xref: /openbmc/linux/arch/powerpc/sysdev/fsl_gtm.c (revision c9933d494c54f72290831191c09bb8488bfd5905)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Freescale General-purpose Timers Module
4  *
5  * Copyright (c) Freescale Semiconductor, Inc. 2006.
6  *               Shlomi Gridish <gridish@freescale.com>
7  *               Jerry Huang <Chang-Ming.Huang@freescale.com>
8  * Copyright (c) MontaVista Software, Inc. 2008.
9  *               Anton Vorontsov <avorontsov@ru.mvista.com>
10  */
11 
12 #include <linux/kernel.h>
13 #include <linux/err.h>
14 #include <linux/errno.h>
15 #include <linux/list.h>
16 #include <linux/io.h>
17 #include <linux/of.h>
18 #include <linux/of_address.h>
19 #include <linux/of_irq.h>
20 #include <linux/spinlock.h>
21 #include <linux/bitops.h>
22 #include <linux/slab.h>
23 #include <linux/export.h>
24 #include <asm/fsl_gtm.h>
25 
26 #define GTCFR_STP(x)		((x) & 1 ? 1 << 5 : 1 << 1)
27 #define GTCFR_RST(x)		((x) & 1 ? 1 << 4 : 1 << 0)
28 
29 #define GTMDR_ICLK_MASK		(3 << 1)
30 #define GTMDR_ICLK_ICAS		(0 << 1)
31 #define GTMDR_ICLK_ICLK		(1 << 1)
32 #define GTMDR_ICLK_SLGO		(2 << 1)
33 #define GTMDR_FRR		(1 << 3)
34 #define GTMDR_ORI		(1 << 4)
35 #define GTMDR_SPS(x)		((x) << 8)
36 
37 struct gtm_timers_regs {
38 	u8	gtcfr1;		/* Timer 1, Timer 2 global config register */
39 	u8	res0[0x3];
40 	u8	gtcfr2;		/* Timer 3, timer 4 global config register */
41 	u8	res1[0xB];
42 	__be16	gtmdr1;		/* Timer 1 mode register */
43 	__be16	gtmdr2;		/* Timer 2 mode register */
44 	__be16	gtrfr1;		/* Timer 1 reference register */
45 	__be16	gtrfr2;		/* Timer 2 reference register */
46 	__be16	gtcpr1;		/* Timer 1 capture register */
47 	__be16	gtcpr2;		/* Timer 2 capture register */
48 	__be16	gtcnr1;		/* Timer 1 counter */
49 	__be16	gtcnr2;		/* Timer 2 counter */
50 	__be16	gtmdr3;		/* Timer 3 mode register */
51 	__be16	gtmdr4;		/* Timer 4 mode register */
52 	__be16	gtrfr3;		/* Timer 3 reference register */
53 	__be16	gtrfr4;		/* Timer 4 reference register */
54 	__be16	gtcpr3;		/* Timer 3 capture register */
55 	__be16	gtcpr4;		/* Timer 4 capture register */
56 	__be16	gtcnr3;		/* Timer 3 counter */
57 	__be16	gtcnr4;		/* Timer 4 counter */
58 	__be16	gtevr1;		/* Timer 1 event register */
59 	__be16	gtevr2;		/* Timer 2 event register */
60 	__be16	gtevr3;		/* Timer 3 event register */
61 	__be16	gtevr4;		/* Timer 4 event register */
62 	__be16	gtpsr1;		/* Timer 1 prescale register */
63 	__be16	gtpsr2;		/* Timer 2 prescale register */
64 	__be16	gtpsr3;		/* Timer 3 prescale register */
65 	__be16	gtpsr4;		/* Timer 4 prescale register */
66 	u8 res2[0x40];
67 } __attribute__ ((packed));
68 
69 struct gtm {
70 	unsigned int clock;
71 	struct gtm_timers_regs __iomem *regs;
72 	struct gtm_timer timers[4];
73 	spinlock_t lock;
74 	struct list_head list_node;
75 };
76 
77 static LIST_HEAD(gtms);
78 
79 /**
80  * gtm_get_timer - request GTM timer to use it with the rest of GTM API
81  * Context:	non-IRQ
82  *
83  * This function reserves GTM timer for later use. It returns gtm_timer
84  * structure to use with the rest of GTM API, you should use timer->irq
85  * to manage timer interrupt.
86  */
87 struct gtm_timer *gtm_get_timer16(void)
88 {
89 	struct gtm *gtm;
90 	int i;
91 
92 	list_for_each_entry(gtm, &gtms, list_node) {
93 		spin_lock_irq(&gtm->lock);
94 
95 		for (i = 0; i < ARRAY_SIZE(gtm->timers); i++) {
96 			if (!gtm->timers[i].requested) {
97 				gtm->timers[i].requested = true;
98 				spin_unlock_irq(&gtm->lock);
99 				return &gtm->timers[i];
100 			}
101 		}
102 
103 		spin_unlock_irq(&gtm->lock);
104 	}
105 
106 	if (!list_empty(&gtms))
107 		return ERR_PTR(-EBUSY);
108 	return ERR_PTR(-ENODEV);
109 }
110 EXPORT_SYMBOL(gtm_get_timer16);
111 
112 /**
113  * gtm_get_specific_timer - request specific GTM timer
114  * @gtm:	specific GTM, pass here GTM's device_node->data
115  * @timer:	specific timer number, Timer1 is 0.
116  * Context:	non-IRQ
117  *
118  * This function reserves GTM timer for later use. It returns gtm_timer
119  * structure to use with the rest of GTM API, you should use timer->irq
120  * to manage timer interrupt.
121  */
122 struct gtm_timer *gtm_get_specific_timer16(struct gtm *gtm,
123 					   unsigned int timer)
124 {
125 	struct gtm_timer *ret = ERR_PTR(-EBUSY);
126 
127 	if (timer > 3)
128 		return ERR_PTR(-EINVAL);
129 
130 	spin_lock_irq(&gtm->lock);
131 
132 	if (gtm->timers[timer].requested)
133 		goto out;
134 
135 	ret = &gtm->timers[timer];
136 	ret->requested = true;
137 
138 out:
139 	spin_unlock_irq(&gtm->lock);
140 	return ret;
141 }
142 EXPORT_SYMBOL(gtm_get_specific_timer16);
143 
144 /**
145  * gtm_put_timer16 - release 16 bits GTM timer
146  * @tmr:	pointer to the gtm_timer structure obtained from gtm_get_timer
147  * Context:	any
148  *
149  * This function releases GTM timer so others may request it.
150  */
151 void gtm_put_timer16(struct gtm_timer *tmr)
152 {
153 	gtm_stop_timer16(tmr);
154 
155 	spin_lock_irq(&tmr->gtm->lock);
156 	tmr->requested = false;
157 	spin_unlock_irq(&tmr->gtm->lock);
158 }
159 EXPORT_SYMBOL(gtm_put_timer16);
160 
161 /*
162  * This is back-end for the exported functions, it's used to reset single
163  * timer in reference mode.
164  */
165 static int gtm_set_ref_timer16(struct gtm_timer *tmr, int frequency,
166 			       int reference_value, bool free_run)
167 {
168 	struct gtm *gtm = tmr->gtm;
169 	int num = tmr - &gtm->timers[0];
170 	unsigned int prescaler;
171 	u8 iclk = GTMDR_ICLK_ICLK;
172 	u8 psr;
173 	u8 sps;
174 	unsigned long flags;
175 	int max_prescaler = 256 * 256 * 16;
176 
177 	/* CPM2 doesn't have primary prescaler */
178 	if (!tmr->gtpsr)
179 		max_prescaler /= 256;
180 
181 	prescaler = gtm->clock / frequency;
182 	/*
183 	 * We have two 8 bit prescalers -- primary and secondary (psr, sps),
184 	 * plus "slow go" mode (clk / 16). So, total prescale value is
185 	 * 16 * (psr + 1) * (sps + 1). Though, for CPM2 GTMs we losing psr.
186 	 */
187 	if (prescaler > max_prescaler)
188 		return -EINVAL;
189 
190 	if (prescaler > max_prescaler / 16) {
191 		iclk = GTMDR_ICLK_SLGO;
192 		prescaler /= 16;
193 	}
194 
195 	if (prescaler <= 256) {
196 		psr = 0;
197 		sps = prescaler - 1;
198 	} else {
199 		psr = 256 - 1;
200 		sps = prescaler / 256 - 1;
201 	}
202 
203 	spin_lock_irqsave(&gtm->lock, flags);
204 
205 	/*
206 	 * Properly reset timers: stop, reset, set up prescalers, reference
207 	 * value and clear event register.
208 	 */
209 	clrsetbits_8(tmr->gtcfr, ~(GTCFR_STP(num) | GTCFR_RST(num)),
210 				 GTCFR_STP(num) | GTCFR_RST(num));
211 
212 	setbits8(tmr->gtcfr, GTCFR_STP(num));
213 
214 	if (tmr->gtpsr)
215 		out_be16(tmr->gtpsr, psr);
216 	clrsetbits_be16(tmr->gtmdr, 0xFFFF, iclk | GTMDR_SPS(sps) |
217 			GTMDR_ORI | (free_run ? GTMDR_FRR : 0));
218 	out_be16(tmr->gtcnr, 0);
219 	out_be16(tmr->gtrfr, reference_value);
220 	out_be16(tmr->gtevr, 0xFFFF);
221 
222 	/* Let it be. */
223 	clrbits8(tmr->gtcfr, GTCFR_STP(num));
224 
225 	spin_unlock_irqrestore(&gtm->lock, flags);
226 
227 	return 0;
228 }
229 
230 /**
231  * gtm_set_timer16 - (re)set 16 bit timer with arbitrary precision
232  * @tmr:	pointer to the gtm_timer structure obtained from gtm_get_timer
233  * @usec:	timer interval in microseconds
234  * @reload:	if set, the timer will reset upon expiry rather than
235  *         	continue running free.
236  * Context:	any
237  *
238  * This function (re)sets the GTM timer so that it counts up to the requested
239  * interval value, and fires the interrupt when the value is reached. This
240  * function will reduce the precision of the timer as needed in order for the
241  * requested timeout to fit in a 16-bit register.
242  */
243 int gtm_set_timer16(struct gtm_timer *tmr, unsigned long usec, bool reload)
244 {
245 	/* quite obvious, frequency which is enough for µSec precision */
246 	int freq = 1000000;
247 	unsigned int bit;
248 
249 	bit = fls_long(usec);
250 	if (bit > 15) {
251 		freq >>= bit - 15;
252 		usec >>= bit - 15;
253 	}
254 
255 	if (!freq)
256 		return -EINVAL;
257 
258 	return gtm_set_ref_timer16(tmr, freq, usec, reload);
259 }
260 EXPORT_SYMBOL(gtm_set_timer16);
261 
262 /**
263  * gtm_set_exact_utimer16 - (re)set 16 bits timer
264  * @tmr:	pointer to the gtm_timer structure obtained from gtm_get_timer
265  * @usec:	timer interval in microseconds
266  * @reload:	if set, the timer will reset upon expiry rather than
267  *         	continue running free.
268  * Context:	any
269  *
270  * This function (re)sets GTM timer so that it counts up to the requested
271  * interval value, and fires the interrupt when the value is reached. If reload
272  * flag was set, timer will also reset itself upon reference value, otherwise
273  * it continues to increment.
274  *
275  * The _exact_ bit in the function name states that this function will not
276  * crop precision of the "usec" argument, thus usec is limited to 16 bits
277  * (single timer width).
278  */
279 int gtm_set_exact_timer16(struct gtm_timer *tmr, u16 usec, bool reload)
280 {
281 	/* quite obvious, frequency which is enough for µSec precision */
282 	const int freq = 1000000;
283 
284 	/*
285 	 * We can lower the frequency (and probably power consumption) by
286 	 * dividing both frequency and usec by 2 until there is no remainder.
287 	 * But we won't bother with this unless savings are measured, so just
288 	 * run the timer as is.
289 	 */
290 
291 	return gtm_set_ref_timer16(tmr, freq, usec, reload);
292 }
293 EXPORT_SYMBOL(gtm_set_exact_timer16);
294 
295 /**
296  * gtm_stop_timer16 - stop single timer
297  * @tmr:	pointer to the gtm_timer structure obtained from gtm_get_timer
298  * Context:	any
299  *
300  * This function simply stops the GTM timer.
301  */
302 void gtm_stop_timer16(struct gtm_timer *tmr)
303 {
304 	struct gtm *gtm = tmr->gtm;
305 	int num = tmr - &gtm->timers[0];
306 	unsigned long flags;
307 
308 	spin_lock_irqsave(&gtm->lock, flags);
309 
310 	setbits8(tmr->gtcfr, GTCFR_STP(num));
311 	out_be16(tmr->gtevr, 0xFFFF);
312 
313 	spin_unlock_irqrestore(&gtm->lock, flags);
314 }
315 EXPORT_SYMBOL(gtm_stop_timer16);
316 
317 /**
318  * gtm_ack_timer16 - acknowledge timer event (free-run timers only)
319  * @tmr:	pointer to the gtm_timer structure obtained from gtm_get_timer
320  * @events:	events mask to ack
321  * Context:	any
322  *
323  * Thus function used to acknowledge timer interrupt event, use it inside the
324  * interrupt handler.
325  */
326 void gtm_ack_timer16(struct gtm_timer *tmr, u16 events)
327 {
328 	out_be16(tmr->gtevr, events);
329 }
330 EXPORT_SYMBOL(gtm_ack_timer16);
331 
332 static void __init gtm_set_shortcuts(struct device_node *np,
333 				     struct gtm_timer *timers,
334 				     struct gtm_timers_regs __iomem *regs)
335 {
336 	/*
337 	 * Yeah, I don't like this either, but timers' registers a bit messed,
338 	 * so we have to provide shortcuts to write timer independent code.
339 	 * Alternative option is to create gt*() accessors, but that will be
340 	 * even uglier and cryptic.
341 	 */
342 	timers[0].gtcfr = &regs->gtcfr1;
343 	timers[0].gtmdr = &regs->gtmdr1;
344 	timers[0].gtcnr = &regs->gtcnr1;
345 	timers[0].gtrfr = &regs->gtrfr1;
346 	timers[0].gtevr = &regs->gtevr1;
347 
348 	timers[1].gtcfr = &regs->gtcfr1;
349 	timers[1].gtmdr = &regs->gtmdr2;
350 	timers[1].gtcnr = &regs->gtcnr2;
351 	timers[1].gtrfr = &regs->gtrfr2;
352 	timers[1].gtevr = &regs->gtevr2;
353 
354 	timers[2].gtcfr = &regs->gtcfr2;
355 	timers[2].gtmdr = &regs->gtmdr3;
356 	timers[2].gtcnr = &regs->gtcnr3;
357 	timers[2].gtrfr = &regs->gtrfr3;
358 	timers[2].gtevr = &regs->gtevr3;
359 
360 	timers[3].gtcfr = &regs->gtcfr2;
361 	timers[3].gtmdr = &regs->gtmdr4;
362 	timers[3].gtcnr = &regs->gtcnr4;
363 	timers[3].gtrfr = &regs->gtrfr4;
364 	timers[3].gtevr = &regs->gtevr4;
365 
366 	/* CPM2 doesn't have primary prescaler */
367 	if (!of_device_is_compatible(np, "fsl,cpm2-gtm")) {
368 		timers[0].gtpsr = &regs->gtpsr1;
369 		timers[1].gtpsr = &regs->gtpsr2;
370 		timers[2].gtpsr = &regs->gtpsr3;
371 		timers[3].gtpsr = &regs->gtpsr4;
372 	}
373 }
374 
375 static int __init fsl_gtm_init(void)
376 {
377 	struct device_node *np;
378 
379 	for_each_compatible_node(np, NULL, "fsl,gtm") {
380 		int i;
381 		struct gtm *gtm;
382 		const u32 *clock;
383 		int size;
384 
385 		gtm = kzalloc(sizeof(*gtm), GFP_KERNEL);
386 		if (!gtm) {
387 			pr_err("%pOF: unable to allocate memory\n",
388 				np);
389 			continue;
390 		}
391 
392 		spin_lock_init(&gtm->lock);
393 
394 		clock = of_get_property(np, "clock-frequency", &size);
395 		if (!clock || size != sizeof(*clock)) {
396 			pr_err("%pOF: no clock-frequency\n", np);
397 			goto err;
398 		}
399 		gtm->clock = *clock;
400 
401 		for (i = 0; i < ARRAY_SIZE(gtm->timers); i++) {
402 			unsigned int irq;
403 
404 			irq = irq_of_parse_and_map(np, i);
405 			if (!irq) {
406 				pr_err("%pOF: not enough interrupts specified\n",
407 				       np);
408 				goto err;
409 			}
410 			gtm->timers[i].irq = irq;
411 			gtm->timers[i].gtm = gtm;
412 		}
413 
414 		gtm->regs = of_iomap(np, 0);
415 		if (!gtm->regs) {
416 			pr_err("%pOF: unable to iomap registers\n",
417 			       np);
418 			goto err;
419 		}
420 
421 		gtm_set_shortcuts(np, gtm->timers, gtm->regs);
422 		list_add(&gtm->list_node, &gtms);
423 
424 		/* We don't want to lose the node and its ->data */
425 		np->data = gtm;
426 		of_node_get(np);
427 
428 		continue;
429 err:
430 		kfree(gtm);
431 	}
432 	return 0;
433 }
434 arch_initcall(fsl_gtm_init);
435