xref: /openbmc/linux/arch/powerpc/sysdev/cpm2.c (revision 60772e48)
1 /*
2  * General Purpose functions for the global management of the
3  * 8260 Communication Processor Module.
4  * Copyright (c) 1999-2001 Dan Malek <dan@embeddedalley.com>
5  * Copyright (c) 2000 MontaVista Software, Inc (source@mvista.com)
6  *	2.3.99 Updates
7  *
8  * 2006 (c) MontaVista Software, Inc.
9  * Vitaly Bordug <vbordug@ru.mvista.com>
10  * 	Merged to arch/powerpc from arch/ppc/syslib/cpm2_common.c
11  *
12  * This file is licensed under the terms of the GNU General Public License
13  * version 2. This program is licensed "as is" without any warranty of any
14  * kind, whether express or implied.
15  */
16 
17 /*
18  *
19  * In addition to the individual control of the communication
20  * channels, there are a few functions that globally affect the
21  * communication processor.
22  *
23  * Buffer descriptors must be allocated from the dual ported memory
24  * space.  The allocator for that is here.  When the communication
25  * process is reset, we reclaim the memory available.  There is
26  * currently no deallocator for this memory.
27  */
28 #include <linux/errno.h>
29 #include <linux/sched.h>
30 #include <linux/kernel.h>
31 #include <linux/param.h>
32 #include <linux/string.h>
33 #include <linux/mm.h>
34 #include <linux/interrupt.h>
35 #include <linux/module.h>
36 #include <linux/of.h>
37 
38 #include <asm/io.h>
39 #include <asm/irq.h>
40 #include <asm/mpc8260.h>
41 #include <asm/page.h>
42 #include <asm/pgtable.h>
43 #include <asm/cpm2.h>
44 #include <asm/rheap.h>
45 #include <asm/fs_pd.h>
46 
47 #include <sysdev/fsl_soc.h>
48 
49 cpm_cpm2_t __iomem *cpmp; /* Pointer to comm processor space */
50 
51 /* We allocate this here because it is used almost exclusively for
52  * the communication processor devices.
53  */
54 cpm2_map_t __iomem *cpm2_immr;
55 EXPORT_SYMBOL(cpm2_immr);
56 
57 #define CPM_MAP_SIZE	(0x40000)	/* 256k - the PQ3 reserve this amount
58 					   of space for CPM as it is larger
59 					   than on PQ2 */
60 
61 void __init cpm2_reset(void)
62 {
63 #ifdef CONFIG_PPC_85xx
64 	cpm2_immr = ioremap(get_immrbase() + 0x80000, CPM_MAP_SIZE);
65 #else
66 	cpm2_immr = ioremap(get_immrbase(), CPM_MAP_SIZE);
67 #endif
68 
69 	/* Tell everyone where the comm processor resides.
70 	 */
71 	cpmp = &cpm2_immr->im_cpm;
72 
73 #ifndef CONFIG_PPC_EARLY_DEBUG_CPM
74 	/* Reset the CPM.
75 	 */
76 	cpm_command(CPM_CR_RST, 0);
77 #endif
78 }
79 
80 static DEFINE_SPINLOCK(cmd_lock);
81 
82 #define MAX_CR_CMD_LOOPS        10000
83 
84 int cpm_command(u32 command, u8 opcode)
85 {
86 	int i, ret;
87 	unsigned long flags;
88 
89 	spin_lock_irqsave(&cmd_lock, flags);
90 
91 	ret = 0;
92 	out_be32(&cpmp->cp_cpcr, command | opcode | CPM_CR_FLG);
93 	for (i = 0; i < MAX_CR_CMD_LOOPS; i++)
94 		if ((in_be32(&cpmp->cp_cpcr) & CPM_CR_FLG) == 0)
95 			goto out;
96 
97 	printk(KERN_ERR "%s(): Not able to issue CPM command\n", __func__);
98 	ret = -EIO;
99 out:
100 	spin_unlock_irqrestore(&cmd_lock, flags);
101 	return ret;
102 }
103 EXPORT_SYMBOL(cpm_command);
104 
105 /* Set a baud rate generator.  This needs lots of work.  There are
106  * eight BRGs, which can be connected to the CPM channels or output
107  * as clocks.  The BRGs are in two different block of internal
108  * memory mapped space.
109  * The baud rate clock is the system clock divided by something.
110  * It was set up long ago during the initial boot phase and is
111  * is given to us.
112  * Baud rate clocks are zero-based in the driver code (as that maps
113  * to port numbers).  Documentation uses 1-based numbering.
114  */
115 void __cpm2_setbrg(uint brg, uint rate, uint clk, int div16, int src)
116 {
117 	u32 __iomem *bp;
118 	u32 val;
119 
120 	/* This is good enough to get SMCs running.....
121 	*/
122 	if (brg < 4) {
123 		bp = cpm2_map_size(im_brgc1, 16);
124 	} else {
125 		bp = cpm2_map_size(im_brgc5, 16);
126 		brg -= 4;
127 	}
128 	bp += brg;
129 	/* Round the clock divider to the nearest integer. */
130 	val = (((clk * 2 / rate) - 1) & ~1) | CPM_BRG_EN | src;
131 	if (div16)
132 		val |= CPM_BRG_DIV16;
133 
134 	out_be32(bp, val);
135 	cpm2_unmap(bp);
136 }
137 EXPORT_SYMBOL(__cpm2_setbrg);
138 
139 int cpm2_clk_setup(enum cpm_clk_target target, int clock, int mode)
140 {
141 	int ret = 0;
142 	int shift;
143 	int i, bits = 0;
144 	cpmux_t __iomem *im_cpmux;
145 	u32 __iomem *reg;
146 	u32 mask = 7;
147 
148 	u8 clk_map[][3] = {
149 		{CPM_CLK_FCC1, CPM_BRG5, 0},
150 		{CPM_CLK_FCC1, CPM_BRG6, 1},
151 		{CPM_CLK_FCC1, CPM_BRG7, 2},
152 		{CPM_CLK_FCC1, CPM_BRG8, 3},
153 		{CPM_CLK_FCC1, CPM_CLK9, 4},
154 		{CPM_CLK_FCC1, CPM_CLK10, 5},
155 		{CPM_CLK_FCC1, CPM_CLK11, 6},
156 		{CPM_CLK_FCC1, CPM_CLK12, 7},
157 		{CPM_CLK_FCC2, CPM_BRG5, 0},
158 		{CPM_CLK_FCC2, CPM_BRG6, 1},
159 		{CPM_CLK_FCC2, CPM_BRG7, 2},
160 		{CPM_CLK_FCC2, CPM_BRG8, 3},
161 		{CPM_CLK_FCC2, CPM_CLK13, 4},
162 		{CPM_CLK_FCC2, CPM_CLK14, 5},
163 		{CPM_CLK_FCC2, CPM_CLK15, 6},
164 		{CPM_CLK_FCC2, CPM_CLK16, 7},
165 		{CPM_CLK_FCC3, CPM_BRG5, 0},
166 		{CPM_CLK_FCC3, CPM_BRG6, 1},
167 		{CPM_CLK_FCC3, CPM_BRG7, 2},
168 		{CPM_CLK_FCC3, CPM_BRG8, 3},
169 		{CPM_CLK_FCC3, CPM_CLK13, 4},
170 		{CPM_CLK_FCC3, CPM_CLK14, 5},
171 		{CPM_CLK_FCC3, CPM_CLK15, 6},
172 		{CPM_CLK_FCC3, CPM_CLK16, 7},
173 		{CPM_CLK_SCC1, CPM_BRG1, 0},
174 		{CPM_CLK_SCC1, CPM_BRG2, 1},
175 		{CPM_CLK_SCC1, CPM_BRG3, 2},
176 		{CPM_CLK_SCC1, CPM_BRG4, 3},
177 		{CPM_CLK_SCC1, CPM_CLK11, 4},
178 		{CPM_CLK_SCC1, CPM_CLK12, 5},
179 		{CPM_CLK_SCC1, CPM_CLK3, 6},
180 		{CPM_CLK_SCC1, CPM_CLK4, 7},
181 		{CPM_CLK_SCC2, CPM_BRG1, 0},
182 		{CPM_CLK_SCC2, CPM_BRG2, 1},
183 		{CPM_CLK_SCC2, CPM_BRG3, 2},
184 		{CPM_CLK_SCC2, CPM_BRG4, 3},
185 		{CPM_CLK_SCC2, CPM_CLK11, 4},
186 		{CPM_CLK_SCC2, CPM_CLK12, 5},
187 		{CPM_CLK_SCC2, CPM_CLK3, 6},
188 		{CPM_CLK_SCC2, CPM_CLK4, 7},
189 		{CPM_CLK_SCC3, CPM_BRG1, 0},
190 		{CPM_CLK_SCC3, CPM_BRG2, 1},
191 		{CPM_CLK_SCC3, CPM_BRG3, 2},
192 		{CPM_CLK_SCC3, CPM_BRG4, 3},
193 		{CPM_CLK_SCC3, CPM_CLK5, 4},
194 		{CPM_CLK_SCC3, CPM_CLK6, 5},
195 		{CPM_CLK_SCC3, CPM_CLK7, 6},
196 		{CPM_CLK_SCC3, CPM_CLK8, 7},
197 		{CPM_CLK_SCC4, CPM_BRG1, 0},
198 		{CPM_CLK_SCC4, CPM_BRG2, 1},
199 		{CPM_CLK_SCC4, CPM_BRG3, 2},
200 		{CPM_CLK_SCC4, CPM_BRG4, 3},
201 		{CPM_CLK_SCC4, CPM_CLK5, 4},
202 		{CPM_CLK_SCC4, CPM_CLK6, 5},
203 		{CPM_CLK_SCC4, CPM_CLK7, 6},
204 		{CPM_CLK_SCC4, CPM_CLK8, 7},
205 	};
206 
207 	im_cpmux = cpm2_map(im_cpmux);
208 
209 	switch (target) {
210 	case CPM_CLK_SCC1:
211 		reg = &im_cpmux->cmx_scr;
212 		shift = 24;
213 		break;
214 	case CPM_CLK_SCC2:
215 		reg = &im_cpmux->cmx_scr;
216 		shift = 16;
217 		break;
218 	case CPM_CLK_SCC3:
219 		reg = &im_cpmux->cmx_scr;
220 		shift = 8;
221 		break;
222 	case CPM_CLK_SCC4:
223 		reg = &im_cpmux->cmx_scr;
224 		shift = 0;
225 		break;
226 	case CPM_CLK_FCC1:
227 		reg = &im_cpmux->cmx_fcr;
228 		shift = 24;
229 		break;
230 	case CPM_CLK_FCC2:
231 		reg = &im_cpmux->cmx_fcr;
232 		shift = 16;
233 		break;
234 	case CPM_CLK_FCC3:
235 		reg = &im_cpmux->cmx_fcr;
236 		shift = 8;
237 		break;
238 	default:
239 		printk(KERN_ERR "cpm2_clock_setup: invalid clock target\n");
240 		return -EINVAL;
241 	}
242 
243 	for (i = 0; i < ARRAY_SIZE(clk_map); i++) {
244 		if (clk_map[i][0] == target && clk_map[i][1] == clock) {
245 			bits = clk_map[i][2];
246 			break;
247 		}
248 	}
249 	if (i == ARRAY_SIZE(clk_map))
250 	    ret = -EINVAL;
251 
252 	bits <<= shift;
253 	mask <<= shift;
254 
255 	if (mode == CPM_CLK_RTX) {
256 		bits |= bits << 3;
257 		mask |= mask << 3;
258 	} else if (mode == CPM_CLK_RX) {
259 		bits <<= 3;
260 		mask <<= 3;
261 	}
262 
263 	out_be32(reg, (in_be32(reg) & ~mask) | bits);
264 
265 	cpm2_unmap(im_cpmux);
266 	return ret;
267 }
268 
269 int cpm2_smc_clk_setup(enum cpm_clk_target target, int clock)
270 {
271 	int ret = 0;
272 	int shift;
273 	int i, bits = 0;
274 	cpmux_t __iomem *im_cpmux;
275 	u8 __iomem *reg;
276 	u8 mask = 3;
277 
278 	u8 clk_map[][3] = {
279 		{CPM_CLK_SMC1, CPM_BRG1, 0},
280 		{CPM_CLK_SMC1, CPM_BRG7, 1},
281 		{CPM_CLK_SMC1, CPM_CLK7, 2},
282 		{CPM_CLK_SMC1, CPM_CLK9, 3},
283 		{CPM_CLK_SMC2, CPM_BRG2, 0},
284 		{CPM_CLK_SMC2, CPM_BRG8, 1},
285 		{CPM_CLK_SMC2, CPM_CLK4, 2},
286 		{CPM_CLK_SMC2, CPM_CLK15, 3},
287 	};
288 
289 	im_cpmux = cpm2_map(im_cpmux);
290 
291 	switch (target) {
292 	case CPM_CLK_SMC1:
293 		reg = &im_cpmux->cmx_smr;
294 		mask = 3;
295 		shift = 4;
296 		break;
297 	case CPM_CLK_SMC2:
298 		reg = &im_cpmux->cmx_smr;
299 		mask = 3;
300 		shift = 0;
301 		break;
302 	default:
303 		printk(KERN_ERR "cpm2_smc_clock_setup: invalid clock target\n");
304 		return -EINVAL;
305 	}
306 
307 	for (i = 0; i < ARRAY_SIZE(clk_map); i++) {
308 		if (clk_map[i][0] == target && clk_map[i][1] == clock) {
309 			bits = clk_map[i][2];
310 			break;
311 		}
312 	}
313 	if (i == ARRAY_SIZE(clk_map))
314 	    ret = -EINVAL;
315 
316 	bits <<= shift;
317 	mask <<= shift;
318 
319 	out_8(reg, (in_8(reg) & ~mask) | bits);
320 
321 	cpm2_unmap(im_cpmux);
322 	return ret;
323 }
324 
325 struct cpm2_ioports {
326 	u32 dir, par, sor, odr, dat;
327 	u32 res[3];
328 };
329 
330 void cpm2_set_pin(int port, int pin, int flags)
331 {
332 	struct cpm2_ioports __iomem *iop =
333 		(struct cpm2_ioports __iomem *)&cpm2_immr->im_ioport;
334 
335 	pin = 1 << (31 - pin);
336 
337 	if (flags & CPM_PIN_OUTPUT)
338 		setbits32(&iop[port].dir, pin);
339 	else
340 		clrbits32(&iop[port].dir, pin);
341 
342 	if (!(flags & CPM_PIN_GPIO))
343 		setbits32(&iop[port].par, pin);
344 	else
345 		clrbits32(&iop[port].par, pin);
346 
347 	if (flags & CPM_PIN_SECONDARY)
348 		setbits32(&iop[port].sor, pin);
349 	else
350 		clrbits32(&iop[port].sor, pin);
351 
352 	if (flags & CPM_PIN_OPENDRAIN)
353 		setbits32(&iop[port].odr, pin);
354 	else
355 		clrbits32(&iop[port].odr, pin);
356 }
357