1 /* 2 * Freescale LBC and UPM routines. 3 * 4 * Copyright © 2007-2008 MontaVista Software, Inc. 5 * Copyright © 2010 Freescale Semiconductor 6 * 7 * Author: Anton Vorontsov <avorontsov@ru.mvista.com> 8 * Author: Jack Lan <Jack.Lan@freescale.com> 9 * Author: Roy Zang <tie-fei.zang@freescale.com> 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2 of the License, or 14 * (at your option) any later version. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/export.h> 19 #include <linux/kernel.h> 20 #include <linux/compiler.h> 21 #include <linux/spinlock.h> 22 #include <linux/types.h> 23 #include <linux/io.h> 24 #include <linux/of.h> 25 #include <linux/slab.h> 26 #include <linux/sched.h> 27 #include <linux/platform_device.h> 28 #include <linux/interrupt.h> 29 #include <linux/mod_devicetable.h> 30 #include <asm/prom.h> 31 #include <asm/fsl_lbc.h> 32 33 static spinlock_t fsl_lbc_lock = __SPIN_LOCK_UNLOCKED(fsl_lbc_lock); 34 struct fsl_lbc_ctrl *fsl_lbc_ctrl_dev; 35 EXPORT_SYMBOL(fsl_lbc_ctrl_dev); 36 37 /** 38 * fsl_lbc_addr - convert the base address 39 * @addr_base: base address of the memory bank 40 * 41 * This function converts a base address of lbc into the right format for the 42 * BR register. If the SOC has eLBC then it returns 32bit physical address 43 * else it convers a 34bit local bus physical address to correct format of 44 * 32bit address for BR register (Example: MPC8641). 45 */ 46 u32 fsl_lbc_addr(phys_addr_t addr_base) 47 { 48 struct device_node *np = fsl_lbc_ctrl_dev->dev->of_node; 49 u32 addr = addr_base & 0xffff8000; 50 51 if (of_device_is_compatible(np, "fsl,elbc")) 52 return addr; 53 54 return addr | ((addr_base & 0x300000000ull) >> 19); 55 } 56 EXPORT_SYMBOL(fsl_lbc_addr); 57 58 /** 59 * fsl_lbc_find - find Localbus bank 60 * @addr_base: base address of the memory bank 61 * 62 * This function walks LBC banks comparing "Base address" field of the BR 63 * registers with the supplied addr_base argument. When bases match this 64 * function returns bank number (starting with 0), otherwise it returns 65 * appropriate errno value. 66 */ 67 int fsl_lbc_find(phys_addr_t addr_base) 68 { 69 int i; 70 struct fsl_lbc_regs __iomem *lbc; 71 72 if (!fsl_lbc_ctrl_dev || !fsl_lbc_ctrl_dev->regs) 73 return -ENODEV; 74 75 lbc = fsl_lbc_ctrl_dev->regs; 76 for (i = 0; i < ARRAY_SIZE(lbc->bank); i++) { 77 u32 br = in_be32(&lbc->bank[i].br); 78 u32 or = in_be32(&lbc->bank[i].or); 79 80 if (br & BR_V && (br & or & BR_BA) == fsl_lbc_addr(addr_base)) 81 return i; 82 } 83 84 return -ENOENT; 85 } 86 EXPORT_SYMBOL(fsl_lbc_find); 87 88 /** 89 * fsl_upm_find - find pre-programmed UPM via base address 90 * @addr_base: base address of the memory bank controlled by the UPM 91 * @upm: pointer to the allocated fsl_upm structure 92 * 93 * This function fills fsl_upm structure so you can use it with the rest of 94 * UPM API. On success this function returns 0, otherwise it returns 95 * appropriate errno value. 96 */ 97 int fsl_upm_find(phys_addr_t addr_base, struct fsl_upm *upm) 98 { 99 int bank; 100 u32 br; 101 struct fsl_lbc_regs __iomem *lbc; 102 103 bank = fsl_lbc_find(addr_base); 104 if (bank < 0) 105 return bank; 106 107 if (!fsl_lbc_ctrl_dev || !fsl_lbc_ctrl_dev->regs) 108 return -ENODEV; 109 110 lbc = fsl_lbc_ctrl_dev->regs; 111 br = in_be32(&lbc->bank[bank].br); 112 113 switch (br & BR_MSEL) { 114 case BR_MS_UPMA: 115 upm->mxmr = &lbc->mamr; 116 break; 117 case BR_MS_UPMB: 118 upm->mxmr = &lbc->mbmr; 119 break; 120 case BR_MS_UPMC: 121 upm->mxmr = &lbc->mcmr; 122 break; 123 default: 124 return -EINVAL; 125 } 126 127 switch (br & BR_PS) { 128 case BR_PS_8: 129 upm->width = 8; 130 break; 131 case BR_PS_16: 132 upm->width = 16; 133 break; 134 case BR_PS_32: 135 upm->width = 32; 136 break; 137 default: 138 return -EINVAL; 139 } 140 141 return 0; 142 } 143 EXPORT_SYMBOL(fsl_upm_find); 144 145 /** 146 * fsl_upm_run_pattern - actually run an UPM pattern 147 * @upm: pointer to the fsl_upm structure obtained via fsl_upm_find 148 * @io_base: remapped pointer to where memory access should happen 149 * @mar: MAR register content during pattern execution 150 * 151 * This function triggers dummy write to the memory specified by the io_base, 152 * thus UPM pattern actually executed. Note that mar usage depends on the 153 * pre-programmed AMX bits in the UPM RAM. 154 */ 155 int fsl_upm_run_pattern(struct fsl_upm *upm, void __iomem *io_base, u32 mar) 156 { 157 int ret = 0; 158 unsigned long flags; 159 160 if (!fsl_lbc_ctrl_dev || !fsl_lbc_ctrl_dev->regs) 161 return -ENODEV; 162 163 spin_lock_irqsave(&fsl_lbc_lock, flags); 164 165 out_be32(&fsl_lbc_ctrl_dev->regs->mar, mar); 166 167 switch (upm->width) { 168 case 8: 169 out_8(io_base, 0x0); 170 break; 171 case 16: 172 out_be16(io_base, 0x0); 173 break; 174 case 32: 175 out_be32(io_base, 0x0); 176 break; 177 default: 178 ret = -EINVAL; 179 break; 180 } 181 182 spin_unlock_irqrestore(&fsl_lbc_lock, flags); 183 184 return ret; 185 } 186 EXPORT_SYMBOL(fsl_upm_run_pattern); 187 188 static int fsl_lbc_ctrl_init(struct fsl_lbc_ctrl *ctrl, 189 struct device_node *node) 190 { 191 struct fsl_lbc_regs __iomem *lbc = ctrl->regs; 192 193 /* clear event registers */ 194 setbits32(&lbc->ltesr, LTESR_CLEAR); 195 out_be32(&lbc->lteatr, 0); 196 out_be32(&lbc->ltear, 0); 197 out_be32(&lbc->lteccr, LTECCR_CLEAR); 198 out_be32(&lbc->ltedr, LTEDR_ENABLE); 199 200 /* Set the monitor timeout value to the maximum for erratum A001 */ 201 if (of_device_is_compatible(node, "fsl,elbc")) 202 clrsetbits_be32(&lbc->lbcr, LBCR_BMT, LBCR_BMTPS); 203 204 return 0; 205 } 206 207 /* 208 * NOTE: This interrupt is used to report localbus events of various kinds, 209 * such as transaction errors on the chipselects. 210 */ 211 212 static irqreturn_t fsl_lbc_ctrl_irq(int irqno, void *data) 213 { 214 struct fsl_lbc_ctrl *ctrl = data; 215 struct fsl_lbc_regs __iomem *lbc = ctrl->regs; 216 u32 status; 217 unsigned long flags; 218 219 spin_lock_irqsave(&fsl_lbc_lock, flags); 220 status = in_be32(&lbc->ltesr); 221 if (!status) { 222 spin_unlock_irqrestore(&fsl_lbc_lock, flags); 223 return IRQ_NONE; 224 } 225 226 out_be32(&lbc->ltesr, LTESR_CLEAR); 227 out_be32(&lbc->lteatr, 0); 228 out_be32(&lbc->ltear, 0); 229 ctrl->irq_status = status; 230 231 if (status & LTESR_BM) 232 dev_err(ctrl->dev, "Local bus monitor time-out: " 233 "LTESR 0x%08X\n", status); 234 if (status & LTESR_WP) 235 dev_err(ctrl->dev, "Write protect error: " 236 "LTESR 0x%08X\n", status); 237 if (status & LTESR_ATMW) 238 dev_err(ctrl->dev, "Atomic write error: " 239 "LTESR 0x%08X\n", status); 240 if (status & LTESR_ATMR) 241 dev_err(ctrl->dev, "Atomic read error: " 242 "LTESR 0x%08X\n", status); 243 if (status & LTESR_CS) 244 dev_err(ctrl->dev, "Chip select error: " 245 "LTESR 0x%08X\n", status); 246 if (status & LTESR_UPM) 247 ; 248 if (status & LTESR_FCT) { 249 dev_err(ctrl->dev, "FCM command time-out: " 250 "LTESR 0x%08X\n", status); 251 smp_wmb(); 252 wake_up(&ctrl->irq_wait); 253 } 254 if (status & LTESR_PAR) { 255 dev_err(ctrl->dev, "Parity or Uncorrectable ECC error: " 256 "LTESR 0x%08X\n", status); 257 smp_wmb(); 258 wake_up(&ctrl->irq_wait); 259 } 260 if (status & LTESR_CC) { 261 smp_wmb(); 262 wake_up(&ctrl->irq_wait); 263 } 264 if (status & ~LTESR_MASK) 265 dev_err(ctrl->dev, "Unknown error: " 266 "LTESR 0x%08X\n", status); 267 spin_unlock_irqrestore(&fsl_lbc_lock, flags); 268 return IRQ_HANDLED; 269 } 270 271 /* 272 * fsl_lbc_ctrl_probe 273 * 274 * called by device layer when it finds a device matching 275 * one our driver can handled. This code allocates all of 276 * the resources needed for the controller only. The 277 * resources for the NAND banks themselves are allocated 278 * in the chip probe function. 279 */ 280 281 static int fsl_lbc_ctrl_probe(struct platform_device *dev) 282 { 283 int ret; 284 285 if (!dev->dev.of_node) { 286 dev_err(&dev->dev, "Device OF-Node is NULL"); 287 return -EFAULT; 288 } 289 290 fsl_lbc_ctrl_dev = kzalloc(sizeof(*fsl_lbc_ctrl_dev), GFP_KERNEL); 291 if (!fsl_lbc_ctrl_dev) 292 return -ENOMEM; 293 294 dev_set_drvdata(&dev->dev, fsl_lbc_ctrl_dev); 295 296 spin_lock_init(&fsl_lbc_ctrl_dev->lock); 297 init_waitqueue_head(&fsl_lbc_ctrl_dev->irq_wait); 298 299 fsl_lbc_ctrl_dev->regs = of_iomap(dev->dev.of_node, 0); 300 if (!fsl_lbc_ctrl_dev->regs) { 301 dev_err(&dev->dev, "failed to get memory region\n"); 302 ret = -ENODEV; 303 goto err; 304 } 305 306 fsl_lbc_ctrl_dev->irq[0] = irq_of_parse_and_map(dev->dev.of_node, 0); 307 if (!fsl_lbc_ctrl_dev->irq[0]) { 308 dev_err(&dev->dev, "failed to get irq resource\n"); 309 ret = -ENODEV; 310 goto err; 311 } 312 313 fsl_lbc_ctrl_dev->dev = &dev->dev; 314 315 ret = fsl_lbc_ctrl_init(fsl_lbc_ctrl_dev, dev->dev.of_node); 316 if (ret < 0) 317 goto err; 318 319 ret = request_irq(fsl_lbc_ctrl_dev->irq[0], fsl_lbc_ctrl_irq, 0, 320 "fsl-lbc", fsl_lbc_ctrl_dev); 321 if (ret != 0) { 322 dev_err(&dev->dev, "failed to install irq (%d)\n", 323 fsl_lbc_ctrl_dev->irq[0]); 324 ret = fsl_lbc_ctrl_dev->irq[0]; 325 goto err; 326 } 327 328 fsl_lbc_ctrl_dev->irq[1] = irq_of_parse_and_map(dev->dev.of_node, 1); 329 if (fsl_lbc_ctrl_dev->irq[1]) { 330 ret = request_irq(fsl_lbc_ctrl_dev->irq[1], fsl_lbc_ctrl_irq, 331 IRQF_SHARED, "fsl-lbc-err", fsl_lbc_ctrl_dev); 332 if (ret) { 333 dev_err(&dev->dev, "failed to install irq (%d)\n", 334 fsl_lbc_ctrl_dev->irq[1]); 335 ret = fsl_lbc_ctrl_dev->irq[1]; 336 goto err1; 337 } 338 } 339 340 /* Enable interrupts for any detected events */ 341 out_be32(&fsl_lbc_ctrl_dev->regs->lteir, LTEIR_ENABLE); 342 343 return 0; 344 345 err1: 346 free_irq(fsl_lbc_ctrl_dev->irq[0], fsl_lbc_ctrl_dev); 347 err: 348 iounmap(fsl_lbc_ctrl_dev->regs); 349 kfree(fsl_lbc_ctrl_dev); 350 fsl_lbc_ctrl_dev = NULL; 351 return ret; 352 } 353 354 #ifdef CONFIG_SUSPEND 355 356 /* save lbc registers */ 357 static int fsl_lbc_suspend(struct platform_device *pdev, pm_message_t state) 358 { 359 struct fsl_lbc_ctrl *ctrl = dev_get_drvdata(&pdev->dev); 360 struct fsl_lbc_regs __iomem *lbc = ctrl->regs; 361 362 ctrl->saved_regs = kmalloc(sizeof(struct fsl_lbc_regs), GFP_KERNEL); 363 if (!ctrl->saved_regs) 364 return -ENOMEM; 365 366 _memcpy_fromio(ctrl->saved_regs, lbc, sizeof(struct fsl_lbc_regs)); 367 return 0; 368 } 369 370 /* restore lbc registers */ 371 static int fsl_lbc_resume(struct platform_device *pdev) 372 { 373 struct fsl_lbc_ctrl *ctrl = dev_get_drvdata(&pdev->dev); 374 struct fsl_lbc_regs __iomem *lbc = ctrl->regs; 375 376 if (ctrl->saved_regs) { 377 _memcpy_toio(lbc, ctrl->saved_regs, 378 sizeof(struct fsl_lbc_regs)); 379 kfree(ctrl->saved_regs); 380 ctrl->saved_regs = NULL; 381 } 382 return 0; 383 } 384 #endif /* CONFIG_SUSPEND */ 385 386 static const struct of_device_id fsl_lbc_match[] = { 387 { .compatible = "fsl,elbc", }, 388 { .compatible = "fsl,pq3-localbus", }, 389 { .compatible = "fsl,pq2-localbus", }, 390 { .compatible = "fsl,pq2pro-localbus", }, 391 {}, 392 }; 393 394 static struct platform_driver fsl_lbc_ctrl_driver = { 395 .driver = { 396 .name = "fsl-lbc", 397 .of_match_table = fsl_lbc_match, 398 }, 399 .probe = fsl_lbc_ctrl_probe, 400 #ifdef CONFIG_SUSPEND 401 .suspend = fsl_lbc_suspend, 402 .resume = fsl_lbc_resume, 403 #endif 404 }; 405 406 static int __init fsl_lbc_init(void) 407 { 408 return platform_driver_register(&fsl_lbc_ctrl_driver); 409 } 410 subsys_initcall(fsl_lbc_init); 411