive_cpu), 1255 GFP_KERNEL, cpu_to_node(cpu)); 1256 if (!xc) 1257 return -ENOMEM; 1258 np = of_get_cpu_node(cpu, NULL); 1259 if (np) 1260 xc->chip_id = of_get_ibm_chip_id(np); 1261 of_node_put(np); 1262 1263 per_cpu(xive_cpu, cpu) = xc; 1264 } 1265 1266 /* Setup EQs if not already */ 1267 return xive_setup_cpu_queues(cpu, xc); 1268 } 1269 1270 static void xive_setup_cpu(void) 1271 { 1272 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 1273 1274 /* The backend might have additional things to do */ 1275 if (xive_ops->setup_cpu) 1276 xive_ops->setup_cpu(smp_processor_id(), xc); 1277 1278 /* Set CPPR to 0xff to enable flow of interrupts */ 1279 xc->cppr = 0xff; 1280 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff); 1281 } 1282 1283 #ifdef CONFIG_SMP 1284 void xive_smp_setup_cpu(void) 1285 { 1286 pr_devel("SMP setup CPU %d\n", smp_processor_id()); 1287 1288 /* This will have already been done on the boot CPU */ 1289 if (smp_processor_id() != boot_cpuid) 1290 xive_setup_cpu(); 1291 1292 } 1293 1294 int xive_smp_prepare_cpu(unsigned int cpu) 1295 { 1296 int rc; 1297 1298 /* Allocate per-CPU data and queues */ 1299 rc = xive_prepare_cpu(cpu); 1300 if (rc) 1301 return rc; 1302 1303 /* Allocate and setup IPI for the new CPU */ 1304 return xive_setup_cpu_ipi(cpu); 1305 } 1306 1307 #ifdef CONFIG_HOTPLUG_CPU 1308 static void xive_flush_cpu_queue(unsigned int cpu, struct xive_cpu *xc) 1309 { 1310 u32 irq; 1311 1312 /* We assume local irqs are disabled */ 1313 WARN_ON(!irqs_disabled()); 1314 1315 /* Check what's already in the CPU queue */ 1316 while ((irq = xive_scan_interrupts(xc, false)) != 0) { 1317 /* 1318 * We need to re-route that interrupt to its new destination. 1319 * First get and lock the descriptor 1320 */ 1321 struct irq_desc *desc = irq_to_desc(irq); 1322 struct irq_data *d = irq_desc_get_irq_data(desc); 1323 struct xive_irq_data *xd; 1324 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 1325 1326 /* 1327 * Ignore anything that isn't a XIVE irq and ignore 1328 * IPIs, so can just be dropped. 1329 */ 1330 if (d->domain != xive_irq_domain || hw_irq == 0) 1331 continue; 1332 1333 /* 1334 * The IRQ should have already been re-routed, it's just a 1335 * stale in the old queue, so re-trigger it in order to make 1336 * it reach is new destination. 1337 */ 1338 #ifdef DEBUG_FLUSH 1339 pr_info("CPU %d: Got irq %d while offline, re-sending...\n", 1340 cpu, irq); 1341 #endif 1342 raw_spin_lock(&desc->lock); 1343 xd = irq_desc_get_handler_data(desc); 1344 1345 /* 1346 * For LSIs, we EOI, this will cause a resend if it's 1347 * still asserted. Otherwise do an MSI retrigger. 1348 */ 1349 if (xd->flags & XIVE_IRQ_FLAG_LSI) 1350 xive_do_source_eoi(irqd_to_hwirq(d), xd); 1351 else 1352 xive_irq_retrigger(d); 1353 1354 raw_spin_unlock(&desc->lock); 1355 } 1356 } 1357 1358 void xive_smp_disable_cpu(void) 1359 { 1360 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 1361 unsigned int cpu = smp_processor_id(); 1362 1363 /* Migrate interrupts away from the CPU */ 1364 irq_migrate_all_off_this_cpu(); 1365 1366 /* Set CPPR to 0 to disable flow of interrupts */ 1367 xc->cppr = 0; 1368 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0); 1369 1370 /* Flush everything still in the queue */ 1371 xive_flush_cpu_queue(cpu, xc); 1372 1373 /* Re-enable CPPR */ 1374 xc->cppr = 0xff; 1375 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff); 1376 } 1377 1378 void xive_flush_interrupt(void) 1379 { 1380 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 1381 unsigned int cpu = smp_processor_id(); 1382 1383 /* Called if an interrupt occurs while the CPU is hot unplugged */ 1384 xive_flush_cpu_queue(cpu, xc); 1385 } 1386 1387 #endif /* CONFIG_HOTPLUG_CPU */ 1388 1389 #endif /* CONFIG_SMP */ 1390 1391 void xive_teardown_cpu(void) 1392 { 1393 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 1394 unsigned int cpu = smp_processor_id(); 1395 1396 /* Set CPPR to 0 to disable flow of interrupts */ 1397 xc->cppr = 0; 1398 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0); 1399 1400 if (xive_ops->teardown_cpu) 1401 xive_ops->teardown_cpu(cpu, xc); 1402 1403 #ifdef CONFIG_SMP 1404 /* Get rid of IPI */ 1405 xive_cleanup_cpu_ipi(cpu, xc); 1406 #endif 1407 1408 /* Disable and free the queues */ 1409 xive_cleanup_cpu_queues(cpu, xc); 1410 } 1411 1412 void xive_shutdown(void) 1413 { 1414 xive_ops->shutdown(); 1415 } 1416 1417 bool __init xive_core_init(const struct xive_ops *ops, void __iomem *area, u32 offset, 1418 u8 max_prio) 1419 { 1420 xive_tima = area; 1421 xive_tima_offset = offset; 1422 xive_ops = ops; 1423 xive_irq_priority = max_prio; 1424 1425 ppc_md.get_irq = xive_get_irq; 1426 __xive_enabled = true; 1427 1428 pr_devel("Initializing host..\n"); 1429 xive_init_host(); 1430 1431 pr_devel("Initializing boot CPU..\n"); 1432 1433 /* Allocate per-CPU data and queues */ 1434 xive_prepare_cpu(smp_processor_id()); 1435 1436 /* Get ready for interrupts */ 1437 xive_setup_cpu(); 1438 1439 pr_info("Interrupt handling initialized with %s backend\n", 1440 xive_ops->name); 1441 pr_info("Using priority %d for all interrupts\n", max_prio); 1442 1443 return true; 1444 } 1445 1446 __be32 *xive_queue_page_alloc(unsigned int cpu, u32 queue_shift) 1447 { 1448 unsigned int alloc_order; 1449 struct page *pages; 1450 __be32 *qpage; 1451 1452 alloc_order = xive_alloc_order(queue_shift); 1453 pages = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, alloc_order); 1454 if (!pages) 1455 return ERR_PTR(-ENOMEM); 1456 qpage = (__be32 *)page_address(pages); 1457 memset(qpage, 0, 1 << queue_shift); 1458 1459 return qpage; 1460 } 1461 1462 static int __init xive_off(char *arg) 1463 { 1464 xive_cmdline_disabled = true; 1465 return 0; 1466 } 1467 __setup("xive=off", xive_off); 1468