xref: /openbmc/linux/arch/powerpc/sysdev/fsl_gtm.c (revision e23feb16)
1 /*
2  * Freescale General-purpose Timers Module
3  *
4  * Copyright (c) Freescale Semiconductor, Inc. 2006.
5  *               Shlomi Gridish <gridish@freescale.com>
6  *               Jerry Huang <Chang-Ming.Huang@freescale.com>
7  * Copyright (c) MontaVista Software, Inc. 2008.
8  *               Anton Vorontsov <avorontsov@ru.mvista.com>
9  *
10  * This program is free software; you can redistribute  it and/or modify it
11  * under  the terms of  the GNU General  Public License as published by the
12  * Free Software Foundation;  either version 2 of the  License, or (at your
13  * option) any later version.
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/err.h>
18 #include <linux/errno.h>
19 #include <linux/list.h>
20 #include <linux/io.h>
21 #include <linux/of.h>
22 #include <linux/spinlock.h>
23 #include <linux/bitops.h>
24 #include <linux/slab.h>
25 #include <linux/export.h>
26 #include <asm/fsl_gtm.h>
27 
28 #define GTCFR_STP(x)		((x) & 1 ? 1 << 5 : 1 << 1)
29 #define GTCFR_RST(x)		((x) & 1 ? 1 << 4 : 1 << 0)
30 
31 #define GTMDR_ICLK_MASK		(3 << 1)
32 #define GTMDR_ICLK_ICAS		(0 << 1)
33 #define GTMDR_ICLK_ICLK		(1 << 1)
34 #define GTMDR_ICLK_SLGO		(2 << 1)
35 #define GTMDR_FRR		(1 << 3)
36 #define GTMDR_ORI		(1 << 4)
37 #define GTMDR_SPS(x)		((x) << 8)
38 
39 struct gtm_timers_regs {
40 	u8	gtcfr1;		/* Timer 1, Timer 2 global config register */
41 	u8	res0[0x3];
42 	u8	gtcfr2;		/* Timer 3, timer 4 global config register */
43 	u8	res1[0xB];
44 	__be16	gtmdr1;		/* Timer 1 mode register */
45 	__be16	gtmdr2;		/* Timer 2 mode register */
46 	__be16	gtrfr1;		/* Timer 1 reference register */
47 	__be16	gtrfr2;		/* Timer 2 reference register */
48 	__be16	gtcpr1;		/* Timer 1 capture register */
49 	__be16	gtcpr2;		/* Timer 2 capture register */
50 	__be16	gtcnr1;		/* Timer 1 counter */
51 	__be16	gtcnr2;		/* Timer 2 counter */
52 	__be16	gtmdr3;		/* Timer 3 mode register */
53 	__be16	gtmdr4;		/* Timer 4 mode register */
54 	__be16	gtrfr3;		/* Timer 3 reference register */
55 	__be16	gtrfr4;		/* Timer 4 reference register */
56 	__be16	gtcpr3;		/* Timer 3 capture register */
57 	__be16	gtcpr4;		/* Timer 4 capture register */
58 	__be16	gtcnr3;		/* Timer 3 counter */
59 	__be16	gtcnr4;		/* Timer 4 counter */
60 	__be16	gtevr1;		/* Timer 1 event register */
61 	__be16	gtevr2;		/* Timer 2 event register */
62 	__be16	gtevr3;		/* Timer 3 event register */
63 	__be16	gtevr4;		/* Timer 4 event register */
64 	__be16	gtpsr1;		/* Timer 1 prescale register */
65 	__be16	gtpsr2;		/* Timer 2 prescale register */
66 	__be16	gtpsr3;		/* Timer 3 prescale register */
67 	__be16	gtpsr4;		/* Timer 4 prescale register */
68 	u8 res2[0x40];
69 } __attribute__ ((packed));
70 
71 struct gtm {
72 	unsigned int clock;
73 	struct gtm_timers_regs __iomem *regs;
74 	struct gtm_timer timers[4];
75 	spinlock_t lock;
76 	struct list_head list_node;
77 };
78 
79 static LIST_HEAD(gtms);
80 
81 /**
82  * gtm_get_timer - request GTM timer to use it with the rest of GTM API
83  * Context:	non-IRQ
84  *
85  * This function reserves GTM timer for later use. It returns gtm_timer
86  * structure to use with the rest of GTM API, you should use timer->irq
87  * to manage timer interrupt.
88  */
89 struct gtm_timer *gtm_get_timer16(void)
90 {
91 	struct gtm *gtm = NULL;
92 	int i;
93 
94 	list_for_each_entry(gtm, &gtms, list_node) {
95 		spin_lock_irq(&gtm->lock);
96 
97 		for (i = 0; i < ARRAY_SIZE(gtm->timers); i++) {
98 			if (!gtm->timers[i].requested) {
99 				gtm->timers[i].requested = true;
100 				spin_unlock_irq(&gtm->lock);
101 				return &gtm->timers[i];
102 			}
103 		}
104 
105 		spin_unlock_irq(&gtm->lock);
106 	}
107 
108 	if (gtm)
109 		return ERR_PTR(-EBUSY);
110 	return ERR_PTR(-ENODEV);
111 }
112 EXPORT_SYMBOL(gtm_get_timer16);
113 
114 /**
115  * gtm_get_specific_timer - request specific GTM timer
116  * @gtm:	specific GTM, pass here GTM's device_node->data
117  * @timer:	specific timer number, Timer1 is 0.
118  * Context:	non-IRQ
119  *
120  * This function reserves GTM timer for later use. It returns gtm_timer
121  * structure to use with the rest of GTM API, you should use timer->irq
122  * to manage timer interrupt.
123  */
124 struct gtm_timer *gtm_get_specific_timer16(struct gtm *gtm,
125 					   unsigned int timer)
126 {
127 	struct gtm_timer *ret = ERR_PTR(-EBUSY);
128 
129 	if (timer > 3)
130 		return ERR_PTR(-EINVAL);
131 
132 	spin_lock_irq(&gtm->lock);
133 
134 	if (gtm->timers[timer].requested)
135 		goto out;
136 
137 	ret = &gtm->timers[timer];
138 	ret->requested = true;
139 
140 out:
141 	spin_unlock_irq(&gtm->lock);
142 	return ret;
143 }
144 EXPORT_SYMBOL(gtm_get_specific_timer16);
145 
146 /**
147  * gtm_put_timer16 - release 16 bits GTM timer
148  * @tmr:	pointer to the gtm_timer structure obtained from gtm_get_timer
149  * Context:	any
150  *
151  * This function releases GTM timer so others may request it.
152  */
153 void gtm_put_timer16(struct gtm_timer *tmr)
154 {
155 	gtm_stop_timer16(tmr);
156 
157 	spin_lock_irq(&tmr->gtm->lock);
158 	tmr->requested = false;
159 	spin_unlock_irq(&tmr->gtm->lock);
160 }
161 EXPORT_SYMBOL(gtm_put_timer16);
162 
163 /*
164  * This is back-end for the exported functions, it's used to reset single
165  * timer in reference mode.
166  */
167 static int gtm_set_ref_timer16(struct gtm_timer *tmr, int frequency,
168 			       int reference_value, bool free_run)
169 {
170 	struct gtm *gtm = tmr->gtm;
171 	int num = tmr - &gtm->timers[0];
172 	unsigned int prescaler;
173 	u8 iclk = GTMDR_ICLK_ICLK;
174 	u8 psr;
175 	u8 sps;
176 	unsigned long flags;
177 	int max_prescaler = 256 * 256 * 16;
178 
179 	/* CPM2 doesn't have primary prescaler */
180 	if (!tmr->gtpsr)
181 		max_prescaler /= 256;
182 
183 	prescaler = gtm->clock / frequency;
184 	/*
185 	 * We have two 8 bit prescalers -- primary and secondary (psr, sps),
186 	 * plus "slow go" mode (clk / 16). So, total prescale value is
187 	 * 16 * (psr + 1) * (sps + 1). Though, for CPM2 GTMs we losing psr.
188 	 */
189 	if (prescaler > max_prescaler)
190 		return -EINVAL;
191 
192 	if (prescaler > max_prescaler / 16) {
193 		iclk = GTMDR_ICLK_SLGO;
194 		prescaler /= 16;
195 	}
196 
197 	if (prescaler <= 256) {
198 		psr = 0;
199 		sps = prescaler - 1;
200 	} else {
201 		psr = 256 - 1;
202 		sps = prescaler / 256 - 1;
203 	}
204 
205 	spin_lock_irqsave(&gtm->lock, flags);
206 
207 	/*
208 	 * Properly reset timers: stop, reset, set up prescalers, reference
209 	 * value and clear event register.
210 	 */
211 	clrsetbits_8(tmr->gtcfr, ~(GTCFR_STP(num) | GTCFR_RST(num)),
212 				 GTCFR_STP(num) | GTCFR_RST(num));
213 
214 	setbits8(tmr->gtcfr, GTCFR_STP(num));
215 
216 	if (tmr->gtpsr)
217 		out_be16(tmr->gtpsr, psr);
218 	clrsetbits_be16(tmr->gtmdr, 0xFFFF, iclk | GTMDR_SPS(sps) |
219 			GTMDR_ORI | (free_run ? GTMDR_FRR : 0));
220 	out_be16(tmr->gtcnr, 0);
221 	out_be16(tmr->gtrfr, reference_value);
222 	out_be16(tmr->gtevr, 0xFFFF);
223 
224 	/* Let it be. */
225 	clrbits8(tmr->gtcfr, GTCFR_STP(num));
226 
227 	spin_unlock_irqrestore(&gtm->lock, flags);
228 
229 	return 0;
230 }
231 
232 /**
233  * gtm_set_timer16 - (re)set 16 bit timer with arbitrary precision
234  * @tmr:	pointer to the gtm_timer structure obtained from gtm_get_timer
235  * @usec:	timer interval in microseconds
236  * @reload:	if set, the timer will reset upon expiry rather than
237  *         	continue running free.
238  * Context:	any
239  *
240  * This function (re)sets the GTM timer so that it counts up to the requested
241  * interval value, and fires the interrupt when the value is reached. This
242  * function will reduce the precision of the timer as needed in order for the
243  * requested timeout to fit in a 16-bit register.
244  */
245 int gtm_set_timer16(struct gtm_timer *tmr, unsigned long usec, bool reload)
246 {
247 	/* quite obvious, frequency which is enough for µSec precision */
248 	int freq = 1000000;
249 	unsigned int bit;
250 
251 	bit = fls_long(usec);
252 	if (bit > 15) {
253 		freq >>= bit - 15;
254 		usec >>= bit - 15;
255 	}
256 
257 	if (!freq)
258 		return -EINVAL;
259 
260 	return gtm_set_ref_timer16(tmr, freq, usec, reload);
261 }
262 EXPORT_SYMBOL(gtm_set_timer16);
263 
264 /**
265  * gtm_set_exact_utimer16 - (re)set 16 bits timer
266  * @tmr:	pointer to the gtm_timer structure obtained from gtm_get_timer
267  * @usec:	timer interval in microseconds
268  * @reload:	if set, the timer will reset upon expiry rather than
269  *         	continue running free.
270  * Context:	any
271  *
272  * This function (re)sets GTM timer so that it counts up to the requested
273  * interval value, and fires the interrupt when the value is reached. If reload
274  * flag was set, timer will also reset itself upon reference value, otherwise
275  * it continues to increment.
276  *
277  * The _exact_ bit in the function name states that this function will not
278  * crop precision of the "usec" argument, thus usec is limited to 16 bits
279  * (single timer width).
280  */
281 int gtm_set_exact_timer16(struct gtm_timer *tmr, u16 usec, bool reload)
282 {
283 	/* quite obvious, frequency which is enough for µSec precision */
284 	const int freq = 1000000;
285 
286 	/*
287 	 * We can lower the frequency (and probably power consumption) by
288 	 * dividing both frequency and usec by 2 until there is no remainder.
289 	 * But we won't bother with this unless savings are measured, so just
290 	 * run the timer as is.
291 	 */
292 
293 	return gtm_set_ref_timer16(tmr, freq, usec, reload);
294 }
295 EXPORT_SYMBOL(gtm_set_exact_timer16);
296 
297 /**
298  * gtm_stop_timer16 - stop single timer
299  * @tmr:	pointer to the gtm_timer structure obtained from gtm_get_timer
300  * Context:	any
301  *
302  * This function simply stops the GTM timer.
303  */
304 void gtm_stop_timer16(struct gtm_timer *tmr)
305 {
306 	struct gtm *gtm = tmr->gtm;
307 	int num = tmr - &gtm->timers[0];
308 	unsigned long flags;
309 
310 	spin_lock_irqsave(&gtm->lock, flags);
311 
312 	setbits8(tmr->gtcfr, GTCFR_STP(num));
313 	out_be16(tmr->gtevr, 0xFFFF);
314 
315 	spin_unlock_irqrestore(&gtm->lock, flags);
316 }
317 EXPORT_SYMBOL(gtm_stop_timer16);
318 
319 /**
320  * gtm_ack_timer16 - acknowledge timer event (free-run timers only)
321  * @tmr:	pointer to the gtm_timer structure obtained from gtm_get_timer
322  * @events:	events mask to ack
323  * Context:	any
324  *
325  * Thus function used to acknowledge timer interrupt event, use it inside the
326  * interrupt handler.
327  */
328 void gtm_ack_timer16(struct gtm_timer *tmr, u16 events)
329 {
330 	out_be16(tmr->gtevr, events);
331 }
332 EXPORT_SYMBOL(gtm_ack_timer16);
333 
334 static void __init gtm_set_shortcuts(struct device_node *np,
335 				     struct gtm_timer *timers,
336 				     struct gtm_timers_regs __iomem *regs)
337 {
338 	/*
339 	 * Yeah, I don't like this either, but timers' registers a bit messed,
340 	 * so we have to provide shortcuts to write timer independent code.
341 	 * Alternative option is to create gt*() accessors, but that will be
342 	 * even uglier and cryptic.
343 	 */
344 	timers[0].gtcfr = &regs->gtcfr1;
345 	timers[0].gtmdr = &regs->gtmdr1;
346 	timers[0].gtcnr = &regs->gtcnr1;
347 	timers[0].gtrfr = &regs->gtrfr1;
348 	timers[0].gtevr = &regs->gtevr1;
349 
350 	timers[1].gtcfr = &regs->gtcfr1;
351 	timers[1].gtmdr = &regs->gtmdr2;
352 	timers[1].gtcnr = &regs->gtcnr2;
353 	timers[1].gtrfr = &regs->gtrfr2;
354 	timers[1].gtevr = &regs->gtevr2;
355 
356 	timers[2].gtcfr = &regs->gtcfr2;
357 	timers[2].gtmdr = &regs->gtmdr3;
358 	timers[2].gtcnr = &regs->gtcnr3;
359 	timers[2].gtrfr = &regs->gtrfr3;
360 	timers[2].gtevr = &regs->gtevr3;
361 
362 	timers[3].gtcfr = &regs->gtcfr2;
363 	timers[3].gtmdr = &regs->gtmdr4;
364 	timers[3].gtcnr = &regs->gtcnr4;
365 	timers[3].gtrfr = &regs->gtrfr4;
366 	timers[3].gtevr = &regs->gtevr4;
367 
368 	/* CPM2 doesn't have primary prescaler */
369 	if (!of_device_is_compatible(np, "fsl,cpm2-gtm")) {
370 		timers[0].gtpsr = &regs->gtpsr1;
371 		timers[1].gtpsr = &regs->gtpsr2;
372 		timers[2].gtpsr = &regs->gtpsr3;
373 		timers[3].gtpsr = &regs->gtpsr4;
374 	}
375 }
376 
377 static int __init fsl_gtm_init(void)
378 {
379 	struct device_node *np;
380 
381 	for_each_compatible_node(np, NULL, "fsl,gtm") {
382 		int i;
383 		struct gtm *gtm;
384 		const u32 *clock;
385 		int size;
386 
387 		gtm = kzalloc(sizeof(*gtm), GFP_KERNEL);
388 		if (!gtm) {
389 			pr_err("%s: unable to allocate memory\n",
390 				np->full_name);
391 			continue;
392 		}
393 
394 		spin_lock_init(&gtm->lock);
395 
396 		clock = of_get_property(np, "clock-frequency", &size);
397 		if (!clock || size != sizeof(*clock)) {
398 			pr_err("%s: no clock-frequency\n", np->full_name);
399 			goto err;
400 		}
401 		gtm->clock = *clock;
402 
403 		for (i = 0; i < ARRAY_SIZE(gtm->timers); i++) {
404 			int ret;
405 			struct resource irq;
406 
407 			ret = of_irq_to_resource(np, i, &irq);
408 			if (ret == NO_IRQ) {
409 				pr_err("%s: not enough interrupts specified\n",
410 				       np->full_name);
411 				goto err;
412 			}
413 			gtm->timers[i].irq = irq.start;
414 			gtm->timers[i].gtm = gtm;
415 		}
416 
417 		gtm->regs = of_iomap(np, 0);
418 		if (!gtm->regs) {
419 			pr_err("%s: unable to iomap registers\n",
420 			       np->full_name);
421 			goto err;
422 		}
423 
424 		gtm_set_shortcuts(np, gtm->timers, gtm->regs);
425 		list_add(&gtm->list_node, &gtms);
426 
427 		/* We don't want to lose the node and its ->data */
428 		np->data = gtm;
429 		of_node_get(np);
430 
431 		continue;
432 err:
433 		kfree(gtm);
434 	}
435 	return 0;
436 }
437 arch_initcall(fsl_gtm_init);
438