xref: /openbmc/linux/arch/powerpc/sysdev/cpm2.c (revision 18afb028)
1 /*
2  * General Purpose functions for the global management of the
3  * 8260 Communication Processor Module.
4  * Copyright (c) 1999-2001 Dan Malek <dan@embeddedalley.com>
5  * Copyright (c) 2000 MontaVista Software, Inc (source@mvista.com)
6  *	2.3.99 Updates
7  *
8  * 2006 (c) MontaVista Software, Inc.
9  * Vitaly Bordug <vbordug@ru.mvista.com>
10  * 	Merged to arch/powerpc from arch/ppc/syslib/cpm2_common.c
11  *
12  * This file is licensed under the terms of the GNU General Public License
13  * version 2. This program is licensed "as is" without any warranty of any
14  * kind, whether express or implied.
15  */
16 
17 /*
18  *
19  * In addition to the individual control of the communication
20  * channels, there are a few functions that globally affect the
21  * communication processor.
22  *
23  * Buffer descriptors must be allocated from the dual ported memory
24  * space.  The allocator for that is here.  When the communication
25  * process is reset, we reclaim the memory available.  There is
26  * currently no deallocator for this memory.
27  */
28 #include <linux/errno.h>
29 #include <linux/sched.h>
30 #include <linux/kernel.h>
31 #include <linux/param.h>
32 #include <linux/string.h>
33 #include <linux/mm.h>
34 #include <linux/interrupt.h>
35 #include <linux/module.h>
36 #include <linux/of.h>
37 
38 #include <asm/io.h>
39 #include <asm/irq.h>
40 #include <asm/page.h>
41 #include <asm/cpm2.h>
42 #include <asm/rheap.h>
43 
44 #include <sysdev/fsl_soc.h>
45 
46 cpm_cpm2_t __iomem *cpmp; /* Pointer to comm processor space */
47 
48 /* We allocate this here because it is used almost exclusively for
49  * the communication processor devices.
50  */
51 cpm2_map_t __iomem *cpm2_immr;
52 EXPORT_SYMBOL(cpm2_immr);
53 
54 #define CPM_MAP_SIZE	(0x40000)	/* 256k - the PQ3 reserve this amount
55 					   of space for CPM as it is larger
56 					   than on PQ2 */
57 
58 void __init cpm2_reset(void)
59 {
60 #ifdef CONFIG_PPC_85xx
61 	cpm2_immr = ioremap(get_immrbase() + 0x80000, CPM_MAP_SIZE);
62 #else
63 	cpm2_immr = ioremap(get_immrbase(), CPM_MAP_SIZE);
64 #endif
65 
66 	/* Tell everyone where the comm processor resides.
67 	 */
68 	cpmp = &cpm2_immr->im_cpm;
69 
70 #ifndef CONFIG_PPC_EARLY_DEBUG_CPM
71 	/* Reset the CPM.
72 	 */
73 	cpm_command(CPM_CR_RST, 0);
74 #endif
75 }
76 
77 static DEFINE_SPINLOCK(cmd_lock);
78 
79 #define MAX_CR_CMD_LOOPS        10000
80 
81 int cpm_command(u32 command, u8 opcode)
82 {
83 	int i, ret;
84 	unsigned long flags;
85 
86 	spin_lock_irqsave(&cmd_lock, flags);
87 
88 	ret = 0;
89 	out_be32(&cpmp->cp_cpcr, command | opcode | CPM_CR_FLG);
90 	for (i = 0; i < MAX_CR_CMD_LOOPS; i++)
91 		if ((in_be32(&cpmp->cp_cpcr) & CPM_CR_FLG) == 0)
92 			goto out;
93 
94 	printk(KERN_ERR "%s(): Not able to issue CPM command\n", __func__);
95 	ret = -EIO;
96 out:
97 	spin_unlock_irqrestore(&cmd_lock, flags);
98 	return ret;
99 }
100 EXPORT_SYMBOL(cpm_command);
101 
102 /* Set a baud rate generator.  This needs lots of work.  There are
103  * eight BRGs, which can be connected to the CPM channels or output
104  * as clocks.  The BRGs are in two different block of internal
105  * memory mapped space.
106  * The baud rate clock is the system clock divided by something.
107  * It was set up long ago during the initial boot phase and is
108  * given to us.
109  * Baud rate clocks are zero-based in the driver code (as that maps
110  * to port numbers).  Documentation uses 1-based numbering.
111  */
112 void __cpm2_setbrg(uint brg, uint rate, uint clk, int div16, int src)
113 {
114 	u32 __iomem *bp;
115 	u32 val;
116 
117 	/* This is good enough to get SMCs running.....
118 	*/
119 	if (brg < 4) {
120 		bp = &cpm2_immr->im_brgc1;
121 	} else {
122 		bp = &cpm2_immr->im_brgc5;
123 		brg -= 4;
124 	}
125 	bp += brg;
126 	/* Round the clock divider to the nearest integer. */
127 	val = (((clk * 2 / rate) - 1) & ~1) | CPM_BRG_EN | src;
128 	if (div16)
129 		val |= CPM_BRG_DIV16;
130 
131 	out_be32(bp, val);
132 }
133 EXPORT_SYMBOL(__cpm2_setbrg);
134 
135 int __init cpm2_clk_setup(enum cpm_clk_target target, int clock, int mode)
136 {
137 	int ret = 0;
138 	int shift;
139 	int i, bits = 0;
140 	u32 __iomem *reg;
141 	u32 mask = 7;
142 
143 	u8 clk_map[][3] = {
144 		{CPM_CLK_FCC1, CPM_BRG5, 0},
145 		{CPM_CLK_FCC1, CPM_BRG6, 1},
146 		{CPM_CLK_FCC1, CPM_BRG7, 2},
147 		{CPM_CLK_FCC1, CPM_BRG8, 3},
148 		{CPM_CLK_FCC1, CPM_CLK9, 4},
149 		{CPM_CLK_FCC1, CPM_CLK10, 5},
150 		{CPM_CLK_FCC1, CPM_CLK11, 6},
151 		{CPM_CLK_FCC1, CPM_CLK12, 7},
152 		{CPM_CLK_FCC2, CPM_BRG5, 0},
153 		{CPM_CLK_FCC2, CPM_BRG6, 1},
154 		{CPM_CLK_FCC2, CPM_BRG7, 2},
155 		{CPM_CLK_FCC2, CPM_BRG8, 3},
156 		{CPM_CLK_FCC2, CPM_CLK13, 4},
157 		{CPM_CLK_FCC2, CPM_CLK14, 5},
158 		{CPM_CLK_FCC2, CPM_CLK15, 6},
159 		{CPM_CLK_FCC2, CPM_CLK16, 7},
160 		{CPM_CLK_FCC3, CPM_BRG5, 0},
161 		{CPM_CLK_FCC3, CPM_BRG6, 1},
162 		{CPM_CLK_FCC3, CPM_BRG7, 2},
163 		{CPM_CLK_FCC3, CPM_BRG8, 3},
164 		{CPM_CLK_FCC3, CPM_CLK13, 4},
165 		{CPM_CLK_FCC3, CPM_CLK14, 5},
166 		{CPM_CLK_FCC3, CPM_CLK15, 6},
167 		{CPM_CLK_FCC3, CPM_CLK16, 7},
168 		{CPM_CLK_SCC1, CPM_BRG1, 0},
169 		{CPM_CLK_SCC1, CPM_BRG2, 1},
170 		{CPM_CLK_SCC1, CPM_BRG3, 2},
171 		{CPM_CLK_SCC1, CPM_BRG4, 3},
172 		{CPM_CLK_SCC1, CPM_CLK11, 4},
173 		{CPM_CLK_SCC1, CPM_CLK12, 5},
174 		{CPM_CLK_SCC1, CPM_CLK3, 6},
175 		{CPM_CLK_SCC1, CPM_CLK4, 7},
176 		{CPM_CLK_SCC2, CPM_BRG1, 0},
177 		{CPM_CLK_SCC2, CPM_BRG2, 1},
178 		{CPM_CLK_SCC2, CPM_BRG3, 2},
179 		{CPM_CLK_SCC2, CPM_BRG4, 3},
180 		{CPM_CLK_SCC2, CPM_CLK11, 4},
181 		{CPM_CLK_SCC2, CPM_CLK12, 5},
182 		{CPM_CLK_SCC2, CPM_CLK3, 6},
183 		{CPM_CLK_SCC2, CPM_CLK4, 7},
184 		{CPM_CLK_SCC3, CPM_BRG1, 0},
185 		{CPM_CLK_SCC3, CPM_BRG2, 1},
186 		{CPM_CLK_SCC3, CPM_BRG3, 2},
187 		{CPM_CLK_SCC3, CPM_BRG4, 3},
188 		{CPM_CLK_SCC3, CPM_CLK5, 4},
189 		{CPM_CLK_SCC3, CPM_CLK6, 5},
190 		{CPM_CLK_SCC3, CPM_CLK7, 6},
191 		{CPM_CLK_SCC3, CPM_CLK8, 7},
192 		{CPM_CLK_SCC4, CPM_BRG1, 0},
193 		{CPM_CLK_SCC4, CPM_BRG2, 1},
194 		{CPM_CLK_SCC4, CPM_BRG3, 2},
195 		{CPM_CLK_SCC4, CPM_BRG4, 3},
196 		{CPM_CLK_SCC4, CPM_CLK5, 4},
197 		{CPM_CLK_SCC4, CPM_CLK6, 5},
198 		{CPM_CLK_SCC4, CPM_CLK7, 6},
199 		{CPM_CLK_SCC4, CPM_CLK8, 7},
200 	};
201 
202 	switch (target) {
203 	case CPM_CLK_SCC1:
204 		reg = &cpm2_immr->im_cpmux.cmx_scr;
205 		shift = 24;
206 		break;
207 	case CPM_CLK_SCC2:
208 		reg = &cpm2_immr->im_cpmux.cmx_scr;
209 		shift = 16;
210 		break;
211 	case CPM_CLK_SCC3:
212 		reg = &cpm2_immr->im_cpmux.cmx_scr;
213 		shift = 8;
214 		break;
215 	case CPM_CLK_SCC4:
216 		reg = &cpm2_immr->im_cpmux.cmx_scr;
217 		shift = 0;
218 		break;
219 	case CPM_CLK_FCC1:
220 		reg = &cpm2_immr->im_cpmux.cmx_fcr;
221 		shift = 24;
222 		break;
223 	case CPM_CLK_FCC2:
224 		reg = &cpm2_immr->im_cpmux.cmx_fcr;
225 		shift = 16;
226 		break;
227 	case CPM_CLK_FCC3:
228 		reg = &cpm2_immr->im_cpmux.cmx_fcr;
229 		shift = 8;
230 		break;
231 	default:
232 		printk(KERN_ERR "cpm2_clock_setup: invalid clock target\n");
233 		return -EINVAL;
234 	}
235 
236 	for (i = 0; i < ARRAY_SIZE(clk_map); i++) {
237 		if (clk_map[i][0] == target && clk_map[i][1] == clock) {
238 			bits = clk_map[i][2];
239 			break;
240 		}
241 	}
242 	if (i == ARRAY_SIZE(clk_map))
243 	    ret = -EINVAL;
244 
245 	bits <<= shift;
246 	mask <<= shift;
247 
248 	if (mode == CPM_CLK_RTX) {
249 		bits |= bits << 3;
250 		mask |= mask << 3;
251 	} else if (mode == CPM_CLK_RX) {
252 		bits <<= 3;
253 		mask <<= 3;
254 	}
255 
256 	out_be32(reg, (in_be32(reg) & ~mask) | bits);
257 
258 	return ret;
259 }
260 
261 int __init cpm2_smc_clk_setup(enum cpm_clk_target target, int clock)
262 {
263 	int ret = 0;
264 	int shift;
265 	int i, bits = 0;
266 	u8 __iomem *reg;
267 	u8 mask = 3;
268 
269 	u8 clk_map[][3] = {
270 		{CPM_CLK_SMC1, CPM_BRG1, 0},
271 		{CPM_CLK_SMC1, CPM_BRG7, 1},
272 		{CPM_CLK_SMC1, CPM_CLK7, 2},
273 		{CPM_CLK_SMC1, CPM_CLK9, 3},
274 		{CPM_CLK_SMC2, CPM_BRG2, 0},
275 		{CPM_CLK_SMC2, CPM_BRG8, 1},
276 		{CPM_CLK_SMC2, CPM_CLK4, 2},
277 		{CPM_CLK_SMC2, CPM_CLK15, 3},
278 	};
279 
280 	switch (target) {
281 	case CPM_CLK_SMC1:
282 		reg = &cpm2_immr->im_cpmux.cmx_smr;
283 		mask = 3;
284 		shift = 4;
285 		break;
286 	case CPM_CLK_SMC2:
287 		reg = &cpm2_immr->im_cpmux.cmx_smr;
288 		mask = 3;
289 		shift = 0;
290 		break;
291 	default:
292 		printk(KERN_ERR "cpm2_smc_clock_setup: invalid clock target\n");
293 		return -EINVAL;
294 	}
295 
296 	for (i = 0; i < ARRAY_SIZE(clk_map); i++) {
297 		if (clk_map[i][0] == target && clk_map[i][1] == clock) {
298 			bits = clk_map[i][2];
299 			break;
300 		}
301 	}
302 	if (i == ARRAY_SIZE(clk_map))
303 	    ret = -EINVAL;
304 
305 	bits <<= shift;
306 	mask <<= shift;
307 
308 	out_8(reg, (in_8(reg) & ~mask) | bits);
309 
310 	return ret;
311 }
312 
313 struct cpm2_ioports {
314 	u32 dir, par, sor, odr, dat;
315 	u32 res[3];
316 };
317 
318 void __init cpm2_set_pin(int port, int pin, int flags)
319 {
320 	struct cpm2_ioports __iomem *iop =
321 		(struct cpm2_ioports __iomem *)&cpm2_immr->im_ioport;
322 
323 	pin = 1 << (31 - pin);
324 
325 	if (flags & CPM_PIN_OUTPUT)
326 		setbits32(&iop[port].dir, pin);
327 	else
328 		clrbits32(&iop[port].dir, pin);
329 
330 	if (!(flags & CPM_PIN_GPIO))
331 		setbits32(&iop[port].par, pin);
332 	else
333 		clrbits32(&iop[port].par, pin);
334 
335 	if (flags & CPM_PIN_SECONDARY)
336 		setbits32(&iop[port].sor, pin);
337 	else
338 		clrbits32(&iop[port].sor, pin);
339 
340 	if (flags & CPM_PIN_OPENDRAIN)
341 		setbits32(&iop[port].odr, pin);
342 	else
343 		clrbits32(&iop[port].odr, pin);
344 }
345