1 /* 2 * General Purpose functions for the global management of the 3 * 8260 Communication Processor Module. 4 * Copyright (c) 1999-2001 Dan Malek <dan@embeddedalley.com> 5 * Copyright (c) 2000 MontaVista Software, Inc (source@mvista.com) 6 * 2.3.99 Updates 7 * 8 * 2006 (c) MontaVista Software, Inc. 9 * Vitaly Bordug <vbordug@ru.mvista.com> 10 * Merged to arch/powerpc from arch/ppc/syslib/cpm2_common.c 11 * 12 * This file is licensed under the terms of the GNU General Public License 13 * version 2. This program is licensed "as is" without any warranty of any 14 * kind, whether express or implied. 15 */ 16 17 /* 18 * 19 * In addition to the individual control of the communication 20 * channels, there are a few functions that globally affect the 21 * communication processor. 22 * 23 * Buffer descriptors must be allocated from the dual ported memory 24 * space. The allocator for that is here. When the communication 25 * process is reset, we reclaim the memory available. There is 26 * currently no deallocator for this memory. 27 */ 28 #include <linux/errno.h> 29 #include <linux/sched.h> 30 #include <linux/kernel.h> 31 #include <linux/param.h> 32 #include <linux/string.h> 33 #include <linux/mm.h> 34 #include <linux/interrupt.h> 35 #include <linux/module.h> 36 #include <linux/of.h> 37 38 #include <asm/io.h> 39 #include <asm/irq.h> 40 #include <asm/mpc8260.h> 41 #include <asm/page.h> 42 #include <asm/cpm2.h> 43 #include <asm/rheap.h> 44 #include <asm/fs_pd.h> 45 46 #include <sysdev/fsl_soc.h> 47 48 cpm_cpm2_t __iomem *cpmp; /* Pointer to comm processor space */ 49 50 /* We allocate this here because it is used almost exclusively for 51 * the communication processor devices. 52 */ 53 cpm2_map_t __iomem *cpm2_immr; 54 EXPORT_SYMBOL(cpm2_immr); 55 56 #define CPM_MAP_SIZE (0x40000) /* 256k - the PQ3 reserve this amount 57 of space for CPM as it is larger 58 than on PQ2 */ 59 60 void __init cpm2_reset(void) 61 { 62 #ifdef CONFIG_PPC_85xx 63 cpm2_immr = ioremap(get_immrbase() + 0x80000, CPM_MAP_SIZE); 64 #else 65 cpm2_immr = ioremap(get_immrbase(), CPM_MAP_SIZE); 66 #endif 67 68 /* Tell everyone where the comm processor resides. 69 */ 70 cpmp = &cpm2_immr->im_cpm; 71 72 #ifndef CONFIG_PPC_EARLY_DEBUG_CPM 73 /* Reset the CPM. 74 */ 75 cpm_command(CPM_CR_RST, 0); 76 #endif 77 } 78 79 static DEFINE_SPINLOCK(cmd_lock); 80 81 #define MAX_CR_CMD_LOOPS 10000 82 83 int cpm_command(u32 command, u8 opcode) 84 { 85 int i, ret; 86 unsigned long flags; 87 88 spin_lock_irqsave(&cmd_lock, flags); 89 90 ret = 0; 91 out_be32(&cpmp->cp_cpcr, command | opcode | CPM_CR_FLG); 92 for (i = 0; i < MAX_CR_CMD_LOOPS; i++) 93 if ((in_be32(&cpmp->cp_cpcr) & CPM_CR_FLG) == 0) 94 goto out; 95 96 printk(KERN_ERR "%s(): Not able to issue CPM command\n", __func__); 97 ret = -EIO; 98 out: 99 spin_unlock_irqrestore(&cmd_lock, flags); 100 return ret; 101 } 102 EXPORT_SYMBOL(cpm_command); 103 104 /* Set a baud rate generator. This needs lots of work. There are 105 * eight BRGs, which can be connected to the CPM channels or output 106 * as clocks. The BRGs are in two different block of internal 107 * memory mapped space. 108 * The baud rate clock is the system clock divided by something. 109 * It was set up long ago during the initial boot phase and is 110 * is given to us. 111 * Baud rate clocks are zero-based in the driver code (as that maps 112 * to port numbers). Documentation uses 1-based numbering. 113 */ 114 void __cpm2_setbrg(uint brg, uint rate, uint clk, int div16, int src) 115 { 116 u32 __iomem *bp; 117 u32 val; 118 119 /* This is good enough to get SMCs running..... 120 */ 121 if (brg < 4) { 122 bp = cpm2_map_size(im_brgc1, 16); 123 } else { 124 bp = cpm2_map_size(im_brgc5, 16); 125 brg -= 4; 126 } 127 bp += brg; 128 /* Round the clock divider to the nearest integer. */ 129 val = (((clk * 2 / rate) - 1) & ~1) | CPM_BRG_EN | src; 130 if (div16) 131 val |= CPM_BRG_DIV16; 132 133 out_be32(bp, val); 134 cpm2_unmap(bp); 135 } 136 EXPORT_SYMBOL(__cpm2_setbrg); 137 138 int cpm2_clk_setup(enum cpm_clk_target target, int clock, int mode) 139 { 140 int ret = 0; 141 int shift; 142 int i, bits = 0; 143 cpmux_t __iomem *im_cpmux; 144 u32 __iomem *reg; 145 u32 mask = 7; 146 147 u8 clk_map[][3] = { 148 {CPM_CLK_FCC1, CPM_BRG5, 0}, 149 {CPM_CLK_FCC1, CPM_BRG6, 1}, 150 {CPM_CLK_FCC1, CPM_BRG7, 2}, 151 {CPM_CLK_FCC1, CPM_BRG8, 3}, 152 {CPM_CLK_FCC1, CPM_CLK9, 4}, 153 {CPM_CLK_FCC1, CPM_CLK10, 5}, 154 {CPM_CLK_FCC1, CPM_CLK11, 6}, 155 {CPM_CLK_FCC1, CPM_CLK12, 7}, 156 {CPM_CLK_FCC2, CPM_BRG5, 0}, 157 {CPM_CLK_FCC2, CPM_BRG6, 1}, 158 {CPM_CLK_FCC2, CPM_BRG7, 2}, 159 {CPM_CLK_FCC2, CPM_BRG8, 3}, 160 {CPM_CLK_FCC2, CPM_CLK13, 4}, 161 {CPM_CLK_FCC2, CPM_CLK14, 5}, 162 {CPM_CLK_FCC2, CPM_CLK15, 6}, 163 {CPM_CLK_FCC2, CPM_CLK16, 7}, 164 {CPM_CLK_FCC3, CPM_BRG5, 0}, 165 {CPM_CLK_FCC3, CPM_BRG6, 1}, 166 {CPM_CLK_FCC3, CPM_BRG7, 2}, 167 {CPM_CLK_FCC3, CPM_BRG8, 3}, 168 {CPM_CLK_FCC3, CPM_CLK13, 4}, 169 {CPM_CLK_FCC3, CPM_CLK14, 5}, 170 {CPM_CLK_FCC3, CPM_CLK15, 6}, 171 {CPM_CLK_FCC3, CPM_CLK16, 7}, 172 {CPM_CLK_SCC1, CPM_BRG1, 0}, 173 {CPM_CLK_SCC1, CPM_BRG2, 1}, 174 {CPM_CLK_SCC1, CPM_BRG3, 2}, 175 {CPM_CLK_SCC1, CPM_BRG4, 3}, 176 {CPM_CLK_SCC1, CPM_CLK11, 4}, 177 {CPM_CLK_SCC1, CPM_CLK12, 5}, 178 {CPM_CLK_SCC1, CPM_CLK3, 6}, 179 {CPM_CLK_SCC1, CPM_CLK4, 7}, 180 {CPM_CLK_SCC2, CPM_BRG1, 0}, 181 {CPM_CLK_SCC2, CPM_BRG2, 1}, 182 {CPM_CLK_SCC2, CPM_BRG3, 2}, 183 {CPM_CLK_SCC2, CPM_BRG4, 3}, 184 {CPM_CLK_SCC2, CPM_CLK11, 4}, 185 {CPM_CLK_SCC2, CPM_CLK12, 5}, 186 {CPM_CLK_SCC2, CPM_CLK3, 6}, 187 {CPM_CLK_SCC2, CPM_CLK4, 7}, 188 {CPM_CLK_SCC3, CPM_BRG1, 0}, 189 {CPM_CLK_SCC3, CPM_BRG2, 1}, 190 {CPM_CLK_SCC3, CPM_BRG3, 2}, 191 {CPM_CLK_SCC3, CPM_BRG4, 3}, 192 {CPM_CLK_SCC3, CPM_CLK5, 4}, 193 {CPM_CLK_SCC3, CPM_CLK6, 5}, 194 {CPM_CLK_SCC3, CPM_CLK7, 6}, 195 {CPM_CLK_SCC3, CPM_CLK8, 7}, 196 {CPM_CLK_SCC4, CPM_BRG1, 0}, 197 {CPM_CLK_SCC4, CPM_BRG2, 1}, 198 {CPM_CLK_SCC4, CPM_BRG3, 2}, 199 {CPM_CLK_SCC4, CPM_BRG4, 3}, 200 {CPM_CLK_SCC4, CPM_CLK5, 4}, 201 {CPM_CLK_SCC4, CPM_CLK6, 5}, 202 {CPM_CLK_SCC4, CPM_CLK7, 6}, 203 {CPM_CLK_SCC4, CPM_CLK8, 7}, 204 }; 205 206 im_cpmux = cpm2_map(im_cpmux); 207 208 switch (target) { 209 case CPM_CLK_SCC1: 210 reg = &im_cpmux->cmx_scr; 211 shift = 24; 212 break; 213 case CPM_CLK_SCC2: 214 reg = &im_cpmux->cmx_scr; 215 shift = 16; 216 break; 217 case CPM_CLK_SCC3: 218 reg = &im_cpmux->cmx_scr; 219 shift = 8; 220 break; 221 case CPM_CLK_SCC4: 222 reg = &im_cpmux->cmx_scr; 223 shift = 0; 224 break; 225 case CPM_CLK_FCC1: 226 reg = &im_cpmux->cmx_fcr; 227 shift = 24; 228 break; 229 case CPM_CLK_FCC2: 230 reg = &im_cpmux->cmx_fcr; 231 shift = 16; 232 break; 233 case CPM_CLK_FCC3: 234 reg = &im_cpmux->cmx_fcr; 235 shift = 8; 236 break; 237 default: 238 printk(KERN_ERR "cpm2_clock_setup: invalid clock target\n"); 239 return -EINVAL; 240 } 241 242 for (i = 0; i < ARRAY_SIZE(clk_map); i++) { 243 if (clk_map[i][0] == target && clk_map[i][1] == clock) { 244 bits = clk_map[i][2]; 245 break; 246 } 247 } 248 if (i == ARRAY_SIZE(clk_map)) 249 ret = -EINVAL; 250 251 bits <<= shift; 252 mask <<= shift; 253 254 if (mode == CPM_CLK_RTX) { 255 bits |= bits << 3; 256 mask |= mask << 3; 257 } else if (mode == CPM_CLK_RX) { 258 bits <<= 3; 259 mask <<= 3; 260 } 261 262 out_be32(reg, (in_be32(reg) & ~mask) | bits); 263 264 cpm2_unmap(im_cpmux); 265 return ret; 266 } 267 268 int cpm2_smc_clk_setup(enum cpm_clk_target target, int clock) 269 { 270 int ret = 0; 271 int shift; 272 int i, bits = 0; 273 cpmux_t __iomem *im_cpmux; 274 u8 __iomem *reg; 275 u8 mask = 3; 276 277 u8 clk_map[][3] = { 278 {CPM_CLK_SMC1, CPM_BRG1, 0}, 279 {CPM_CLK_SMC1, CPM_BRG7, 1}, 280 {CPM_CLK_SMC1, CPM_CLK7, 2}, 281 {CPM_CLK_SMC1, CPM_CLK9, 3}, 282 {CPM_CLK_SMC2, CPM_BRG2, 0}, 283 {CPM_CLK_SMC2, CPM_BRG8, 1}, 284 {CPM_CLK_SMC2, CPM_CLK4, 2}, 285 {CPM_CLK_SMC2, CPM_CLK15, 3}, 286 }; 287 288 im_cpmux = cpm2_map(im_cpmux); 289 290 switch (target) { 291 case CPM_CLK_SMC1: 292 reg = &im_cpmux->cmx_smr; 293 mask = 3; 294 shift = 4; 295 break; 296 case CPM_CLK_SMC2: 297 reg = &im_cpmux->cmx_smr; 298 mask = 3; 299 shift = 0; 300 break; 301 default: 302 printk(KERN_ERR "cpm2_smc_clock_setup: invalid clock target\n"); 303 return -EINVAL; 304 } 305 306 for (i = 0; i < ARRAY_SIZE(clk_map); i++) { 307 if (clk_map[i][0] == target && clk_map[i][1] == clock) { 308 bits = clk_map[i][2]; 309 break; 310 } 311 } 312 if (i == ARRAY_SIZE(clk_map)) 313 ret = -EINVAL; 314 315 bits <<= shift; 316 mask <<= shift; 317 318 out_8(reg, (in_8(reg) & ~mask) | bits); 319 320 cpm2_unmap(im_cpmux); 321 return ret; 322 } 323 324 struct cpm2_ioports { 325 u32 dir, par, sor, odr, dat; 326 u32 res[3]; 327 }; 328 329 void cpm2_set_pin(int port, int pin, int flags) 330 { 331 struct cpm2_ioports __iomem *iop = 332 (struct cpm2_ioports __iomem *)&cpm2_immr->im_ioport; 333 334 pin = 1 << (31 - pin); 335 336 if (flags & CPM_PIN_OUTPUT) 337 setbits32(&iop[port].dir, pin); 338 else 339 clrbits32(&iop[port].dir, pin); 340 341 if (!(flags & CPM_PIN_GPIO)) 342 setbits32(&iop[port].par, pin); 343 else 344 clrbits32(&iop[port].par, pin); 345 346 if (flags & CPM_PIN_SECONDARY) 347 setbits32(&iop[port].sor, pin); 348 else 349 clrbits32(&iop[port].sor, pin); 350 351 if (flags & CPM_PIN_OPENDRAIN) 352 setbits32(&iop[port].odr, pin); 353 else 354 clrbits32(&iop[port].odr, pin); 355 } 356