xref: /openbmc/linux/arch/powerpc/sysdev/xive/common.c (revision 292145a6)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2016,2017 IBM Corporation.
4  */
5 
6 #define pr_fmt(fmt) "xive: " fmt
7 
8 #include <linux/types.h>
9 #include <linux/threads.h>
10 #include <linux/kernel.h>
11 #include <linux/irq.h>
12 #include <linux/debugfs.h>
13 #include <linux/smp.h>
14 #include <linux/interrupt.h>
15 #include <linux/seq_file.h>
16 #include <linux/init.h>
17 #include <linux/cpu.h>
18 #include <linux/of.h>
19 #include <linux/slab.h>
20 #include <linux/spinlock.h>
21 #include <linux/msi.h>
22 #include <linux/vmalloc.h>
23 
24 #include <asm/debugfs.h>
25 #include <asm/prom.h>
26 #include <asm/io.h>
27 #include <asm/smp.h>
28 #include <asm/machdep.h>
29 #include <asm/irq.h>
30 #include <asm/errno.h>
31 #include <asm/xive.h>
32 #include <asm/xive-regs.h>
33 #include <asm/xmon.h>
34 
35 #include "xive-internal.h"
36 
37 #undef DEBUG_FLUSH
38 #undef DEBUG_ALL
39 
40 #ifdef DEBUG_ALL
41 #define DBG_VERBOSE(fmt, ...)	pr_devel("cpu %d - " fmt, \
42 					 smp_processor_id(), ## __VA_ARGS__)
43 #else
44 #define DBG_VERBOSE(fmt...)	do { } while(0)
45 #endif
46 
47 bool __xive_enabled;
48 EXPORT_SYMBOL_GPL(__xive_enabled);
49 bool xive_cmdline_disabled;
50 
51 /* We use only one priority for now */
52 static u8 xive_irq_priority;
53 
54 /* TIMA exported to KVM */
55 void __iomem *xive_tima;
56 EXPORT_SYMBOL_GPL(xive_tima);
57 u32 xive_tima_offset;
58 
59 /* Backend ops */
60 static const struct xive_ops *xive_ops;
61 
62 /* Our global interrupt domain */
63 static struct irq_domain *xive_irq_domain;
64 
65 #ifdef CONFIG_SMP
66 /* The IPIs use the same logical irq number when on the same chip */
67 static struct xive_ipi_desc {
68 	unsigned int irq;
69 	char name[16];
70 } *xive_ipis;
71 
72 /*
73  * Use early_cpu_to_node() for hot-plugged CPUs
74  */
75 static unsigned int xive_ipi_cpu_to_irq(unsigned int cpu)
76 {
77 	return xive_ipis[early_cpu_to_node(cpu)].irq;
78 }
79 #endif
80 
81 /* Xive state for each CPU */
82 static DEFINE_PER_CPU(struct xive_cpu *, xive_cpu);
83 
84 /* An invalid CPU target */
85 #define XIVE_INVALID_TARGET	(-1)
86 
87 /*
88  * Read the next entry in a queue, return its content if it's valid
89  * or 0 if there is no new entry.
90  *
91  * The queue pointer is moved forward unless "just_peek" is set
92  */
93 static u32 xive_read_eq(struct xive_q *q, bool just_peek)
94 {
95 	u32 cur;
96 
97 	if (!q->qpage)
98 		return 0;
99 	cur = be32_to_cpup(q->qpage + q->idx);
100 
101 	/* Check valid bit (31) vs current toggle polarity */
102 	if ((cur >> 31) == q->toggle)
103 		return 0;
104 
105 	/* If consuming from the queue ... */
106 	if (!just_peek) {
107 		/* Next entry */
108 		q->idx = (q->idx + 1) & q->msk;
109 
110 		/* Wrap around: flip valid toggle */
111 		if (q->idx == 0)
112 			q->toggle ^= 1;
113 	}
114 	/* Mask out the valid bit (31) */
115 	return cur & 0x7fffffff;
116 }
117 
118 /*
119  * Scans all the queue that may have interrupts in them
120  * (based on "pending_prio") in priority order until an
121  * interrupt is found or all the queues are empty.
122  *
123  * Then updates the CPPR (Current Processor Priority
124  * Register) based on the most favored interrupt found
125  * (0xff if none) and return what was found (0 if none).
126  *
127  * If just_peek is set, return the most favored pending
128  * interrupt if any but don't update the queue pointers.
129  *
130  * Note: This function can operate generically on any number
131  * of queues (up to 8). The current implementation of the XIVE
132  * driver only uses a single queue however.
133  *
134  * Note2: This will also "flush" "the pending_count" of a queue
135  * into the "count" when that queue is observed to be empty.
136  * This is used to keep track of the amount of interrupts
137  * targetting a queue. When an interrupt is moved away from
138  * a queue, we only decrement that queue count once the queue
139  * has been observed empty to avoid races.
140  */
141 static u32 xive_scan_interrupts(struct xive_cpu *xc, bool just_peek)
142 {
143 	u32 irq = 0;
144 	u8 prio = 0;
145 
146 	/* Find highest pending priority */
147 	while (xc->pending_prio != 0) {
148 		struct xive_q *q;
149 
150 		prio = ffs(xc->pending_prio) - 1;
151 		DBG_VERBOSE("scan_irq: trying prio %d\n", prio);
152 
153 		/* Try to fetch */
154 		irq = xive_read_eq(&xc->queue[prio], just_peek);
155 
156 		/* Found something ? That's it */
157 		if (irq) {
158 			if (just_peek || irq_to_desc(irq))
159 				break;
160 			/*
161 			 * We should never get here; if we do then we must
162 			 * have failed to synchronize the interrupt properly
163 			 * when shutting it down.
164 			 */
165 			pr_crit("xive: got interrupt %d without descriptor, dropping\n",
166 				irq);
167 			WARN_ON(1);
168 			continue;
169 		}
170 
171 		/* Clear pending bits */
172 		xc->pending_prio &= ~(1 << prio);
173 
174 		/*
175 		 * Check if the queue count needs adjusting due to
176 		 * interrupts being moved away. See description of
177 		 * xive_dec_target_count()
178 		 */
179 		q = &xc->queue[prio];
180 		if (atomic_read(&q->pending_count)) {
181 			int p = atomic_xchg(&q->pending_count, 0);
182 			if (p) {
183 				WARN_ON(p > atomic_read(&q->count));
184 				atomic_sub(p, &q->count);
185 			}
186 		}
187 	}
188 
189 	/* If nothing was found, set CPPR to 0xff */
190 	if (irq == 0)
191 		prio = 0xff;
192 
193 	/* Update HW CPPR to match if necessary */
194 	if (prio != xc->cppr) {
195 		DBG_VERBOSE("scan_irq: adjusting CPPR to %d\n", prio);
196 		xc->cppr = prio;
197 		out_8(xive_tima + xive_tima_offset + TM_CPPR, prio);
198 	}
199 
200 	return irq;
201 }
202 
203 /*
204  * This is used to perform the magic loads from an ESB
205  * described in xive-regs.h
206  */
207 static notrace u8 xive_esb_read(struct xive_irq_data *xd, u32 offset)
208 {
209 	u64 val;
210 
211 	if (offset == XIVE_ESB_SET_PQ_10 && xd->flags & XIVE_IRQ_FLAG_STORE_EOI)
212 		offset |= XIVE_ESB_LD_ST_MO;
213 
214 	if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw)
215 		val = xive_ops->esb_rw(xd->hw_irq, offset, 0, 0);
216 	else
217 		val = in_be64(xd->eoi_mmio + offset);
218 
219 	return (u8)val;
220 }
221 
222 static void xive_esb_write(struct xive_irq_data *xd, u32 offset, u64 data)
223 {
224 	if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw)
225 		xive_ops->esb_rw(xd->hw_irq, offset, data, 1);
226 	else
227 		out_be64(xd->eoi_mmio + offset, data);
228 }
229 
230 #ifdef CONFIG_XMON
231 static notrace void xive_dump_eq(const char *name, struct xive_q *q)
232 {
233 	u32 i0, i1, idx;
234 
235 	if (!q->qpage)
236 		return;
237 	idx = q->idx;
238 	i0 = be32_to_cpup(q->qpage + idx);
239 	idx = (idx + 1) & q->msk;
240 	i1 = be32_to_cpup(q->qpage + idx);
241 	xmon_printf("%s idx=%d T=%d %08x %08x ...", name,
242 		     q->idx, q->toggle, i0, i1);
243 }
244 
245 notrace void xmon_xive_do_dump(int cpu)
246 {
247 	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
248 
249 	xmon_printf("CPU %d:", cpu);
250 	if (xc) {
251 		xmon_printf("pp=%02x CPPR=%02x ", xc->pending_prio, xc->cppr);
252 
253 #ifdef CONFIG_SMP
254 		{
255 			u64 val = xive_esb_read(&xc->ipi_data, XIVE_ESB_GET);
256 
257 			xmon_printf("IPI=0x%08x PQ=%c%c ", xc->hw_ipi,
258 				    val & XIVE_ESB_VAL_P ? 'P' : '-',
259 				    val & XIVE_ESB_VAL_Q ? 'Q' : '-');
260 		}
261 #endif
262 		xive_dump_eq("EQ", &xc->queue[xive_irq_priority]);
263 	}
264 	xmon_printf("\n");
265 }
266 
267 static struct irq_data *xive_get_irq_data(u32 hw_irq)
268 {
269 	unsigned int irq = irq_find_mapping(xive_irq_domain, hw_irq);
270 
271 	return irq ? irq_get_irq_data(irq) : NULL;
272 }
273 
274 int xmon_xive_get_irq_config(u32 hw_irq, struct irq_data *d)
275 {
276 	int rc;
277 	u32 target;
278 	u8 prio;
279 	u32 lirq;
280 
281 	rc = xive_ops->get_irq_config(hw_irq, &target, &prio, &lirq);
282 	if (rc) {
283 		xmon_printf("IRQ 0x%08x : no config rc=%d\n", hw_irq, rc);
284 		return rc;
285 	}
286 
287 	xmon_printf("IRQ 0x%08x : target=0x%x prio=%02x lirq=0x%x ",
288 		    hw_irq, target, prio, lirq);
289 
290 	if (!d)
291 		d = xive_get_irq_data(hw_irq);
292 
293 	if (d) {
294 		struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
295 		u64 val = xive_esb_read(xd, XIVE_ESB_GET);
296 
297 		xmon_printf("flags=%c%c%c PQ=%c%c",
298 			    xd->flags & XIVE_IRQ_FLAG_STORE_EOI ? 'S' : ' ',
299 			    xd->flags & XIVE_IRQ_FLAG_LSI ? 'L' : ' ',
300 			    xd->flags & XIVE_IRQ_FLAG_H_INT_ESB ? 'H' : ' ',
301 			    val & XIVE_ESB_VAL_P ? 'P' : '-',
302 			    val & XIVE_ESB_VAL_Q ? 'Q' : '-');
303 	}
304 
305 	xmon_printf("\n");
306 	return 0;
307 }
308 
309 void xmon_xive_get_irq_all(void)
310 {
311 	unsigned int i;
312 	struct irq_desc *desc;
313 
314 	for_each_irq_desc(i, desc) {
315 		struct irq_data *d = irq_desc_get_irq_data(desc);
316 		unsigned int hwirq = (unsigned int)irqd_to_hwirq(d);
317 
318 		if (d->domain == xive_irq_domain)
319 			xmon_xive_get_irq_config(hwirq, d);
320 	}
321 }
322 
323 #endif /* CONFIG_XMON */
324 
325 static unsigned int xive_get_irq(void)
326 {
327 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
328 	u32 irq;
329 
330 	/*
331 	 * This can be called either as a result of a HW interrupt or
332 	 * as a "replay" because EOI decided there was still something
333 	 * in one of the queues.
334 	 *
335 	 * First we perform an ACK cycle in order to update our mask
336 	 * of pending priorities. This will also have the effect of
337 	 * updating the CPPR to the most favored pending interrupts.
338 	 *
339 	 * In the future, if we have a way to differentiate a first
340 	 * entry (on HW interrupt) from a replay triggered by EOI,
341 	 * we could skip this on replays unless we soft-mask tells us
342 	 * that a new HW interrupt occurred.
343 	 */
344 	xive_ops->update_pending(xc);
345 
346 	DBG_VERBOSE("get_irq: pending=%02x\n", xc->pending_prio);
347 
348 	/* Scan our queue(s) for interrupts */
349 	irq = xive_scan_interrupts(xc, false);
350 
351 	DBG_VERBOSE("get_irq: got irq 0x%x, new pending=0x%02x\n",
352 	    irq, xc->pending_prio);
353 
354 	/* Return pending interrupt if any */
355 	if (irq == XIVE_BAD_IRQ)
356 		return 0;
357 	return irq;
358 }
359 
360 /*
361  * After EOI'ing an interrupt, we need to re-check the queue
362  * to see if another interrupt is pending since multiple
363  * interrupts can coalesce into a single notification to the
364  * CPU.
365  *
366  * If we find that there is indeed more in there, we call
367  * force_external_irq_replay() to make Linux synthetize an
368  * external interrupt on the next call to local_irq_restore().
369  */
370 static void xive_do_queue_eoi(struct xive_cpu *xc)
371 {
372 	if (xive_scan_interrupts(xc, true) != 0) {
373 		DBG_VERBOSE("eoi: pending=0x%02x\n", xc->pending_prio);
374 		force_external_irq_replay();
375 	}
376 }
377 
378 /*
379  * EOI an interrupt at the source. There are several methods
380  * to do this depending on the HW version and source type
381  */
382 static void xive_do_source_eoi(struct xive_irq_data *xd)
383 {
384 	u8 eoi_val;
385 
386 	xd->stale_p = false;
387 
388 	/* If the XIVE supports the new "store EOI facility, use it */
389 	if (xd->flags & XIVE_IRQ_FLAG_STORE_EOI) {
390 		xive_esb_write(xd, XIVE_ESB_STORE_EOI, 0);
391 		return;
392 	}
393 
394 	/*
395 	 * For LSIs, we use the "EOI cycle" special load rather than
396 	 * PQ bits, as they are automatically re-triggered in HW when
397 	 * still pending.
398 	 */
399 	if (xd->flags & XIVE_IRQ_FLAG_LSI) {
400 		xive_esb_read(xd, XIVE_ESB_LOAD_EOI);
401 		return;
402 	}
403 
404 	/*
405 	 * Otherwise, we use the special MMIO that does a clear of
406 	 * both P and Q and returns the old Q. This allows us to then
407 	 * do a re-trigger if Q was set rather than synthesizing an
408 	 * interrupt in software
409 	 */
410 	eoi_val = xive_esb_read(xd, XIVE_ESB_SET_PQ_00);
411 	DBG_VERBOSE("eoi_val=%x\n", eoi_val);
412 
413 	/* Re-trigger if needed */
414 	if ((eoi_val & XIVE_ESB_VAL_Q) && xd->trig_mmio)
415 		out_be64(xd->trig_mmio, 0);
416 }
417 
418 /* irq_chip eoi callback, called with irq descriptor lock held */
419 static void xive_irq_eoi(struct irq_data *d)
420 {
421 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
422 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
423 
424 	DBG_VERBOSE("eoi_irq: irq=%d [0x%lx] pending=%02x\n",
425 		    d->irq, irqd_to_hwirq(d), xc->pending_prio);
426 
427 	/*
428 	 * EOI the source if it hasn't been disabled and hasn't
429 	 * been passed-through to a KVM guest
430 	 */
431 	if (!irqd_irq_disabled(d) && !irqd_is_forwarded_to_vcpu(d) &&
432 	    !(xd->flags & XIVE_IRQ_FLAG_NO_EOI))
433 		xive_do_source_eoi(xd);
434 	else
435 		xd->stale_p = true;
436 
437 	/*
438 	 * Clear saved_p to indicate that it's no longer occupying
439 	 * a queue slot on the target queue
440 	 */
441 	xd->saved_p = false;
442 
443 	/* Check for more work in the queue */
444 	xive_do_queue_eoi(xc);
445 }
446 
447 /*
448  * Helper used to mask and unmask an interrupt source.
449  */
450 static void xive_do_source_set_mask(struct xive_irq_data *xd,
451 				    bool mask)
452 {
453 	u64 val;
454 
455 	/*
456 	 * If the interrupt had P set, it may be in a queue.
457 	 *
458 	 * We need to make sure we don't re-enable it until it
459 	 * has been fetched from that queue and EOId. We keep
460 	 * a copy of that P state and use it to restore the
461 	 * ESB accordingly on unmask.
462 	 */
463 	if (mask) {
464 		val = xive_esb_read(xd, XIVE_ESB_SET_PQ_01);
465 		if (!xd->stale_p && !!(val & XIVE_ESB_VAL_P))
466 			xd->saved_p = true;
467 		xd->stale_p = false;
468 	} else if (xd->saved_p) {
469 		xive_esb_read(xd, XIVE_ESB_SET_PQ_10);
470 		xd->saved_p = false;
471 	} else {
472 		xive_esb_read(xd, XIVE_ESB_SET_PQ_00);
473 		xd->stale_p = false;
474 	}
475 }
476 
477 /*
478  * Try to chose "cpu" as a new interrupt target. Increments
479  * the queue accounting for that target if it's not already
480  * full.
481  */
482 static bool xive_try_pick_target(int cpu)
483 {
484 	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
485 	struct xive_q *q = &xc->queue[xive_irq_priority];
486 	int max;
487 
488 	/*
489 	 * Calculate max number of interrupts in that queue.
490 	 *
491 	 * We leave a gap of 1 just in case...
492 	 */
493 	max = (q->msk + 1) - 1;
494 	return !!atomic_add_unless(&q->count, 1, max);
495 }
496 
497 /*
498  * Un-account an interrupt for a target CPU. We don't directly
499  * decrement q->count since the interrupt might still be present
500  * in the queue.
501  *
502  * Instead increment a separate counter "pending_count" which
503  * will be substracted from "count" later when that CPU observes
504  * the queue to be empty.
505  */
506 static void xive_dec_target_count(int cpu)
507 {
508 	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
509 	struct xive_q *q = &xc->queue[xive_irq_priority];
510 
511 	if (WARN_ON(cpu < 0 || !xc)) {
512 		pr_err("%s: cpu=%d xc=%p\n", __func__, cpu, xc);
513 		return;
514 	}
515 
516 	/*
517 	 * We increment the "pending count" which will be used
518 	 * to decrement the target queue count whenever it's next
519 	 * processed and found empty. This ensure that we don't
520 	 * decrement while we still have the interrupt there
521 	 * occupying a slot.
522 	 */
523 	atomic_inc(&q->pending_count);
524 }
525 
526 /* Find a tentative CPU target in a CPU mask */
527 static int xive_find_target_in_mask(const struct cpumask *mask,
528 				    unsigned int fuzz)
529 {
530 	int cpu, first, num, i;
531 
532 	/* Pick up a starting point CPU in the mask based on  fuzz */
533 	num = min_t(int, cpumask_weight(mask), nr_cpu_ids);
534 	first = fuzz % num;
535 
536 	/* Locate it */
537 	cpu = cpumask_first(mask);
538 	for (i = 0; i < first && cpu < nr_cpu_ids; i++)
539 		cpu = cpumask_next(cpu, mask);
540 
541 	/* Sanity check */
542 	if (WARN_ON(cpu >= nr_cpu_ids))
543 		cpu = cpumask_first(cpu_online_mask);
544 
545 	/* Remember first one to handle wrap-around */
546 	first = cpu;
547 
548 	/*
549 	 * Now go through the entire mask until we find a valid
550 	 * target.
551 	 */
552 	do {
553 		/*
554 		 * We re-check online as the fallback case passes us
555 		 * an untested affinity mask
556 		 */
557 		if (cpu_online(cpu) && xive_try_pick_target(cpu))
558 			return cpu;
559 		cpu = cpumask_next(cpu, mask);
560 		/* Wrap around */
561 		if (cpu >= nr_cpu_ids)
562 			cpu = cpumask_first(mask);
563 	} while (cpu != first);
564 
565 	return -1;
566 }
567 
568 /*
569  * Pick a target CPU for an interrupt. This is done at
570  * startup or if the affinity is changed in a way that
571  * invalidates the current target.
572  */
573 static int xive_pick_irq_target(struct irq_data *d,
574 				const struct cpumask *affinity)
575 {
576 	static unsigned int fuzz;
577 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
578 	cpumask_var_t mask;
579 	int cpu = -1;
580 
581 	/*
582 	 * If we have chip IDs, first we try to build a mask of
583 	 * CPUs matching the CPU and find a target in there
584 	 */
585 	if (xd->src_chip != XIVE_INVALID_CHIP_ID &&
586 		zalloc_cpumask_var(&mask, GFP_ATOMIC)) {
587 		/* Build a mask of matching chip IDs */
588 		for_each_cpu_and(cpu, affinity, cpu_online_mask) {
589 			struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
590 			if (xc->chip_id == xd->src_chip)
591 				cpumask_set_cpu(cpu, mask);
592 		}
593 		/* Try to find a target */
594 		if (cpumask_empty(mask))
595 			cpu = -1;
596 		else
597 			cpu = xive_find_target_in_mask(mask, fuzz++);
598 		free_cpumask_var(mask);
599 		if (cpu >= 0)
600 			return cpu;
601 		fuzz--;
602 	}
603 
604 	/* No chip IDs, fallback to using the affinity mask */
605 	return xive_find_target_in_mask(affinity, fuzz++);
606 }
607 
608 static unsigned int xive_irq_startup(struct irq_data *d)
609 {
610 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
611 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
612 	int target, rc;
613 
614 	xd->saved_p = false;
615 	xd->stale_p = false;
616 	pr_devel("xive_irq_startup: irq %d [0x%x] data @%p\n",
617 		 d->irq, hw_irq, d);
618 
619 	/* Pick a target */
620 	target = xive_pick_irq_target(d, irq_data_get_affinity_mask(d));
621 	if (target == XIVE_INVALID_TARGET) {
622 		/* Try again breaking affinity */
623 		target = xive_pick_irq_target(d, cpu_online_mask);
624 		if (target == XIVE_INVALID_TARGET)
625 			return -ENXIO;
626 		pr_warn("irq %d started with broken affinity\n", d->irq);
627 	}
628 
629 	/* Sanity check */
630 	if (WARN_ON(target == XIVE_INVALID_TARGET ||
631 		    target >= nr_cpu_ids))
632 		target = smp_processor_id();
633 
634 	xd->target = target;
635 
636 	/*
637 	 * Configure the logical number to be the Linux IRQ number
638 	 * and set the target queue
639 	 */
640 	rc = xive_ops->configure_irq(hw_irq,
641 				     get_hard_smp_processor_id(target),
642 				     xive_irq_priority, d->irq);
643 	if (rc)
644 		return rc;
645 
646 	/* Unmask the ESB */
647 	xive_do_source_set_mask(xd, false);
648 
649 	return 0;
650 }
651 
652 /* called with irq descriptor lock held */
653 static void xive_irq_shutdown(struct irq_data *d)
654 {
655 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
656 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
657 
658 	pr_devel("xive_irq_shutdown: irq %d [0x%x] data @%p\n",
659 		 d->irq, hw_irq, d);
660 
661 	if (WARN_ON(xd->target == XIVE_INVALID_TARGET))
662 		return;
663 
664 	/* Mask the interrupt at the source */
665 	xive_do_source_set_mask(xd, true);
666 
667 	/*
668 	 * Mask the interrupt in HW in the IVT/EAS and set the number
669 	 * to be the "bad" IRQ number
670 	 */
671 	xive_ops->configure_irq(hw_irq,
672 				get_hard_smp_processor_id(xd->target),
673 				0xff, XIVE_BAD_IRQ);
674 
675 	xive_dec_target_count(xd->target);
676 	xd->target = XIVE_INVALID_TARGET;
677 }
678 
679 static void xive_irq_unmask(struct irq_data *d)
680 {
681 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
682 
683 	pr_devel("xive_irq_unmask: irq %d data @%p\n", d->irq, xd);
684 
685 	xive_do_source_set_mask(xd, false);
686 }
687 
688 static void xive_irq_mask(struct irq_data *d)
689 {
690 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
691 
692 	pr_devel("xive_irq_mask: irq %d data @%p\n", d->irq, xd);
693 
694 	xive_do_source_set_mask(xd, true);
695 }
696 
697 static int xive_irq_set_affinity(struct irq_data *d,
698 				 const struct cpumask *cpumask,
699 				 bool force)
700 {
701 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
702 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
703 	u32 target, old_target;
704 	int rc = 0;
705 
706 	pr_debug("%s: irq %d/%x\n", __func__, d->irq, hw_irq);
707 
708 	/* Is this valid ? */
709 	if (cpumask_any_and(cpumask, cpu_online_mask) >= nr_cpu_ids)
710 		return -EINVAL;
711 
712 	/*
713 	 * If existing target is already in the new mask, and is
714 	 * online then do nothing.
715 	 */
716 	if (xd->target != XIVE_INVALID_TARGET &&
717 	    cpu_online(xd->target) &&
718 	    cpumask_test_cpu(xd->target, cpumask))
719 		return IRQ_SET_MASK_OK;
720 
721 	/* Pick a new target */
722 	target = xive_pick_irq_target(d, cpumask);
723 
724 	/* No target found */
725 	if (target == XIVE_INVALID_TARGET)
726 		return -ENXIO;
727 
728 	/* Sanity check */
729 	if (WARN_ON(target >= nr_cpu_ids))
730 		target = smp_processor_id();
731 
732 	old_target = xd->target;
733 
734 	/*
735 	 * Only configure the irq if it's not currently passed-through to
736 	 * a KVM guest
737 	 */
738 	if (!irqd_is_forwarded_to_vcpu(d))
739 		rc = xive_ops->configure_irq(hw_irq,
740 					     get_hard_smp_processor_id(target),
741 					     xive_irq_priority, d->irq);
742 	if (rc < 0) {
743 		pr_err("Error %d reconfiguring irq %d\n", rc, d->irq);
744 		return rc;
745 	}
746 
747 	pr_debug("  target: 0x%x\n", target);
748 	xd->target = target;
749 
750 	/* Give up previous target */
751 	if (old_target != XIVE_INVALID_TARGET)
752 	    xive_dec_target_count(old_target);
753 
754 	return IRQ_SET_MASK_OK;
755 }
756 
757 static int xive_irq_set_type(struct irq_data *d, unsigned int flow_type)
758 {
759 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
760 
761 	/*
762 	 * We only support these. This has really no effect other than setting
763 	 * the corresponding descriptor bits mind you but those will in turn
764 	 * affect the resend function when re-enabling an edge interrupt.
765 	 *
766 	 * Set set the default to edge as explained in map().
767 	 */
768 	if (flow_type == IRQ_TYPE_DEFAULT || flow_type == IRQ_TYPE_NONE)
769 		flow_type = IRQ_TYPE_EDGE_RISING;
770 
771 	if (flow_type != IRQ_TYPE_EDGE_RISING &&
772 	    flow_type != IRQ_TYPE_LEVEL_LOW)
773 		return -EINVAL;
774 
775 	irqd_set_trigger_type(d, flow_type);
776 
777 	/*
778 	 * Double check it matches what the FW thinks
779 	 *
780 	 * NOTE: We don't know yet if the PAPR interface will provide
781 	 * the LSI vs MSI information apart from the device-tree so
782 	 * this check might have to move into an optional backend call
783 	 * that is specific to the native backend
784 	 */
785 	if ((flow_type == IRQ_TYPE_LEVEL_LOW) !=
786 	    !!(xd->flags & XIVE_IRQ_FLAG_LSI)) {
787 		pr_warn("Interrupt %d (HW 0x%x) type mismatch, Linux says %s, FW says %s\n",
788 			d->irq, (u32)irqd_to_hwirq(d),
789 			(flow_type == IRQ_TYPE_LEVEL_LOW) ? "Level" : "Edge",
790 			(xd->flags & XIVE_IRQ_FLAG_LSI) ? "Level" : "Edge");
791 	}
792 
793 	return IRQ_SET_MASK_OK_NOCOPY;
794 }
795 
796 static int xive_irq_retrigger(struct irq_data *d)
797 {
798 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
799 
800 	/* This should be only for MSIs */
801 	if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
802 		return 0;
803 
804 	/*
805 	 * To perform a retrigger, we first set the PQ bits to
806 	 * 11, then perform an EOI.
807 	 */
808 	xive_esb_read(xd, XIVE_ESB_SET_PQ_11);
809 	xive_do_source_eoi(xd);
810 
811 	return 1;
812 }
813 
814 /*
815  * Caller holds the irq descriptor lock, so this won't be called
816  * concurrently with xive_get_irqchip_state on the same interrupt.
817  */
818 static int xive_irq_set_vcpu_affinity(struct irq_data *d, void *state)
819 {
820 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
821 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
822 	int rc;
823 	u8 pq;
824 
825 	/*
826 	 * This is called by KVM with state non-NULL for enabling
827 	 * pass-through or NULL for disabling it
828 	 */
829 	if (state) {
830 		irqd_set_forwarded_to_vcpu(d);
831 
832 		/* Set it to PQ=10 state to prevent further sends */
833 		pq = xive_esb_read(xd, XIVE_ESB_SET_PQ_10);
834 		if (!xd->stale_p) {
835 			xd->saved_p = !!(pq & XIVE_ESB_VAL_P);
836 			xd->stale_p = !xd->saved_p;
837 		}
838 
839 		/* No target ? nothing to do */
840 		if (xd->target == XIVE_INVALID_TARGET) {
841 			/*
842 			 * An untargetted interrupt should have been
843 			 * also masked at the source
844 			 */
845 			WARN_ON(xd->saved_p);
846 
847 			return 0;
848 		}
849 
850 		/*
851 		 * If P was set, adjust state to PQ=11 to indicate
852 		 * that a resend is needed for the interrupt to reach
853 		 * the guest. Also remember the value of P.
854 		 *
855 		 * This also tells us that it's in flight to a host queue
856 		 * or has already been fetched but hasn't been EOIed yet
857 		 * by the host. This it's potentially using up a host
858 		 * queue slot. This is important to know because as long
859 		 * as this is the case, we must not hard-unmask it when
860 		 * "returning" that interrupt to the host.
861 		 *
862 		 * This saved_p is cleared by the host EOI, when we know
863 		 * for sure the queue slot is no longer in use.
864 		 */
865 		if (xd->saved_p) {
866 			xive_esb_read(xd, XIVE_ESB_SET_PQ_11);
867 
868 			/*
869 			 * Sync the XIVE source HW to ensure the interrupt
870 			 * has gone through the EAS before we change its
871 			 * target to the guest. That should guarantee us
872 			 * that we *will* eventually get an EOI for it on
873 			 * the host. Otherwise there would be a small window
874 			 * for P to be seen here but the interrupt going
875 			 * to the guest queue.
876 			 */
877 			if (xive_ops->sync_source)
878 				xive_ops->sync_source(hw_irq);
879 		}
880 	} else {
881 		irqd_clr_forwarded_to_vcpu(d);
882 
883 		/* No host target ? hard mask and return */
884 		if (xd->target == XIVE_INVALID_TARGET) {
885 			xive_do_source_set_mask(xd, true);
886 			return 0;
887 		}
888 
889 		/*
890 		 * Sync the XIVE source HW to ensure the interrupt
891 		 * has gone through the EAS before we change its
892 		 * target to the host.
893 		 */
894 		if (xive_ops->sync_source)
895 			xive_ops->sync_source(hw_irq);
896 
897 		/*
898 		 * By convention we are called with the interrupt in
899 		 * a PQ=10 or PQ=11 state, ie, it won't fire and will
900 		 * have latched in Q whether there's a pending HW
901 		 * interrupt or not.
902 		 *
903 		 * First reconfigure the target.
904 		 */
905 		rc = xive_ops->configure_irq(hw_irq,
906 					     get_hard_smp_processor_id(xd->target),
907 					     xive_irq_priority, d->irq);
908 		if (rc)
909 			return rc;
910 
911 		/*
912 		 * Then if saved_p is not set, effectively re-enable the
913 		 * interrupt with an EOI. If it is set, we know there is
914 		 * still a message in a host queue somewhere that will be
915 		 * EOId eventually.
916 		 *
917 		 * Note: We don't check irqd_irq_disabled(). Effectively,
918 		 * we *will* let the irq get through even if masked if the
919 		 * HW is still firing it in order to deal with the whole
920 		 * saved_p business properly. If the interrupt triggers
921 		 * while masked, the generic code will re-mask it anyway.
922 		 */
923 		if (!xd->saved_p)
924 			xive_do_source_eoi(xd);
925 
926 	}
927 	return 0;
928 }
929 
930 /* Called with irq descriptor lock held. */
931 static int xive_get_irqchip_state(struct irq_data *data,
932 				  enum irqchip_irq_state which, bool *state)
933 {
934 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(data);
935 	u8 pq;
936 
937 	switch (which) {
938 	case IRQCHIP_STATE_ACTIVE:
939 		pq = xive_esb_read(xd, XIVE_ESB_GET);
940 
941 		/*
942 		 * The esb value being all 1's means we couldn't get
943 		 * the PQ state of the interrupt through mmio. It may
944 		 * happen, for example when querying a PHB interrupt
945 		 * while the PHB is in an error state. We consider the
946 		 * interrupt to be inactive in that case.
947 		 */
948 		*state = (pq != XIVE_ESB_INVALID) && !xd->stale_p &&
949 			(xd->saved_p || !!(pq & XIVE_ESB_VAL_P));
950 		return 0;
951 	default:
952 		return -EINVAL;
953 	}
954 }
955 
956 static struct irq_chip xive_irq_chip = {
957 	.name = "XIVE-IRQ",
958 	.irq_startup = xive_irq_startup,
959 	.irq_shutdown = xive_irq_shutdown,
960 	.irq_eoi = xive_irq_eoi,
961 	.irq_mask = xive_irq_mask,
962 	.irq_unmask = xive_irq_unmask,
963 	.irq_set_affinity = xive_irq_set_affinity,
964 	.irq_set_type = xive_irq_set_type,
965 	.irq_retrigger = xive_irq_retrigger,
966 	.irq_set_vcpu_affinity = xive_irq_set_vcpu_affinity,
967 	.irq_get_irqchip_state = xive_get_irqchip_state,
968 };
969 
970 bool is_xive_irq(struct irq_chip *chip)
971 {
972 	return chip == &xive_irq_chip;
973 }
974 EXPORT_SYMBOL_GPL(is_xive_irq);
975 
976 void xive_cleanup_irq_data(struct xive_irq_data *xd)
977 {
978 	if (xd->eoi_mmio) {
979 		iounmap(xd->eoi_mmio);
980 		if (xd->eoi_mmio == xd->trig_mmio)
981 			xd->trig_mmio = NULL;
982 		xd->eoi_mmio = NULL;
983 	}
984 	if (xd->trig_mmio) {
985 		iounmap(xd->trig_mmio);
986 		xd->trig_mmio = NULL;
987 	}
988 }
989 EXPORT_SYMBOL_GPL(xive_cleanup_irq_data);
990 
991 static int xive_irq_alloc_data(unsigned int virq, irq_hw_number_t hw)
992 {
993 	struct xive_irq_data *xd;
994 	int rc;
995 
996 	xd = kzalloc(sizeof(struct xive_irq_data), GFP_KERNEL);
997 	if (!xd)
998 		return -ENOMEM;
999 	rc = xive_ops->populate_irq_data(hw, xd);
1000 	if (rc) {
1001 		kfree(xd);
1002 		return rc;
1003 	}
1004 	xd->target = XIVE_INVALID_TARGET;
1005 	irq_set_handler_data(virq, xd);
1006 
1007 	/*
1008 	 * Turn OFF by default the interrupt being mapped. A side
1009 	 * effect of this check is the mapping the ESB page of the
1010 	 * interrupt in the Linux address space. This prevents page
1011 	 * fault issues in the crash handler which masks all
1012 	 * interrupts.
1013 	 */
1014 	xive_esb_read(xd, XIVE_ESB_SET_PQ_01);
1015 
1016 	return 0;
1017 }
1018 
1019 static void xive_irq_free_data(unsigned int virq)
1020 {
1021 	struct xive_irq_data *xd = irq_get_handler_data(virq);
1022 
1023 	if (!xd)
1024 		return;
1025 	irq_set_handler_data(virq, NULL);
1026 	xive_cleanup_irq_data(xd);
1027 	kfree(xd);
1028 }
1029 
1030 #ifdef CONFIG_SMP
1031 
1032 static void xive_cause_ipi(int cpu)
1033 {
1034 	struct xive_cpu *xc;
1035 	struct xive_irq_data *xd;
1036 
1037 	xc = per_cpu(xive_cpu, cpu);
1038 
1039 	DBG_VERBOSE("IPI CPU %d -> %d (HW IRQ 0x%x)\n",
1040 		    smp_processor_id(), cpu, xc->hw_ipi);
1041 
1042 	xd = &xc->ipi_data;
1043 	if (WARN_ON(!xd->trig_mmio))
1044 		return;
1045 	out_be64(xd->trig_mmio, 0);
1046 }
1047 
1048 static irqreturn_t xive_muxed_ipi_action(int irq, void *dev_id)
1049 {
1050 	return smp_ipi_demux();
1051 }
1052 
1053 static void xive_ipi_eoi(struct irq_data *d)
1054 {
1055 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1056 
1057 	/* Handle possible race with unplug and drop stale IPIs */
1058 	if (!xc)
1059 		return;
1060 
1061 	DBG_VERBOSE("IPI eoi: irq=%d [0x%lx] (HW IRQ 0x%x) pending=%02x\n",
1062 		    d->irq, irqd_to_hwirq(d), xc->hw_ipi, xc->pending_prio);
1063 
1064 	xive_do_source_eoi(&xc->ipi_data);
1065 	xive_do_queue_eoi(xc);
1066 }
1067 
1068 static void xive_ipi_do_nothing(struct irq_data *d)
1069 {
1070 	/*
1071 	 * Nothing to do, we never mask/unmask IPIs, but the callback
1072 	 * has to exist for the struct irq_chip.
1073 	 */
1074 }
1075 
1076 static struct irq_chip xive_ipi_chip = {
1077 	.name = "XIVE-IPI",
1078 	.irq_eoi = xive_ipi_eoi,
1079 	.irq_mask = xive_ipi_do_nothing,
1080 	.irq_unmask = xive_ipi_do_nothing,
1081 };
1082 
1083 /*
1084  * IPIs are marked per-cpu. We use separate HW interrupts under the
1085  * hood but associated with the same "linux" interrupt
1086  */
1087 struct xive_ipi_alloc_info {
1088 	irq_hw_number_t hwirq;
1089 };
1090 
1091 static int xive_ipi_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1092 				     unsigned int nr_irqs, void *arg)
1093 {
1094 	struct xive_ipi_alloc_info *info = arg;
1095 	int i;
1096 
1097 	for (i = 0; i < nr_irqs; i++) {
1098 		irq_domain_set_info(domain, virq + i, info->hwirq + i, &xive_ipi_chip,
1099 				    domain->host_data, handle_percpu_irq,
1100 				    NULL, NULL);
1101 	}
1102 	return 0;
1103 }
1104 
1105 static const struct irq_domain_ops xive_ipi_irq_domain_ops = {
1106 	.alloc  = xive_ipi_irq_domain_alloc,
1107 };
1108 
1109 static int __init xive_request_ipi(void)
1110 {
1111 	struct fwnode_handle *fwnode;
1112 	struct irq_domain *ipi_domain;
1113 	unsigned int node;
1114 	int ret = -ENOMEM;
1115 
1116 	fwnode = irq_domain_alloc_named_fwnode("XIVE-IPI");
1117 	if (!fwnode)
1118 		goto out;
1119 
1120 	ipi_domain = irq_domain_create_linear(fwnode, nr_node_ids,
1121 					      &xive_ipi_irq_domain_ops, NULL);
1122 	if (!ipi_domain)
1123 		goto out_free_fwnode;
1124 
1125 	xive_ipis = kcalloc(nr_node_ids, sizeof(*xive_ipis), GFP_KERNEL | __GFP_NOFAIL);
1126 	if (!xive_ipis)
1127 		goto out_free_domain;
1128 
1129 	for_each_node(node) {
1130 		struct xive_ipi_desc *xid = &xive_ipis[node];
1131 		struct xive_ipi_alloc_info info = { node };
1132 
1133 		/* Skip nodes without CPUs */
1134 		if (cpumask_empty(cpumask_of_node(node)))
1135 			continue;
1136 
1137 		/*
1138 		 * Map one IPI interrupt per node for all cpus of that node.
1139 		 * Since the HW interrupt number doesn't have any meaning,
1140 		 * simply use the node number.
1141 		 */
1142 		ret = irq_domain_alloc_irqs(ipi_domain, 1, node, &info);
1143 		if (ret < 0)
1144 			goto out_free_xive_ipis;
1145 		xid->irq = ret;
1146 
1147 		snprintf(xid->name, sizeof(xid->name), "IPI-%d", node);
1148 
1149 		ret = request_irq(xid->irq, xive_muxed_ipi_action,
1150 				  IRQF_PERCPU | IRQF_NO_THREAD, xid->name, NULL);
1151 
1152 		WARN(ret < 0, "Failed to request IPI %d: %d\n", xid->irq, ret);
1153 	}
1154 
1155 	return ret;
1156 
1157 out_free_xive_ipis:
1158 	kfree(xive_ipis);
1159 out_free_domain:
1160 	irq_domain_remove(ipi_domain);
1161 out_free_fwnode:
1162 	irq_domain_free_fwnode(fwnode);
1163 out:
1164 	return ret;
1165 }
1166 
1167 static int xive_setup_cpu_ipi(unsigned int cpu)
1168 {
1169 	unsigned int xive_ipi_irq = xive_ipi_cpu_to_irq(cpu);
1170 	struct xive_cpu *xc;
1171 	int rc;
1172 
1173 	pr_debug("Setting up IPI for CPU %d\n", cpu);
1174 
1175 	xc = per_cpu(xive_cpu, cpu);
1176 
1177 	/* Check if we are already setup */
1178 	if (xc->hw_ipi != XIVE_BAD_IRQ)
1179 		return 0;
1180 
1181 	/* Grab an IPI from the backend, this will populate xc->hw_ipi */
1182 	if (xive_ops->get_ipi(cpu, xc))
1183 		return -EIO;
1184 
1185 	/*
1186 	 * Populate the IRQ data in the xive_cpu structure and
1187 	 * configure the HW / enable the IPIs.
1188 	 */
1189 	rc = xive_ops->populate_irq_data(xc->hw_ipi, &xc->ipi_data);
1190 	if (rc) {
1191 		pr_err("Failed to populate IPI data on CPU %d\n", cpu);
1192 		return -EIO;
1193 	}
1194 	rc = xive_ops->configure_irq(xc->hw_ipi,
1195 				     get_hard_smp_processor_id(cpu),
1196 				     xive_irq_priority, xive_ipi_irq);
1197 	if (rc) {
1198 		pr_err("Failed to map IPI CPU %d\n", cpu);
1199 		return -EIO;
1200 	}
1201 	pr_devel("CPU %d HW IPI %x, virq %d, trig_mmio=%p\n", cpu,
1202 	    xc->hw_ipi, xive_ipi_irq, xc->ipi_data.trig_mmio);
1203 
1204 	/* Unmask it */
1205 	xive_do_source_set_mask(&xc->ipi_data, false);
1206 
1207 	return 0;
1208 }
1209 
1210 static void xive_cleanup_cpu_ipi(unsigned int cpu, struct xive_cpu *xc)
1211 {
1212 	unsigned int xive_ipi_irq = xive_ipi_cpu_to_irq(cpu);
1213 
1214 	/* Disable the IPI and free the IRQ data */
1215 
1216 	/* Already cleaned up ? */
1217 	if (xc->hw_ipi == XIVE_BAD_IRQ)
1218 		return;
1219 
1220 	/* Mask the IPI */
1221 	xive_do_source_set_mask(&xc->ipi_data, true);
1222 
1223 	/*
1224 	 * Note: We don't call xive_cleanup_irq_data() to free
1225 	 * the mappings as this is called from an IPI on kexec
1226 	 * which is not a safe environment to call iounmap()
1227 	 */
1228 
1229 	/* Deconfigure/mask in the backend */
1230 	xive_ops->configure_irq(xc->hw_ipi, hard_smp_processor_id(),
1231 				0xff, xive_ipi_irq);
1232 
1233 	/* Free the IPIs in the backend */
1234 	xive_ops->put_ipi(cpu, xc);
1235 }
1236 
1237 void __init xive_smp_probe(void)
1238 {
1239 	smp_ops->cause_ipi = xive_cause_ipi;
1240 
1241 	/* Register the IPI */
1242 	xive_request_ipi();
1243 
1244 	/* Allocate and setup IPI for the boot CPU */
1245 	xive_setup_cpu_ipi(smp_processor_id());
1246 }
1247 
1248 #endif /* CONFIG_SMP */
1249 
1250 static int xive_irq_domain_map(struct irq_domain *h, unsigned int virq,
1251 			       irq_hw_number_t hw)
1252 {
1253 	int rc;
1254 
1255 	/*
1256 	 * Mark interrupts as edge sensitive by default so that resend
1257 	 * actually works. Will fix that up below if needed.
1258 	 */
1259 	irq_clear_status_flags(virq, IRQ_LEVEL);
1260 
1261 	rc = xive_irq_alloc_data(virq, hw);
1262 	if (rc)
1263 		return rc;
1264 
1265 	irq_set_chip_and_handler(virq, &xive_irq_chip, handle_fasteoi_irq);
1266 
1267 	return 0;
1268 }
1269 
1270 static void xive_irq_domain_unmap(struct irq_domain *d, unsigned int virq)
1271 {
1272 	xive_irq_free_data(virq);
1273 }
1274 
1275 static int xive_irq_domain_xlate(struct irq_domain *h, struct device_node *ct,
1276 				 const u32 *intspec, unsigned int intsize,
1277 				 irq_hw_number_t *out_hwirq, unsigned int *out_flags)
1278 
1279 {
1280 	*out_hwirq = intspec[0];
1281 
1282 	/*
1283 	 * If intsize is at least 2, we look for the type in the second cell,
1284 	 * we assume the LSB indicates a level interrupt.
1285 	 */
1286 	if (intsize > 1) {
1287 		if (intspec[1] & 1)
1288 			*out_flags = IRQ_TYPE_LEVEL_LOW;
1289 		else
1290 			*out_flags = IRQ_TYPE_EDGE_RISING;
1291 	} else
1292 		*out_flags = IRQ_TYPE_LEVEL_LOW;
1293 
1294 	return 0;
1295 }
1296 
1297 static int xive_irq_domain_match(struct irq_domain *h, struct device_node *node,
1298 				 enum irq_domain_bus_token bus_token)
1299 {
1300 	return xive_ops->match(node);
1301 }
1302 
1303 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS
1304 static const char * const esb_names[] = { "RESET", "OFF", "PENDING", "QUEUED" };
1305 
1306 static const struct {
1307 	u64  mask;
1308 	char *name;
1309 } xive_irq_flags[] = {
1310 	{ XIVE_IRQ_FLAG_STORE_EOI, "STORE_EOI" },
1311 	{ XIVE_IRQ_FLAG_LSI,       "LSI"       },
1312 	{ XIVE_IRQ_FLAG_H_INT_ESB, "H_INT_ESB" },
1313 	{ XIVE_IRQ_FLAG_NO_EOI,    "NO_EOI"    },
1314 };
1315 
1316 static void xive_irq_domain_debug_show(struct seq_file *m, struct irq_domain *d,
1317 				       struct irq_data *irqd, int ind)
1318 {
1319 	struct xive_irq_data *xd;
1320 	u64 val;
1321 	int i;
1322 
1323 	/* No IRQ domain level information. To be done */
1324 	if (!irqd)
1325 		return;
1326 
1327 	if (!is_xive_irq(irq_data_get_irq_chip(irqd)))
1328 		return;
1329 
1330 	seq_printf(m, "%*sXIVE:\n", ind, "");
1331 	ind++;
1332 
1333 	xd = irq_data_get_irq_handler_data(irqd);
1334 	if (!xd) {
1335 		seq_printf(m, "%*snot assigned\n", ind, "");
1336 		return;
1337 	}
1338 
1339 	val = xive_esb_read(xd, XIVE_ESB_GET);
1340 	seq_printf(m, "%*sESB:      %s\n", ind, "", esb_names[val & 0x3]);
1341 	seq_printf(m, "%*sPstate:   %s %s\n", ind, "", xd->stale_p ? "stale" : "",
1342 		   xd->saved_p ? "saved" : "");
1343 	seq_printf(m, "%*sTarget:   %d\n", ind, "", xd->target);
1344 	seq_printf(m, "%*sChip:     %d\n", ind, "", xd->src_chip);
1345 	seq_printf(m, "%*sTrigger:  0x%016llx\n", ind, "", xd->trig_page);
1346 	seq_printf(m, "%*sEOI:      0x%016llx\n", ind, "", xd->eoi_page);
1347 	seq_printf(m, "%*sFlags:    0x%llx\n", ind, "", xd->flags);
1348 	for (i = 0; i < ARRAY_SIZE(xive_irq_flags); i++) {
1349 		if (xd->flags & xive_irq_flags[i].mask)
1350 			seq_printf(m, "%*s%s\n", ind + 12, "", xive_irq_flags[i].name);
1351 	}
1352 }
1353 #endif
1354 
1355 #ifdef	CONFIG_IRQ_DOMAIN_HIERARCHY
1356 static int xive_irq_domain_translate(struct irq_domain *d,
1357 				     struct irq_fwspec *fwspec,
1358 				     unsigned long *hwirq,
1359 				     unsigned int *type)
1360 {
1361 	return xive_irq_domain_xlate(d, to_of_node(fwspec->fwnode),
1362 				     fwspec->param, fwspec->param_count,
1363 				     hwirq, type);
1364 }
1365 
1366 static int xive_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1367 				 unsigned int nr_irqs, void *arg)
1368 {
1369 	struct irq_fwspec *fwspec = arg;
1370 	irq_hw_number_t hwirq;
1371 	unsigned int type = IRQ_TYPE_NONE;
1372 	int i, rc;
1373 
1374 	rc = xive_irq_domain_translate(domain, fwspec, &hwirq, &type);
1375 	if (rc)
1376 		return rc;
1377 
1378 	pr_debug("%s %d/%lx #%d\n", __func__, virq, hwirq, nr_irqs);
1379 
1380 	for (i = 0; i < nr_irqs; i++) {
1381 		/* TODO: call xive_irq_domain_map() */
1382 
1383 		/*
1384 		 * Mark interrupts as edge sensitive by default so that resend
1385 		 * actually works. Will fix that up below if needed.
1386 		 */
1387 		irq_clear_status_flags(virq, IRQ_LEVEL);
1388 
1389 		/* allocates and sets handler data */
1390 		rc = xive_irq_alloc_data(virq + i, hwirq + i);
1391 		if (rc)
1392 			return rc;
1393 
1394 		irq_domain_set_hwirq_and_chip(domain, virq + i, hwirq + i,
1395 					      &xive_irq_chip, domain->host_data);
1396 		irq_set_handler(virq + i, handle_fasteoi_irq);
1397 	}
1398 
1399 	return 0;
1400 }
1401 
1402 static void xive_irq_domain_free(struct irq_domain *domain,
1403 				 unsigned int virq, unsigned int nr_irqs)
1404 {
1405 	int i;
1406 
1407 	pr_debug("%s %d #%d\n", __func__, virq, nr_irqs);
1408 
1409 	for (i = 0; i < nr_irqs; i++)
1410 		xive_irq_free_data(virq + i);
1411 }
1412 #endif
1413 
1414 static const struct irq_domain_ops xive_irq_domain_ops = {
1415 #ifdef	CONFIG_IRQ_DOMAIN_HIERARCHY
1416 	.alloc	= xive_irq_domain_alloc,
1417 	.free	= xive_irq_domain_free,
1418 	.translate = xive_irq_domain_translate,
1419 #endif
1420 	.match = xive_irq_domain_match,
1421 	.map = xive_irq_domain_map,
1422 	.unmap = xive_irq_domain_unmap,
1423 	.xlate = xive_irq_domain_xlate,
1424 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS
1425 	.debug_show = xive_irq_domain_debug_show,
1426 #endif
1427 };
1428 
1429 static void __init xive_init_host(struct device_node *np)
1430 {
1431 	xive_irq_domain = irq_domain_add_nomap(np, XIVE_MAX_IRQ,
1432 					       &xive_irq_domain_ops, NULL);
1433 	if (WARN_ON(xive_irq_domain == NULL))
1434 		return;
1435 	irq_set_default_host(xive_irq_domain);
1436 }
1437 
1438 static void xive_cleanup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1439 {
1440 	if (xc->queue[xive_irq_priority].qpage)
1441 		xive_ops->cleanup_queue(cpu, xc, xive_irq_priority);
1442 }
1443 
1444 static int xive_setup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1445 {
1446 	int rc = 0;
1447 
1448 	/* We setup 1 queues for now with a 64k page */
1449 	if (!xc->queue[xive_irq_priority].qpage)
1450 		rc = xive_ops->setup_queue(cpu, xc, xive_irq_priority);
1451 
1452 	return rc;
1453 }
1454 
1455 static int xive_prepare_cpu(unsigned int cpu)
1456 {
1457 	struct xive_cpu *xc;
1458 
1459 	xc = per_cpu(xive_cpu, cpu);
1460 	if (!xc) {
1461 		xc = kzalloc_node(sizeof(struct xive_cpu),
1462 				  GFP_KERNEL, cpu_to_node(cpu));
1463 		if (!xc)
1464 			return -ENOMEM;
1465 		xc->hw_ipi = XIVE_BAD_IRQ;
1466 		xc->chip_id = XIVE_INVALID_CHIP_ID;
1467 		if (xive_ops->prepare_cpu)
1468 			xive_ops->prepare_cpu(cpu, xc);
1469 
1470 		per_cpu(xive_cpu, cpu) = xc;
1471 	}
1472 
1473 	/* Setup EQs if not already */
1474 	return xive_setup_cpu_queues(cpu, xc);
1475 }
1476 
1477 static void xive_setup_cpu(void)
1478 {
1479 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1480 
1481 	/* The backend might have additional things to do */
1482 	if (xive_ops->setup_cpu)
1483 		xive_ops->setup_cpu(smp_processor_id(), xc);
1484 
1485 	/* Set CPPR to 0xff to enable flow of interrupts */
1486 	xc->cppr = 0xff;
1487 	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1488 }
1489 
1490 #ifdef CONFIG_SMP
1491 void xive_smp_setup_cpu(void)
1492 {
1493 	pr_devel("SMP setup CPU %d\n", smp_processor_id());
1494 
1495 	/* This will have already been done on the boot CPU */
1496 	if (smp_processor_id() != boot_cpuid)
1497 		xive_setup_cpu();
1498 
1499 }
1500 
1501 int xive_smp_prepare_cpu(unsigned int cpu)
1502 {
1503 	int rc;
1504 
1505 	/* Allocate per-CPU data and queues */
1506 	rc = xive_prepare_cpu(cpu);
1507 	if (rc)
1508 		return rc;
1509 
1510 	/* Allocate and setup IPI for the new CPU */
1511 	return xive_setup_cpu_ipi(cpu);
1512 }
1513 
1514 #ifdef CONFIG_HOTPLUG_CPU
1515 static void xive_flush_cpu_queue(unsigned int cpu, struct xive_cpu *xc)
1516 {
1517 	u32 irq;
1518 
1519 	/* We assume local irqs are disabled */
1520 	WARN_ON(!irqs_disabled());
1521 
1522 	/* Check what's already in the CPU queue */
1523 	while ((irq = xive_scan_interrupts(xc, false)) != 0) {
1524 		/*
1525 		 * We need to re-route that interrupt to its new destination.
1526 		 * First get and lock the descriptor
1527 		 */
1528 		struct irq_desc *desc = irq_to_desc(irq);
1529 		struct irq_data *d = irq_desc_get_irq_data(desc);
1530 		struct xive_irq_data *xd;
1531 
1532 		/*
1533 		 * Ignore anything that isn't a XIVE irq and ignore
1534 		 * IPIs, so can just be dropped.
1535 		 */
1536 		if (d->domain != xive_irq_domain)
1537 			continue;
1538 
1539 		/*
1540 		 * The IRQ should have already been re-routed, it's just a
1541 		 * stale in the old queue, so re-trigger it in order to make
1542 		 * it reach is new destination.
1543 		 */
1544 #ifdef DEBUG_FLUSH
1545 		pr_info("CPU %d: Got irq %d while offline, re-sending...\n",
1546 			cpu, irq);
1547 #endif
1548 		raw_spin_lock(&desc->lock);
1549 		xd = irq_desc_get_handler_data(desc);
1550 
1551 		/*
1552 		 * Clear saved_p to indicate that it's no longer pending
1553 		 */
1554 		xd->saved_p = false;
1555 
1556 		/*
1557 		 * For LSIs, we EOI, this will cause a resend if it's
1558 		 * still asserted. Otherwise do an MSI retrigger.
1559 		 */
1560 		if (xd->flags & XIVE_IRQ_FLAG_LSI)
1561 			xive_do_source_eoi(xd);
1562 		else
1563 			xive_irq_retrigger(d);
1564 
1565 		raw_spin_unlock(&desc->lock);
1566 	}
1567 }
1568 
1569 void xive_smp_disable_cpu(void)
1570 {
1571 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1572 	unsigned int cpu = smp_processor_id();
1573 
1574 	/* Migrate interrupts away from the CPU */
1575 	irq_migrate_all_off_this_cpu();
1576 
1577 	/* Set CPPR to 0 to disable flow of interrupts */
1578 	xc->cppr = 0;
1579 	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1580 
1581 	/* Flush everything still in the queue */
1582 	xive_flush_cpu_queue(cpu, xc);
1583 
1584 	/* Re-enable CPPR  */
1585 	xc->cppr = 0xff;
1586 	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1587 }
1588 
1589 void xive_flush_interrupt(void)
1590 {
1591 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1592 	unsigned int cpu = smp_processor_id();
1593 
1594 	/* Called if an interrupt occurs while the CPU is hot unplugged */
1595 	xive_flush_cpu_queue(cpu, xc);
1596 }
1597 
1598 #endif /* CONFIG_HOTPLUG_CPU */
1599 
1600 #endif /* CONFIG_SMP */
1601 
1602 void xive_teardown_cpu(void)
1603 {
1604 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1605 	unsigned int cpu = smp_processor_id();
1606 
1607 	/* Set CPPR to 0 to disable flow of interrupts */
1608 	xc->cppr = 0;
1609 	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1610 
1611 	if (xive_ops->teardown_cpu)
1612 		xive_ops->teardown_cpu(cpu, xc);
1613 
1614 #ifdef CONFIG_SMP
1615 	/* Get rid of IPI */
1616 	xive_cleanup_cpu_ipi(cpu, xc);
1617 #endif
1618 
1619 	/* Disable and free the queues */
1620 	xive_cleanup_cpu_queues(cpu, xc);
1621 }
1622 
1623 void xive_shutdown(void)
1624 {
1625 	xive_ops->shutdown();
1626 }
1627 
1628 bool __init xive_core_init(struct device_node *np, const struct xive_ops *ops,
1629 			   void __iomem *area, u32 offset, u8 max_prio)
1630 {
1631 	xive_tima = area;
1632 	xive_tima_offset = offset;
1633 	xive_ops = ops;
1634 	xive_irq_priority = max_prio;
1635 
1636 	ppc_md.get_irq = xive_get_irq;
1637 	__xive_enabled = true;
1638 
1639 	pr_devel("Initializing host..\n");
1640 	xive_init_host(np);
1641 
1642 	pr_devel("Initializing boot CPU..\n");
1643 
1644 	/* Allocate per-CPU data and queues */
1645 	xive_prepare_cpu(smp_processor_id());
1646 
1647 	/* Get ready for interrupts */
1648 	xive_setup_cpu();
1649 
1650 	pr_info("Interrupt handling initialized with %s backend\n",
1651 		xive_ops->name);
1652 	pr_info("Using priority %d for all interrupts\n", max_prio);
1653 
1654 	return true;
1655 }
1656 
1657 __be32 *xive_queue_page_alloc(unsigned int cpu, u32 queue_shift)
1658 {
1659 	unsigned int alloc_order;
1660 	struct page *pages;
1661 	__be32 *qpage;
1662 
1663 	alloc_order = xive_alloc_order(queue_shift);
1664 	pages = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, alloc_order);
1665 	if (!pages)
1666 		return ERR_PTR(-ENOMEM);
1667 	qpage = (__be32 *)page_address(pages);
1668 	memset(qpage, 0, 1 << queue_shift);
1669 
1670 	return qpage;
1671 }
1672 
1673 static int __init xive_off(char *arg)
1674 {
1675 	xive_cmdline_disabled = true;
1676 	return 0;
1677 }
1678 __setup("xive=off", xive_off);
1679 
1680 static void xive_debug_show_cpu(struct seq_file *m, int cpu)
1681 {
1682 	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
1683 
1684 	seq_printf(m, "CPU %d:", cpu);
1685 	if (xc) {
1686 		seq_printf(m, "pp=%02x CPPR=%02x ", xc->pending_prio, xc->cppr);
1687 
1688 #ifdef CONFIG_SMP
1689 		{
1690 			u64 val = xive_esb_read(&xc->ipi_data, XIVE_ESB_GET);
1691 
1692 			seq_printf(m, "IPI=0x%08x PQ=%c%c ", xc->hw_ipi,
1693 				   val & XIVE_ESB_VAL_P ? 'P' : '-',
1694 				   val & XIVE_ESB_VAL_Q ? 'Q' : '-');
1695 		}
1696 #endif
1697 		{
1698 			struct xive_q *q = &xc->queue[xive_irq_priority];
1699 			u32 i0, i1, idx;
1700 
1701 			if (q->qpage) {
1702 				idx = q->idx;
1703 				i0 = be32_to_cpup(q->qpage + idx);
1704 				idx = (idx + 1) & q->msk;
1705 				i1 = be32_to_cpup(q->qpage + idx);
1706 				seq_printf(m, "EQ idx=%d T=%d %08x %08x ...",
1707 					   q->idx, q->toggle, i0, i1);
1708 			}
1709 		}
1710 	}
1711 	seq_puts(m, "\n");
1712 }
1713 
1714 static void xive_debug_show_irq(struct seq_file *m, struct irq_data *d)
1715 {
1716 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
1717 	int rc;
1718 	u32 target;
1719 	u8 prio;
1720 	u32 lirq;
1721 	struct xive_irq_data *xd;
1722 	u64 val;
1723 
1724 	rc = xive_ops->get_irq_config(hw_irq, &target, &prio, &lirq);
1725 	if (rc) {
1726 		seq_printf(m, "IRQ 0x%08x : no config rc=%d\n", hw_irq, rc);
1727 		return;
1728 	}
1729 
1730 	seq_printf(m, "IRQ 0x%08x : target=0x%x prio=%02x lirq=0x%x ",
1731 		   hw_irq, target, prio, lirq);
1732 
1733 	xd = irq_data_get_irq_handler_data(d);
1734 	val = xive_esb_read(xd, XIVE_ESB_GET);
1735 	seq_printf(m, "flags=%c%c%c PQ=%c%c",
1736 		   xd->flags & XIVE_IRQ_FLAG_STORE_EOI ? 'S' : ' ',
1737 		   xd->flags & XIVE_IRQ_FLAG_LSI ? 'L' : ' ',
1738 		   xd->flags & XIVE_IRQ_FLAG_H_INT_ESB ? 'H' : ' ',
1739 		   val & XIVE_ESB_VAL_P ? 'P' : '-',
1740 		   val & XIVE_ESB_VAL_Q ? 'Q' : '-');
1741 	seq_puts(m, "\n");
1742 }
1743 
1744 static int xive_core_debug_show(struct seq_file *m, void *private)
1745 {
1746 	unsigned int i;
1747 	struct irq_desc *desc;
1748 	int cpu;
1749 
1750 	if (xive_ops->debug_show)
1751 		xive_ops->debug_show(m, private);
1752 
1753 	for_each_possible_cpu(cpu)
1754 		xive_debug_show_cpu(m, cpu);
1755 
1756 	for_each_irq_desc(i, desc) {
1757 		struct irq_data *d = irq_desc_get_irq_data(desc);
1758 
1759 		if (d->domain == xive_irq_domain)
1760 			xive_debug_show_irq(m, d);
1761 	}
1762 	return 0;
1763 }
1764 DEFINE_SHOW_ATTRIBUTE(xive_core_debug);
1765 
1766 int xive_core_debug_init(void)
1767 {
1768 	if (xive_enabled())
1769 		debugfs_create_file("xive", 0400, powerpc_debugfs_root,
1770 				    NULL, &xive_core_debug_fops);
1771 	return 0;
1772 }
1773