xref: /openbmc/linux/arch/powerpc/sysdev/cpm2.c (revision ee7da21a)
1 /*
2  * General Purpose functions for the global management of the
3  * 8260 Communication Processor Module.
4  * Copyright (c) 1999-2001 Dan Malek <dan@embeddedalley.com>
5  * Copyright (c) 2000 MontaVista Software, Inc (source@mvista.com)
6  *	2.3.99 Updates
7  *
8  * 2006 (c) MontaVista Software, Inc.
9  * Vitaly Bordug <vbordug@ru.mvista.com>
10  * 	Merged to arch/powerpc from arch/ppc/syslib/cpm2_common.c
11  *
12  * This file is licensed under the terms of the GNU General Public License
13  * version 2. This program is licensed "as is" without any warranty of any
14  * kind, whether express or implied.
15  */
16 
17 /*
18  *
19  * In addition to the individual control of the communication
20  * channels, there are a few functions that globally affect the
21  * communication processor.
22  *
23  * Buffer descriptors must be allocated from the dual ported memory
24  * space.  The allocator for that is here.  When the communication
25  * process is reset, we reclaim the memory available.  There is
26  * currently no deallocator for this memory.
27  */
28 #include <linux/errno.h>
29 #include <linux/sched.h>
30 #include <linux/kernel.h>
31 #include <linux/param.h>
32 #include <linux/string.h>
33 #include <linux/mm.h>
34 #include <linux/interrupt.h>
35 #include <linux/module.h>
36 #include <linux/of.h>
37 
38 #include <asm/io.h>
39 #include <asm/irq.h>
40 #include <asm/mpc8260.h>
41 #include <asm/page.h>
42 #include <asm/cpm2.h>
43 #include <asm/rheap.h>
44 #include <asm/fs_pd.h>
45 
46 #include <sysdev/fsl_soc.h>
47 
48 cpm_cpm2_t __iomem *cpmp; /* Pointer to comm processor space */
49 
50 /* We allocate this here because it is used almost exclusively for
51  * the communication processor devices.
52  */
53 cpm2_map_t __iomem *cpm2_immr;
54 EXPORT_SYMBOL(cpm2_immr);
55 
56 #define CPM_MAP_SIZE	(0x40000)	/* 256k - the PQ3 reserve this amount
57 					   of space for CPM as it is larger
58 					   than on PQ2 */
59 
60 void __init cpm2_reset(void)
61 {
62 #ifdef CONFIG_PPC_85xx
63 	cpm2_immr = ioremap(get_immrbase() + 0x80000, CPM_MAP_SIZE);
64 #else
65 	cpm2_immr = ioremap(get_immrbase(), CPM_MAP_SIZE);
66 #endif
67 
68 	/* Tell everyone where the comm processor resides.
69 	 */
70 	cpmp = &cpm2_immr->im_cpm;
71 
72 #ifndef CONFIG_PPC_EARLY_DEBUG_CPM
73 	/* Reset the CPM.
74 	 */
75 	cpm_command(CPM_CR_RST, 0);
76 #endif
77 }
78 
79 static DEFINE_SPINLOCK(cmd_lock);
80 
81 #define MAX_CR_CMD_LOOPS        10000
82 
83 int cpm_command(u32 command, u8 opcode)
84 {
85 	int i, ret;
86 	unsigned long flags;
87 
88 	spin_lock_irqsave(&cmd_lock, flags);
89 
90 	ret = 0;
91 	out_be32(&cpmp->cp_cpcr, command | opcode | CPM_CR_FLG);
92 	for (i = 0; i < MAX_CR_CMD_LOOPS; i++)
93 		if ((in_be32(&cpmp->cp_cpcr) & CPM_CR_FLG) == 0)
94 			goto out;
95 
96 	printk(KERN_ERR "%s(): Not able to issue CPM command\n", __func__);
97 	ret = -EIO;
98 out:
99 	spin_unlock_irqrestore(&cmd_lock, flags);
100 	return ret;
101 }
102 EXPORT_SYMBOL(cpm_command);
103 
104 /* Set a baud rate generator.  This needs lots of work.  There are
105  * eight BRGs, which can be connected to the CPM channels or output
106  * as clocks.  The BRGs are in two different block of internal
107  * memory mapped space.
108  * The baud rate clock is the system clock divided by something.
109  * It was set up long ago during the initial boot phase and is
110  * is given to us.
111  * Baud rate clocks are zero-based in the driver code (as that maps
112  * to port numbers).  Documentation uses 1-based numbering.
113  */
114 void __cpm2_setbrg(uint brg, uint rate, uint clk, int div16, int src)
115 {
116 	u32 __iomem *bp;
117 	u32 val;
118 
119 	/* This is good enough to get SMCs running.....
120 	*/
121 	if (brg < 4) {
122 		bp = cpm2_map_size(im_brgc1, 16);
123 	} else {
124 		bp = cpm2_map_size(im_brgc5, 16);
125 		brg -= 4;
126 	}
127 	bp += brg;
128 	/* Round the clock divider to the nearest integer. */
129 	val = (((clk * 2 / rate) - 1) & ~1) | CPM_BRG_EN | src;
130 	if (div16)
131 		val |= CPM_BRG_DIV16;
132 
133 	out_be32(bp, val);
134 	cpm2_unmap(bp);
135 }
136 EXPORT_SYMBOL(__cpm2_setbrg);
137 
138 int cpm2_clk_setup(enum cpm_clk_target target, int clock, int mode)
139 {
140 	int ret = 0;
141 	int shift;
142 	int i, bits = 0;
143 	cpmux_t __iomem *im_cpmux;
144 	u32 __iomem *reg;
145 	u32 mask = 7;
146 
147 	u8 clk_map[][3] = {
148 		{CPM_CLK_FCC1, CPM_BRG5, 0},
149 		{CPM_CLK_FCC1, CPM_BRG6, 1},
150 		{CPM_CLK_FCC1, CPM_BRG7, 2},
151 		{CPM_CLK_FCC1, CPM_BRG8, 3},
152 		{CPM_CLK_FCC1, CPM_CLK9, 4},
153 		{CPM_CLK_FCC1, CPM_CLK10, 5},
154 		{CPM_CLK_FCC1, CPM_CLK11, 6},
155 		{CPM_CLK_FCC1, CPM_CLK12, 7},
156 		{CPM_CLK_FCC2, CPM_BRG5, 0},
157 		{CPM_CLK_FCC2, CPM_BRG6, 1},
158 		{CPM_CLK_FCC2, CPM_BRG7, 2},
159 		{CPM_CLK_FCC2, CPM_BRG8, 3},
160 		{CPM_CLK_FCC2, CPM_CLK13, 4},
161 		{CPM_CLK_FCC2, CPM_CLK14, 5},
162 		{CPM_CLK_FCC2, CPM_CLK15, 6},
163 		{CPM_CLK_FCC2, CPM_CLK16, 7},
164 		{CPM_CLK_FCC3, CPM_BRG5, 0},
165 		{CPM_CLK_FCC3, CPM_BRG6, 1},
166 		{CPM_CLK_FCC3, CPM_BRG7, 2},
167 		{CPM_CLK_FCC3, CPM_BRG8, 3},
168 		{CPM_CLK_FCC3, CPM_CLK13, 4},
169 		{CPM_CLK_FCC3, CPM_CLK14, 5},
170 		{CPM_CLK_FCC3, CPM_CLK15, 6},
171 		{CPM_CLK_FCC3, CPM_CLK16, 7},
172 		{CPM_CLK_SCC1, CPM_BRG1, 0},
173 		{CPM_CLK_SCC1, CPM_BRG2, 1},
174 		{CPM_CLK_SCC1, CPM_BRG3, 2},
175 		{CPM_CLK_SCC1, CPM_BRG4, 3},
176 		{CPM_CLK_SCC1, CPM_CLK11, 4},
177 		{CPM_CLK_SCC1, CPM_CLK12, 5},
178 		{CPM_CLK_SCC1, CPM_CLK3, 6},
179 		{CPM_CLK_SCC1, CPM_CLK4, 7},
180 		{CPM_CLK_SCC2, CPM_BRG1, 0},
181 		{CPM_CLK_SCC2, CPM_BRG2, 1},
182 		{CPM_CLK_SCC2, CPM_BRG3, 2},
183 		{CPM_CLK_SCC2, CPM_BRG4, 3},
184 		{CPM_CLK_SCC2, CPM_CLK11, 4},
185 		{CPM_CLK_SCC2, CPM_CLK12, 5},
186 		{CPM_CLK_SCC2, CPM_CLK3, 6},
187 		{CPM_CLK_SCC2, CPM_CLK4, 7},
188 		{CPM_CLK_SCC3, CPM_BRG1, 0},
189 		{CPM_CLK_SCC3, CPM_BRG2, 1},
190 		{CPM_CLK_SCC3, CPM_BRG3, 2},
191 		{CPM_CLK_SCC3, CPM_BRG4, 3},
192 		{CPM_CLK_SCC3, CPM_CLK5, 4},
193 		{CPM_CLK_SCC3, CPM_CLK6, 5},
194 		{CPM_CLK_SCC3, CPM_CLK7, 6},
195 		{CPM_CLK_SCC3, CPM_CLK8, 7},
196 		{CPM_CLK_SCC4, CPM_BRG1, 0},
197 		{CPM_CLK_SCC4, CPM_BRG2, 1},
198 		{CPM_CLK_SCC4, CPM_BRG3, 2},
199 		{CPM_CLK_SCC4, CPM_BRG4, 3},
200 		{CPM_CLK_SCC4, CPM_CLK5, 4},
201 		{CPM_CLK_SCC4, CPM_CLK6, 5},
202 		{CPM_CLK_SCC4, CPM_CLK7, 6},
203 		{CPM_CLK_SCC4, CPM_CLK8, 7},
204 	};
205 
206 	im_cpmux = cpm2_map(im_cpmux);
207 
208 	switch (target) {
209 	case CPM_CLK_SCC1:
210 		reg = &im_cpmux->cmx_scr;
211 		shift = 24;
212 		break;
213 	case CPM_CLK_SCC2:
214 		reg = &im_cpmux->cmx_scr;
215 		shift = 16;
216 		break;
217 	case CPM_CLK_SCC3:
218 		reg = &im_cpmux->cmx_scr;
219 		shift = 8;
220 		break;
221 	case CPM_CLK_SCC4:
222 		reg = &im_cpmux->cmx_scr;
223 		shift = 0;
224 		break;
225 	case CPM_CLK_FCC1:
226 		reg = &im_cpmux->cmx_fcr;
227 		shift = 24;
228 		break;
229 	case CPM_CLK_FCC2:
230 		reg = &im_cpmux->cmx_fcr;
231 		shift = 16;
232 		break;
233 	case CPM_CLK_FCC3:
234 		reg = &im_cpmux->cmx_fcr;
235 		shift = 8;
236 		break;
237 	default:
238 		printk(KERN_ERR "cpm2_clock_setup: invalid clock target\n");
239 		return -EINVAL;
240 	}
241 
242 	for (i = 0; i < ARRAY_SIZE(clk_map); i++) {
243 		if (clk_map[i][0] == target && clk_map[i][1] == clock) {
244 			bits = clk_map[i][2];
245 			break;
246 		}
247 	}
248 	if (i == ARRAY_SIZE(clk_map))
249 	    ret = -EINVAL;
250 
251 	bits <<= shift;
252 	mask <<= shift;
253 
254 	if (mode == CPM_CLK_RTX) {
255 		bits |= bits << 3;
256 		mask |= mask << 3;
257 	} else if (mode == CPM_CLK_RX) {
258 		bits <<= 3;
259 		mask <<= 3;
260 	}
261 
262 	out_be32(reg, (in_be32(reg) & ~mask) | bits);
263 
264 	cpm2_unmap(im_cpmux);
265 	return ret;
266 }
267 
268 int cpm2_smc_clk_setup(enum cpm_clk_target target, int clock)
269 {
270 	int ret = 0;
271 	int shift;
272 	int i, bits = 0;
273 	cpmux_t __iomem *im_cpmux;
274 	u8 __iomem *reg;
275 	u8 mask = 3;
276 
277 	u8 clk_map[][3] = {
278 		{CPM_CLK_SMC1, CPM_BRG1, 0},
279 		{CPM_CLK_SMC1, CPM_BRG7, 1},
280 		{CPM_CLK_SMC1, CPM_CLK7, 2},
281 		{CPM_CLK_SMC1, CPM_CLK9, 3},
282 		{CPM_CLK_SMC2, CPM_BRG2, 0},
283 		{CPM_CLK_SMC2, CPM_BRG8, 1},
284 		{CPM_CLK_SMC2, CPM_CLK4, 2},
285 		{CPM_CLK_SMC2, CPM_CLK15, 3},
286 	};
287 
288 	im_cpmux = cpm2_map(im_cpmux);
289 
290 	switch (target) {
291 	case CPM_CLK_SMC1:
292 		reg = &im_cpmux->cmx_smr;
293 		mask = 3;
294 		shift = 4;
295 		break;
296 	case CPM_CLK_SMC2:
297 		reg = &im_cpmux->cmx_smr;
298 		mask = 3;
299 		shift = 0;
300 		break;
301 	default:
302 		printk(KERN_ERR "cpm2_smc_clock_setup: invalid clock target\n");
303 		return -EINVAL;
304 	}
305 
306 	for (i = 0; i < ARRAY_SIZE(clk_map); i++) {
307 		if (clk_map[i][0] == target && clk_map[i][1] == clock) {
308 			bits = clk_map[i][2];
309 			break;
310 		}
311 	}
312 	if (i == ARRAY_SIZE(clk_map))
313 	    ret = -EINVAL;
314 
315 	bits <<= shift;
316 	mask <<= shift;
317 
318 	out_8(reg, (in_8(reg) & ~mask) | bits);
319 
320 	cpm2_unmap(im_cpmux);
321 	return ret;
322 }
323 
324 struct cpm2_ioports {
325 	u32 dir, par, sor, odr, dat;
326 	u32 res[3];
327 };
328 
329 void cpm2_set_pin(int port, int pin, int flags)
330 {
331 	struct cpm2_ioports __iomem *iop =
332 		(struct cpm2_ioports __iomem *)&cpm2_immr->im_ioport;
333 
334 	pin = 1 << (31 - pin);
335 
336 	if (flags & CPM_PIN_OUTPUT)
337 		setbits32(&iop[port].dir, pin);
338 	else
339 		clrbits32(&iop[port].dir, pin);
340 
341 	if (!(flags & CPM_PIN_GPIO))
342 		setbits32(&iop[port].par, pin);
343 	else
344 		clrbits32(&iop[port].par, pin);
345 
346 	if (flags & CPM_PIN_SECONDARY)
347 		setbits32(&iop[port].sor, pin);
348 	else
349 		clrbits32(&iop[port].sor, pin);
350 
351 	if (flags & CPM_PIN_OPENDRAIN)
352 		setbits32(&iop[port].odr, pin);
353 	else
354 		clrbits32(&iop[port].odr, pin);
355 }
356