1 /* 2 * IBM PowerPC Virtual I/O Infrastructure Support. 3 * 4 * Copyright (c) 2003,2008 IBM Corp. 5 * Dave Engebretsen engebret@us.ibm.com 6 * Santiago Leon santil@us.ibm.com 7 * Hollis Blanchard <hollisb@us.ibm.com> 8 * Stephen Rothwell 9 * Robert Jennings <rcjenn@us.ibm.com> 10 * 11 * This program is free software; you can redistribute it and/or 12 * modify it under the terms of the GNU General Public License 13 * as published by the Free Software Foundation; either version 14 * 2 of the License, or (at your option) any later version. 15 */ 16 17 #include <linux/cpu.h> 18 #include <linux/types.h> 19 #include <linux/delay.h> 20 #include <linux/stat.h> 21 #include <linux/device.h> 22 #include <linux/init.h> 23 #include <linux/slab.h> 24 #include <linux/console.h> 25 #include <linux/export.h> 26 #include <linux/mm.h> 27 #include <linux/dma-mapping.h> 28 #include <linux/kobject.h> 29 30 #include <asm/iommu.h> 31 #include <asm/dma.h> 32 #include <asm/vio.h> 33 #include <asm/prom.h> 34 #include <asm/firmware.h> 35 #include <asm/tce.h> 36 #include <asm/page.h> 37 #include <asm/hvcall.h> 38 39 static struct vio_dev vio_bus_device = { /* fake "parent" device */ 40 .name = "vio", 41 .type = "", 42 .dev.init_name = "vio", 43 .dev.bus = &vio_bus_type, 44 }; 45 46 #ifdef CONFIG_PPC_SMLPAR 47 /** 48 * vio_cmo_pool - A pool of IO memory for CMO use 49 * 50 * @size: The size of the pool in bytes 51 * @free: The amount of free memory in the pool 52 */ 53 struct vio_cmo_pool { 54 size_t size; 55 size_t free; 56 }; 57 58 /* How many ms to delay queued balance work */ 59 #define VIO_CMO_BALANCE_DELAY 100 60 61 /* Portion out IO memory to CMO devices by this chunk size */ 62 #define VIO_CMO_BALANCE_CHUNK 131072 63 64 /** 65 * vio_cmo_dev_entry - A device that is CMO-enabled and requires entitlement 66 * 67 * @vio_dev: struct vio_dev pointer 68 * @list: pointer to other devices on bus that are being tracked 69 */ 70 struct vio_cmo_dev_entry { 71 struct vio_dev *viodev; 72 struct list_head list; 73 }; 74 75 /** 76 * vio_cmo - VIO bus accounting structure for CMO entitlement 77 * 78 * @lock: spinlock for entire structure 79 * @balance_q: work queue for balancing system entitlement 80 * @device_list: list of CMO-enabled devices requiring entitlement 81 * @entitled: total system entitlement in bytes 82 * @reserve: pool of memory from which devices reserve entitlement, incl. spare 83 * @excess: pool of excess entitlement not needed for device reserves or spare 84 * @spare: IO memory for device hotplug functionality 85 * @min: minimum necessary for system operation 86 * @desired: desired memory for system operation 87 * @curr: bytes currently allocated 88 * @high: high water mark for IO data usage 89 */ 90 static struct vio_cmo { 91 spinlock_t lock; 92 struct delayed_work balance_q; 93 struct list_head device_list; 94 size_t entitled; 95 struct vio_cmo_pool reserve; 96 struct vio_cmo_pool excess; 97 size_t spare; 98 size_t min; 99 size_t desired; 100 size_t curr; 101 size_t high; 102 } vio_cmo; 103 104 /** 105 * vio_cmo_OF_devices - Count the number of OF devices that have DMA windows 106 */ 107 static int vio_cmo_num_OF_devs(void) 108 { 109 struct device_node *node_vroot; 110 int count = 0; 111 112 /* 113 * Count the number of vdevice entries with an 114 * ibm,my-dma-window OF property 115 */ 116 node_vroot = of_find_node_by_name(NULL, "vdevice"); 117 if (node_vroot) { 118 struct device_node *of_node; 119 struct property *prop; 120 121 for_each_child_of_node(node_vroot, of_node) { 122 prop = of_find_property(of_node, "ibm,my-dma-window", 123 NULL); 124 if (prop) 125 count++; 126 } 127 } 128 of_node_put(node_vroot); 129 return count; 130 } 131 132 /** 133 * vio_cmo_alloc - allocate IO memory for CMO-enable devices 134 * 135 * @viodev: VIO device requesting IO memory 136 * @size: size of allocation requested 137 * 138 * Allocations come from memory reserved for the devices and any excess 139 * IO memory available to all devices. The spare pool used to service 140 * hotplug must be equal to %VIO_CMO_MIN_ENT for the excess pool to be 141 * made available. 142 * 143 * Return codes: 144 * 0 for successful allocation and -ENOMEM for a failure 145 */ 146 static inline int vio_cmo_alloc(struct vio_dev *viodev, size_t size) 147 { 148 unsigned long flags; 149 size_t reserve_free = 0; 150 size_t excess_free = 0; 151 int ret = -ENOMEM; 152 153 spin_lock_irqsave(&vio_cmo.lock, flags); 154 155 /* Determine the amount of free entitlement available in reserve */ 156 if (viodev->cmo.entitled > viodev->cmo.allocated) 157 reserve_free = viodev->cmo.entitled - viodev->cmo.allocated; 158 159 /* If spare is not fulfilled, the excess pool can not be used. */ 160 if (vio_cmo.spare >= VIO_CMO_MIN_ENT) 161 excess_free = vio_cmo.excess.free; 162 163 /* The request can be satisfied */ 164 if ((reserve_free + excess_free) >= size) { 165 vio_cmo.curr += size; 166 if (vio_cmo.curr > vio_cmo.high) 167 vio_cmo.high = vio_cmo.curr; 168 viodev->cmo.allocated += size; 169 size -= min(reserve_free, size); 170 vio_cmo.excess.free -= size; 171 ret = 0; 172 } 173 174 spin_unlock_irqrestore(&vio_cmo.lock, flags); 175 return ret; 176 } 177 178 /** 179 * vio_cmo_dealloc - deallocate IO memory from CMO-enable devices 180 * @viodev: VIO device freeing IO memory 181 * @size: size of deallocation 182 * 183 * IO memory is freed by the device back to the correct memory pools. 184 * The spare pool is replenished first from either memory pool, then 185 * the reserve pool is used to reduce device entitlement, the excess 186 * pool is used to increase the reserve pool toward the desired entitlement 187 * target, and then the remaining memory is returned to the pools. 188 * 189 */ 190 static inline void vio_cmo_dealloc(struct vio_dev *viodev, size_t size) 191 { 192 unsigned long flags; 193 size_t spare_needed = 0; 194 size_t excess_freed = 0; 195 size_t reserve_freed = size; 196 size_t tmp; 197 int balance = 0; 198 199 spin_lock_irqsave(&vio_cmo.lock, flags); 200 vio_cmo.curr -= size; 201 202 /* Amount of memory freed from the excess pool */ 203 if (viodev->cmo.allocated > viodev->cmo.entitled) { 204 excess_freed = min(reserve_freed, (viodev->cmo.allocated - 205 viodev->cmo.entitled)); 206 reserve_freed -= excess_freed; 207 } 208 209 /* Remove allocation from device */ 210 viodev->cmo.allocated -= (reserve_freed + excess_freed); 211 212 /* Spare is a subset of the reserve pool, replenish it first. */ 213 spare_needed = VIO_CMO_MIN_ENT - vio_cmo.spare; 214 215 /* 216 * Replenish the spare in the reserve pool from the excess pool. 217 * This moves entitlement into the reserve pool. 218 */ 219 if (spare_needed && excess_freed) { 220 tmp = min(excess_freed, spare_needed); 221 vio_cmo.excess.size -= tmp; 222 vio_cmo.reserve.size += tmp; 223 vio_cmo.spare += tmp; 224 excess_freed -= tmp; 225 spare_needed -= tmp; 226 balance = 1; 227 } 228 229 /* 230 * Replenish the spare in the reserve pool from the reserve pool. 231 * This removes entitlement from the device down to VIO_CMO_MIN_ENT, 232 * if needed, and gives it to the spare pool. The amount of used 233 * memory in this pool does not change. 234 */ 235 if (spare_needed && reserve_freed) { 236 tmp = min3(spare_needed, reserve_freed, (viodev->cmo.entitled - VIO_CMO_MIN_ENT)); 237 238 vio_cmo.spare += tmp; 239 viodev->cmo.entitled -= tmp; 240 reserve_freed -= tmp; 241 spare_needed -= tmp; 242 balance = 1; 243 } 244 245 /* 246 * Increase the reserve pool until the desired allocation is met. 247 * Move an allocation freed from the excess pool into the reserve 248 * pool and schedule a balance operation. 249 */ 250 if (excess_freed && (vio_cmo.desired > vio_cmo.reserve.size)) { 251 tmp = min(excess_freed, (vio_cmo.desired - vio_cmo.reserve.size)); 252 253 vio_cmo.excess.size -= tmp; 254 vio_cmo.reserve.size += tmp; 255 excess_freed -= tmp; 256 balance = 1; 257 } 258 259 /* Return memory from the excess pool to that pool */ 260 if (excess_freed) 261 vio_cmo.excess.free += excess_freed; 262 263 if (balance) 264 schedule_delayed_work(&vio_cmo.balance_q, VIO_CMO_BALANCE_DELAY); 265 spin_unlock_irqrestore(&vio_cmo.lock, flags); 266 } 267 268 /** 269 * vio_cmo_entitlement_update - Manage system entitlement changes 270 * 271 * @new_entitlement: new system entitlement to attempt to accommodate 272 * 273 * Increases in entitlement will be used to fulfill the spare entitlement 274 * and the rest is given to the excess pool. Decreases, if they are 275 * possible, come from the excess pool and from unused device entitlement 276 * 277 * Returns: 0 on success, -ENOMEM when change can not be made 278 */ 279 int vio_cmo_entitlement_update(size_t new_entitlement) 280 { 281 struct vio_dev *viodev; 282 struct vio_cmo_dev_entry *dev_ent; 283 unsigned long flags; 284 size_t avail, delta, tmp; 285 286 spin_lock_irqsave(&vio_cmo.lock, flags); 287 288 /* Entitlement increases */ 289 if (new_entitlement > vio_cmo.entitled) { 290 delta = new_entitlement - vio_cmo.entitled; 291 292 /* Fulfill spare allocation */ 293 if (vio_cmo.spare < VIO_CMO_MIN_ENT) { 294 tmp = min(delta, (VIO_CMO_MIN_ENT - vio_cmo.spare)); 295 vio_cmo.spare += tmp; 296 vio_cmo.reserve.size += tmp; 297 delta -= tmp; 298 } 299 300 /* Remaining new allocation goes to the excess pool */ 301 vio_cmo.entitled += delta; 302 vio_cmo.excess.size += delta; 303 vio_cmo.excess.free += delta; 304 305 goto out; 306 } 307 308 /* Entitlement decreases */ 309 delta = vio_cmo.entitled - new_entitlement; 310 avail = vio_cmo.excess.free; 311 312 /* 313 * Need to check how much unused entitlement each device can 314 * sacrifice to fulfill entitlement change. 315 */ 316 list_for_each_entry(dev_ent, &vio_cmo.device_list, list) { 317 if (avail >= delta) 318 break; 319 320 viodev = dev_ent->viodev; 321 if ((viodev->cmo.entitled > viodev->cmo.allocated) && 322 (viodev->cmo.entitled > VIO_CMO_MIN_ENT)) 323 avail += viodev->cmo.entitled - 324 max_t(size_t, viodev->cmo.allocated, 325 VIO_CMO_MIN_ENT); 326 } 327 328 if (delta <= avail) { 329 vio_cmo.entitled -= delta; 330 331 /* Take entitlement from the excess pool first */ 332 tmp = min(vio_cmo.excess.free, delta); 333 vio_cmo.excess.size -= tmp; 334 vio_cmo.excess.free -= tmp; 335 delta -= tmp; 336 337 /* 338 * Remove all but VIO_CMO_MIN_ENT bytes from devices 339 * until entitlement change is served 340 */ 341 list_for_each_entry(dev_ent, &vio_cmo.device_list, list) { 342 if (!delta) 343 break; 344 345 viodev = dev_ent->viodev; 346 tmp = 0; 347 if ((viodev->cmo.entitled > viodev->cmo.allocated) && 348 (viodev->cmo.entitled > VIO_CMO_MIN_ENT)) 349 tmp = viodev->cmo.entitled - 350 max_t(size_t, viodev->cmo.allocated, 351 VIO_CMO_MIN_ENT); 352 viodev->cmo.entitled -= min(tmp, delta); 353 delta -= min(tmp, delta); 354 } 355 } else { 356 spin_unlock_irqrestore(&vio_cmo.lock, flags); 357 return -ENOMEM; 358 } 359 360 out: 361 schedule_delayed_work(&vio_cmo.balance_q, 0); 362 spin_unlock_irqrestore(&vio_cmo.lock, flags); 363 return 0; 364 } 365 366 /** 367 * vio_cmo_balance - Balance entitlement among devices 368 * 369 * @work: work queue structure for this operation 370 * 371 * Any system entitlement above the minimum needed for devices, or 372 * already allocated to devices, can be distributed to the devices. 373 * The list of devices is iterated through to recalculate the desired 374 * entitlement level and to determine how much entitlement above the 375 * minimum entitlement is allocated to devices. 376 * 377 * Small chunks of the available entitlement are given to devices until 378 * their requirements are fulfilled or there is no entitlement left to give. 379 * Upon completion sizes of the reserve and excess pools are calculated. 380 * 381 * The system minimum entitlement level is also recalculated here. 382 * Entitlement will be reserved for devices even after vio_bus_remove to 383 * accommodate reloading the driver. The OF tree is walked to count the 384 * number of devices present and this will remove entitlement for devices 385 * that have actually left the system after having vio_bus_remove called. 386 */ 387 static void vio_cmo_balance(struct work_struct *work) 388 { 389 struct vio_cmo *cmo; 390 struct vio_dev *viodev; 391 struct vio_cmo_dev_entry *dev_ent; 392 unsigned long flags; 393 size_t avail = 0, level, chunk, need; 394 int devcount = 0, fulfilled; 395 396 cmo = container_of(work, struct vio_cmo, balance_q.work); 397 398 spin_lock_irqsave(&vio_cmo.lock, flags); 399 400 /* Calculate minimum entitlement and fulfill spare */ 401 cmo->min = vio_cmo_num_OF_devs() * VIO_CMO_MIN_ENT; 402 BUG_ON(cmo->min > cmo->entitled); 403 cmo->spare = min_t(size_t, VIO_CMO_MIN_ENT, (cmo->entitled - cmo->min)); 404 cmo->min += cmo->spare; 405 cmo->desired = cmo->min; 406 407 /* 408 * Determine how much entitlement is available and reset device 409 * entitlements 410 */ 411 avail = cmo->entitled - cmo->spare; 412 list_for_each_entry(dev_ent, &vio_cmo.device_list, list) { 413 viodev = dev_ent->viodev; 414 devcount++; 415 viodev->cmo.entitled = VIO_CMO_MIN_ENT; 416 cmo->desired += (viodev->cmo.desired - VIO_CMO_MIN_ENT); 417 avail -= max_t(size_t, viodev->cmo.allocated, VIO_CMO_MIN_ENT); 418 } 419 420 /* 421 * Having provided each device with the minimum entitlement, loop 422 * over the devices portioning out the remaining entitlement 423 * until there is nothing left. 424 */ 425 level = VIO_CMO_MIN_ENT; 426 while (avail) { 427 fulfilled = 0; 428 list_for_each_entry(dev_ent, &vio_cmo.device_list, list) { 429 viodev = dev_ent->viodev; 430 431 if (viodev->cmo.desired <= level) { 432 fulfilled++; 433 continue; 434 } 435 436 /* 437 * Give the device up to VIO_CMO_BALANCE_CHUNK 438 * bytes of entitlement, but do not exceed the 439 * desired level of entitlement for the device. 440 */ 441 chunk = min_t(size_t, avail, VIO_CMO_BALANCE_CHUNK); 442 chunk = min(chunk, (viodev->cmo.desired - 443 viodev->cmo.entitled)); 444 viodev->cmo.entitled += chunk; 445 446 /* 447 * If the memory for this entitlement increase was 448 * already allocated to the device it does not come 449 * from the available pool being portioned out. 450 */ 451 need = max(viodev->cmo.allocated, viodev->cmo.entitled)- 452 max(viodev->cmo.allocated, level); 453 avail -= need; 454 455 } 456 if (fulfilled == devcount) 457 break; 458 level += VIO_CMO_BALANCE_CHUNK; 459 } 460 461 /* Calculate new reserve and excess pool sizes */ 462 cmo->reserve.size = cmo->min; 463 cmo->excess.free = 0; 464 cmo->excess.size = 0; 465 need = 0; 466 list_for_each_entry(dev_ent, &vio_cmo.device_list, list) { 467 viodev = dev_ent->viodev; 468 /* Calculated reserve size above the minimum entitlement */ 469 if (viodev->cmo.entitled) 470 cmo->reserve.size += (viodev->cmo.entitled - 471 VIO_CMO_MIN_ENT); 472 /* Calculated used excess entitlement */ 473 if (viodev->cmo.allocated > viodev->cmo.entitled) 474 need += viodev->cmo.allocated - viodev->cmo.entitled; 475 } 476 cmo->excess.size = cmo->entitled - cmo->reserve.size; 477 cmo->excess.free = cmo->excess.size - need; 478 479 cancel_delayed_work(to_delayed_work(work)); 480 spin_unlock_irqrestore(&vio_cmo.lock, flags); 481 } 482 483 static void *vio_dma_iommu_alloc_coherent(struct device *dev, size_t size, 484 dma_addr_t *dma_handle, gfp_t flag, 485 unsigned long attrs) 486 { 487 struct vio_dev *viodev = to_vio_dev(dev); 488 void *ret; 489 490 if (vio_cmo_alloc(viodev, roundup(size, PAGE_SIZE))) { 491 atomic_inc(&viodev->cmo.allocs_failed); 492 return NULL; 493 } 494 495 ret = dma_iommu_ops.alloc(dev, size, dma_handle, flag, attrs); 496 if (unlikely(ret == NULL)) { 497 vio_cmo_dealloc(viodev, roundup(size, PAGE_SIZE)); 498 atomic_inc(&viodev->cmo.allocs_failed); 499 } 500 501 return ret; 502 } 503 504 static void vio_dma_iommu_free_coherent(struct device *dev, size_t size, 505 void *vaddr, dma_addr_t dma_handle, 506 unsigned long attrs) 507 { 508 struct vio_dev *viodev = to_vio_dev(dev); 509 510 dma_iommu_ops.free(dev, size, vaddr, dma_handle, attrs); 511 512 vio_cmo_dealloc(viodev, roundup(size, PAGE_SIZE)); 513 } 514 515 static dma_addr_t vio_dma_iommu_map_page(struct device *dev, struct page *page, 516 unsigned long offset, size_t size, 517 enum dma_data_direction direction, 518 unsigned long attrs) 519 { 520 struct vio_dev *viodev = to_vio_dev(dev); 521 struct iommu_table *tbl; 522 dma_addr_t ret = IOMMU_MAPPING_ERROR; 523 524 tbl = get_iommu_table_base(dev); 525 if (vio_cmo_alloc(viodev, roundup(size, IOMMU_PAGE_SIZE(tbl)))) { 526 atomic_inc(&viodev->cmo.allocs_failed); 527 return ret; 528 } 529 530 ret = dma_iommu_ops.map_page(dev, page, offset, size, direction, attrs); 531 if (unlikely(dma_mapping_error(dev, ret))) { 532 vio_cmo_dealloc(viodev, roundup(size, IOMMU_PAGE_SIZE(tbl))); 533 atomic_inc(&viodev->cmo.allocs_failed); 534 } 535 536 return ret; 537 } 538 539 static void vio_dma_iommu_unmap_page(struct device *dev, dma_addr_t dma_handle, 540 size_t size, 541 enum dma_data_direction direction, 542 unsigned long attrs) 543 { 544 struct vio_dev *viodev = to_vio_dev(dev); 545 struct iommu_table *tbl; 546 547 tbl = get_iommu_table_base(dev); 548 dma_iommu_ops.unmap_page(dev, dma_handle, size, direction, attrs); 549 550 vio_cmo_dealloc(viodev, roundup(size, IOMMU_PAGE_SIZE(tbl))); 551 } 552 553 static int vio_dma_iommu_map_sg(struct device *dev, struct scatterlist *sglist, 554 int nelems, enum dma_data_direction direction, 555 unsigned long attrs) 556 { 557 struct vio_dev *viodev = to_vio_dev(dev); 558 struct iommu_table *tbl; 559 struct scatterlist *sgl; 560 int ret, count; 561 size_t alloc_size = 0; 562 563 tbl = get_iommu_table_base(dev); 564 for_each_sg(sglist, sgl, nelems, count) 565 alloc_size += roundup(sgl->length, IOMMU_PAGE_SIZE(tbl)); 566 567 if (vio_cmo_alloc(viodev, alloc_size)) { 568 atomic_inc(&viodev->cmo.allocs_failed); 569 return 0; 570 } 571 572 ret = dma_iommu_ops.map_sg(dev, sglist, nelems, direction, attrs); 573 574 if (unlikely(!ret)) { 575 vio_cmo_dealloc(viodev, alloc_size); 576 atomic_inc(&viodev->cmo.allocs_failed); 577 return ret; 578 } 579 580 for_each_sg(sglist, sgl, ret, count) 581 alloc_size -= roundup(sgl->dma_length, IOMMU_PAGE_SIZE(tbl)); 582 if (alloc_size) 583 vio_cmo_dealloc(viodev, alloc_size); 584 585 return ret; 586 } 587 588 static void vio_dma_iommu_unmap_sg(struct device *dev, 589 struct scatterlist *sglist, int nelems, 590 enum dma_data_direction direction, 591 unsigned long attrs) 592 { 593 struct vio_dev *viodev = to_vio_dev(dev); 594 struct iommu_table *tbl; 595 struct scatterlist *sgl; 596 size_t alloc_size = 0; 597 int count; 598 599 tbl = get_iommu_table_base(dev); 600 for_each_sg(sglist, sgl, nelems, count) 601 alloc_size += roundup(sgl->dma_length, IOMMU_PAGE_SIZE(tbl)); 602 603 dma_iommu_ops.unmap_sg(dev, sglist, nelems, direction, attrs); 604 605 vio_cmo_dealloc(viodev, alloc_size); 606 } 607 608 static int vio_dma_iommu_dma_supported(struct device *dev, u64 mask) 609 { 610 return dma_iommu_ops.dma_supported(dev, mask); 611 } 612 613 static u64 vio_dma_get_required_mask(struct device *dev) 614 { 615 return dma_iommu_ops.get_required_mask(dev); 616 } 617 618 static const struct dma_map_ops vio_dma_mapping_ops = { 619 .alloc = vio_dma_iommu_alloc_coherent, 620 .free = vio_dma_iommu_free_coherent, 621 .mmap = dma_nommu_mmap_coherent, 622 .map_sg = vio_dma_iommu_map_sg, 623 .unmap_sg = vio_dma_iommu_unmap_sg, 624 .map_page = vio_dma_iommu_map_page, 625 .unmap_page = vio_dma_iommu_unmap_page, 626 .dma_supported = vio_dma_iommu_dma_supported, 627 .get_required_mask = vio_dma_get_required_mask, 628 .mapping_error = dma_iommu_mapping_error, 629 }; 630 631 /** 632 * vio_cmo_set_dev_desired - Set desired entitlement for a device 633 * 634 * @viodev: struct vio_dev for device to alter 635 * @desired: new desired entitlement level in bytes 636 * 637 * For use by devices to request a change to their entitlement at runtime or 638 * through sysfs. The desired entitlement level is changed and a balancing 639 * of system resources is scheduled to run in the future. 640 */ 641 void vio_cmo_set_dev_desired(struct vio_dev *viodev, size_t desired) 642 { 643 unsigned long flags; 644 struct vio_cmo_dev_entry *dev_ent; 645 int found = 0; 646 647 if (!firmware_has_feature(FW_FEATURE_CMO)) 648 return; 649 650 spin_lock_irqsave(&vio_cmo.lock, flags); 651 if (desired < VIO_CMO_MIN_ENT) 652 desired = VIO_CMO_MIN_ENT; 653 654 /* 655 * Changes will not be made for devices not in the device list. 656 * If it is not in the device list, then no driver is loaded 657 * for the device and it can not receive entitlement. 658 */ 659 list_for_each_entry(dev_ent, &vio_cmo.device_list, list) 660 if (viodev == dev_ent->viodev) { 661 found = 1; 662 break; 663 } 664 if (!found) { 665 spin_unlock_irqrestore(&vio_cmo.lock, flags); 666 return; 667 } 668 669 /* Increase/decrease in desired device entitlement */ 670 if (desired >= viodev->cmo.desired) { 671 /* Just bump the bus and device values prior to a balance*/ 672 vio_cmo.desired += desired - viodev->cmo.desired; 673 viodev->cmo.desired = desired; 674 } else { 675 /* Decrease bus and device values for desired entitlement */ 676 vio_cmo.desired -= viodev->cmo.desired - desired; 677 viodev->cmo.desired = desired; 678 /* 679 * If less entitlement is desired than current entitlement, move 680 * any reserve memory in the change region to the excess pool. 681 */ 682 if (viodev->cmo.entitled > desired) { 683 vio_cmo.reserve.size -= viodev->cmo.entitled - desired; 684 vio_cmo.excess.size += viodev->cmo.entitled - desired; 685 /* 686 * If entitlement moving from the reserve pool to the 687 * excess pool is currently unused, add to the excess 688 * free counter. 689 */ 690 if (viodev->cmo.allocated < viodev->cmo.entitled) 691 vio_cmo.excess.free += viodev->cmo.entitled - 692 max(viodev->cmo.allocated, desired); 693 viodev->cmo.entitled = desired; 694 } 695 } 696 schedule_delayed_work(&vio_cmo.balance_q, 0); 697 spin_unlock_irqrestore(&vio_cmo.lock, flags); 698 } 699 700 /** 701 * vio_cmo_bus_probe - Handle CMO specific bus probe activities 702 * 703 * @viodev - Pointer to struct vio_dev for device 704 * 705 * Determine the devices IO memory entitlement needs, attempting 706 * to satisfy the system minimum entitlement at first and scheduling 707 * a balance operation to take care of the rest at a later time. 708 * 709 * Returns: 0 on success, -EINVAL when device doesn't support CMO, and 710 * -ENOMEM when entitlement is not available for device or 711 * device entry. 712 * 713 */ 714 static int vio_cmo_bus_probe(struct vio_dev *viodev) 715 { 716 struct vio_cmo_dev_entry *dev_ent; 717 struct device *dev = &viodev->dev; 718 struct iommu_table *tbl; 719 struct vio_driver *viodrv = to_vio_driver(dev->driver); 720 unsigned long flags; 721 size_t size; 722 bool dma_capable = false; 723 724 tbl = get_iommu_table_base(dev); 725 726 /* A device requires entitlement if it has a DMA window property */ 727 switch (viodev->family) { 728 case VDEVICE: 729 if (of_get_property(viodev->dev.of_node, 730 "ibm,my-dma-window", NULL)) 731 dma_capable = true; 732 break; 733 case PFO: 734 dma_capable = false; 735 break; 736 default: 737 dev_warn(dev, "unknown device family: %d\n", viodev->family); 738 BUG(); 739 break; 740 } 741 742 /* Configure entitlement for the device. */ 743 if (dma_capable) { 744 /* Check that the driver is CMO enabled and get desired DMA */ 745 if (!viodrv->get_desired_dma) { 746 dev_err(dev, "%s: device driver does not support CMO\n", 747 __func__); 748 return -EINVAL; 749 } 750 751 viodev->cmo.desired = 752 IOMMU_PAGE_ALIGN(viodrv->get_desired_dma(viodev), tbl); 753 if (viodev->cmo.desired < VIO_CMO_MIN_ENT) 754 viodev->cmo.desired = VIO_CMO_MIN_ENT; 755 size = VIO_CMO_MIN_ENT; 756 757 dev_ent = kmalloc(sizeof(struct vio_cmo_dev_entry), 758 GFP_KERNEL); 759 if (!dev_ent) 760 return -ENOMEM; 761 762 dev_ent->viodev = viodev; 763 spin_lock_irqsave(&vio_cmo.lock, flags); 764 list_add(&dev_ent->list, &vio_cmo.device_list); 765 } else { 766 viodev->cmo.desired = 0; 767 size = 0; 768 spin_lock_irqsave(&vio_cmo.lock, flags); 769 } 770 771 /* 772 * If the needs for vio_cmo.min have not changed since they 773 * were last set, the number of devices in the OF tree has 774 * been constant and the IO memory for this is already in 775 * the reserve pool. 776 */ 777 if (vio_cmo.min == ((vio_cmo_num_OF_devs() + 1) * 778 VIO_CMO_MIN_ENT)) { 779 /* Updated desired entitlement if device requires it */ 780 if (size) 781 vio_cmo.desired += (viodev->cmo.desired - 782 VIO_CMO_MIN_ENT); 783 } else { 784 size_t tmp; 785 786 tmp = vio_cmo.spare + vio_cmo.excess.free; 787 if (tmp < size) { 788 dev_err(dev, "%s: insufficient free " 789 "entitlement to add device. " 790 "Need %lu, have %lu\n", __func__, 791 size, (vio_cmo.spare + tmp)); 792 spin_unlock_irqrestore(&vio_cmo.lock, flags); 793 return -ENOMEM; 794 } 795 796 /* Use excess pool first to fulfill request */ 797 tmp = min(size, vio_cmo.excess.free); 798 vio_cmo.excess.free -= tmp; 799 vio_cmo.excess.size -= tmp; 800 vio_cmo.reserve.size += tmp; 801 802 /* Use spare if excess pool was insufficient */ 803 vio_cmo.spare -= size - tmp; 804 805 /* Update bus accounting */ 806 vio_cmo.min += size; 807 vio_cmo.desired += viodev->cmo.desired; 808 } 809 spin_unlock_irqrestore(&vio_cmo.lock, flags); 810 return 0; 811 } 812 813 /** 814 * vio_cmo_bus_remove - Handle CMO specific bus removal activities 815 * 816 * @viodev - Pointer to struct vio_dev for device 817 * 818 * Remove the device from the cmo device list. The minimum entitlement 819 * will be reserved for the device as long as it is in the system. The 820 * rest of the entitlement the device had been allocated will be returned 821 * to the system. 822 */ 823 static void vio_cmo_bus_remove(struct vio_dev *viodev) 824 { 825 struct vio_cmo_dev_entry *dev_ent; 826 unsigned long flags; 827 size_t tmp; 828 829 spin_lock_irqsave(&vio_cmo.lock, flags); 830 if (viodev->cmo.allocated) { 831 dev_err(&viodev->dev, "%s: device had %lu bytes of IO " 832 "allocated after remove operation.\n", 833 __func__, viodev->cmo.allocated); 834 BUG(); 835 } 836 837 /* 838 * Remove the device from the device list being maintained for 839 * CMO enabled devices. 840 */ 841 list_for_each_entry(dev_ent, &vio_cmo.device_list, list) 842 if (viodev == dev_ent->viodev) { 843 list_del(&dev_ent->list); 844 kfree(dev_ent); 845 break; 846 } 847 848 /* 849 * Devices may not require any entitlement and they do not need 850 * to be processed. Otherwise, return the device's entitlement 851 * back to the pools. 852 */ 853 if (viodev->cmo.entitled) { 854 /* 855 * This device has not yet left the OF tree, it's 856 * minimum entitlement remains in vio_cmo.min and 857 * vio_cmo.desired 858 */ 859 vio_cmo.desired -= (viodev->cmo.desired - VIO_CMO_MIN_ENT); 860 861 /* 862 * Save min allocation for device in reserve as long 863 * as it exists in OF tree as determined by later 864 * balance operation 865 */ 866 viodev->cmo.entitled -= VIO_CMO_MIN_ENT; 867 868 /* Replenish spare from freed reserve pool */ 869 if (viodev->cmo.entitled && (vio_cmo.spare < VIO_CMO_MIN_ENT)) { 870 tmp = min(viodev->cmo.entitled, (VIO_CMO_MIN_ENT - 871 vio_cmo.spare)); 872 vio_cmo.spare += tmp; 873 viodev->cmo.entitled -= tmp; 874 } 875 876 /* Remaining reserve goes to excess pool */ 877 vio_cmo.excess.size += viodev->cmo.entitled; 878 vio_cmo.excess.free += viodev->cmo.entitled; 879 vio_cmo.reserve.size -= viodev->cmo.entitled; 880 881 /* 882 * Until the device is removed it will keep a 883 * minimum entitlement; this will guarantee that 884 * a module unload/load will result in a success. 885 */ 886 viodev->cmo.entitled = VIO_CMO_MIN_ENT; 887 viodev->cmo.desired = VIO_CMO_MIN_ENT; 888 atomic_set(&viodev->cmo.allocs_failed, 0); 889 } 890 891 spin_unlock_irqrestore(&vio_cmo.lock, flags); 892 } 893 894 static void vio_cmo_set_dma_ops(struct vio_dev *viodev) 895 { 896 set_dma_ops(&viodev->dev, &vio_dma_mapping_ops); 897 } 898 899 /** 900 * vio_cmo_bus_init - CMO entitlement initialization at bus init time 901 * 902 * Set up the reserve and excess entitlement pools based on available 903 * system entitlement and the number of devices in the OF tree that 904 * require entitlement in the reserve pool. 905 */ 906 static void vio_cmo_bus_init(void) 907 { 908 struct hvcall_mpp_data mpp_data; 909 int err; 910 911 memset(&vio_cmo, 0, sizeof(struct vio_cmo)); 912 spin_lock_init(&vio_cmo.lock); 913 INIT_LIST_HEAD(&vio_cmo.device_list); 914 INIT_DELAYED_WORK(&vio_cmo.balance_q, vio_cmo_balance); 915 916 /* Get current system entitlement */ 917 err = h_get_mpp(&mpp_data); 918 919 /* 920 * On failure, continue with entitlement set to 0, will panic() 921 * later when spare is reserved. 922 */ 923 if (err != H_SUCCESS) { 924 printk(KERN_ERR "%s: unable to determine system IO "\ 925 "entitlement. (%d)\n", __func__, err); 926 vio_cmo.entitled = 0; 927 } else { 928 vio_cmo.entitled = mpp_data.entitled_mem; 929 } 930 931 /* Set reservation and check against entitlement */ 932 vio_cmo.spare = VIO_CMO_MIN_ENT; 933 vio_cmo.reserve.size = vio_cmo.spare; 934 vio_cmo.reserve.size += (vio_cmo_num_OF_devs() * 935 VIO_CMO_MIN_ENT); 936 if (vio_cmo.reserve.size > vio_cmo.entitled) { 937 printk(KERN_ERR "%s: insufficient system entitlement\n", 938 __func__); 939 panic("%s: Insufficient system entitlement", __func__); 940 } 941 942 /* Set the remaining accounting variables */ 943 vio_cmo.excess.size = vio_cmo.entitled - vio_cmo.reserve.size; 944 vio_cmo.excess.free = vio_cmo.excess.size; 945 vio_cmo.min = vio_cmo.reserve.size; 946 vio_cmo.desired = vio_cmo.reserve.size; 947 } 948 949 /* sysfs device functions and data structures for CMO */ 950 951 #define viodev_cmo_rd_attr(name) \ 952 static ssize_t cmo_##name##_show(struct device *dev, \ 953 struct device_attribute *attr, \ 954 char *buf) \ 955 { \ 956 return sprintf(buf, "%lu\n", to_vio_dev(dev)->cmo.name); \ 957 } 958 959 static ssize_t cmo_allocs_failed_show(struct device *dev, 960 struct device_attribute *attr, char *buf) 961 { 962 struct vio_dev *viodev = to_vio_dev(dev); 963 return sprintf(buf, "%d\n", atomic_read(&viodev->cmo.allocs_failed)); 964 } 965 966 static ssize_t cmo_allocs_failed_store(struct device *dev, 967 struct device_attribute *attr, const char *buf, size_t count) 968 { 969 struct vio_dev *viodev = to_vio_dev(dev); 970 atomic_set(&viodev->cmo.allocs_failed, 0); 971 return count; 972 } 973 974 static ssize_t cmo_desired_store(struct device *dev, 975 struct device_attribute *attr, const char *buf, size_t count) 976 { 977 struct vio_dev *viodev = to_vio_dev(dev); 978 size_t new_desired; 979 int ret; 980 981 ret = kstrtoul(buf, 10, &new_desired); 982 if (ret) 983 return ret; 984 985 vio_cmo_set_dev_desired(viodev, new_desired); 986 return count; 987 } 988 989 viodev_cmo_rd_attr(desired); 990 viodev_cmo_rd_attr(entitled); 991 viodev_cmo_rd_attr(allocated); 992 993 static ssize_t name_show(struct device *, struct device_attribute *, char *); 994 static ssize_t devspec_show(struct device *, struct device_attribute *, char *); 995 static ssize_t modalias_show(struct device *dev, struct device_attribute *attr, 996 char *buf); 997 998 static struct device_attribute dev_attr_name; 999 static struct device_attribute dev_attr_devspec; 1000 static struct device_attribute dev_attr_modalias; 1001 1002 static DEVICE_ATTR_RO(cmo_entitled); 1003 static DEVICE_ATTR_RO(cmo_allocated); 1004 static DEVICE_ATTR_RW(cmo_desired); 1005 static DEVICE_ATTR_RW(cmo_allocs_failed); 1006 1007 static struct attribute *vio_cmo_dev_attrs[] = { 1008 &dev_attr_name.attr, 1009 &dev_attr_devspec.attr, 1010 &dev_attr_modalias.attr, 1011 &dev_attr_cmo_entitled.attr, 1012 &dev_attr_cmo_allocated.attr, 1013 &dev_attr_cmo_desired.attr, 1014 &dev_attr_cmo_allocs_failed.attr, 1015 NULL, 1016 }; 1017 ATTRIBUTE_GROUPS(vio_cmo_dev); 1018 1019 /* sysfs bus functions and data structures for CMO */ 1020 1021 #define viobus_cmo_rd_attr(name) \ 1022 static ssize_t cmo_bus_##name##_show(struct bus_type *bt, char *buf) \ 1023 { \ 1024 return sprintf(buf, "%lu\n", vio_cmo.name); \ 1025 } \ 1026 static struct bus_attribute bus_attr_cmo_bus_##name = \ 1027 __ATTR(cmo_##name, S_IRUGO, cmo_bus_##name##_show, NULL) 1028 1029 #define viobus_cmo_pool_rd_attr(name, var) \ 1030 static ssize_t \ 1031 cmo_##name##_##var##_show(struct bus_type *bt, char *buf) \ 1032 { \ 1033 return sprintf(buf, "%lu\n", vio_cmo.name.var); \ 1034 } \ 1035 static BUS_ATTR_RO(cmo_##name##_##var) 1036 1037 viobus_cmo_rd_attr(entitled); 1038 viobus_cmo_rd_attr(spare); 1039 viobus_cmo_rd_attr(min); 1040 viobus_cmo_rd_attr(desired); 1041 viobus_cmo_rd_attr(curr); 1042 viobus_cmo_pool_rd_attr(reserve, size); 1043 viobus_cmo_pool_rd_attr(excess, size); 1044 viobus_cmo_pool_rd_attr(excess, free); 1045 1046 static ssize_t cmo_high_show(struct bus_type *bt, char *buf) 1047 { 1048 return sprintf(buf, "%lu\n", vio_cmo.high); 1049 } 1050 1051 static ssize_t cmo_high_store(struct bus_type *bt, const char *buf, 1052 size_t count) 1053 { 1054 unsigned long flags; 1055 1056 spin_lock_irqsave(&vio_cmo.lock, flags); 1057 vio_cmo.high = vio_cmo.curr; 1058 spin_unlock_irqrestore(&vio_cmo.lock, flags); 1059 1060 return count; 1061 } 1062 static BUS_ATTR_RW(cmo_high); 1063 1064 static struct attribute *vio_bus_attrs[] = { 1065 &bus_attr_cmo_bus_entitled.attr, 1066 &bus_attr_cmo_bus_spare.attr, 1067 &bus_attr_cmo_bus_min.attr, 1068 &bus_attr_cmo_bus_desired.attr, 1069 &bus_attr_cmo_bus_curr.attr, 1070 &bus_attr_cmo_high.attr, 1071 &bus_attr_cmo_reserve_size.attr, 1072 &bus_attr_cmo_excess_size.attr, 1073 &bus_attr_cmo_excess_free.attr, 1074 NULL, 1075 }; 1076 ATTRIBUTE_GROUPS(vio_bus); 1077 1078 static void vio_cmo_sysfs_init(void) 1079 { 1080 vio_bus_type.dev_groups = vio_cmo_dev_groups; 1081 vio_bus_type.bus_groups = vio_bus_groups; 1082 } 1083 #else /* CONFIG_PPC_SMLPAR */ 1084 int vio_cmo_entitlement_update(size_t new_entitlement) { return 0; } 1085 void vio_cmo_set_dev_desired(struct vio_dev *viodev, size_t desired) {} 1086 static int vio_cmo_bus_probe(struct vio_dev *viodev) { return 0; } 1087 static void vio_cmo_bus_remove(struct vio_dev *viodev) {} 1088 static void vio_cmo_set_dma_ops(struct vio_dev *viodev) {} 1089 static void vio_cmo_bus_init(void) {} 1090 static void vio_cmo_sysfs_init(void) { } 1091 #endif /* CONFIG_PPC_SMLPAR */ 1092 EXPORT_SYMBOL(vio_cmo_entitlement_update); 1093 EXPORT_SYMBOL(vio_cmo_set_dev_desired); 1094 1095 1096 /* 1097 * Platform Facilities Option (PFO) support 1098 */ 1099 1100 /** 1101 * vio_h_cop_sync - Perform a synchronous PFO co-processor operation 1102 * 1103 * @vdev - Pointer to a struct vio_dev for device 1104 * @op - Pointer to a struct vio_pfo_op for the operation parameters 1105 * 1106 * Calls the hypervisor to synchronously perform the PFO operation 1107 * described in @op. In the case of a busy response from the hypervisor, 1108 * the operation will be re-submitted indefinitely unless a non-zero timeout 1109 * is specified or an error occurs. The timeout places a limit on when to 1110 * stop re-submitting a operation, the total time can be exceeded if an 1111 * operation is in progress. 1112 * 1113 * If op->hcall_ret is not NULL, this will be set to the return from the 1114 * last h_cop_op call or it will be 0 if an error not involving the h_call 1115 * was encountered. 1116 * 1117 * Returns: 1118 * 0 on success, 1119 * -EINVAL if the h_call fails due to an invalid parameter, 1120 * -E2BIG if the h_call can not be performed synchronously, 1121 * -EBUSY if a timeout is specified and has elapsed, 1122 * -EACCES if the memory area for data/status has been rescinded, or 1123 * -EPERM if a hardware fault has been indicated 1124 */ 1125 int vio_h_cop_sync(struct vio_dev *vdev, struct vio_pfo_op *op) 1126 { 1127 struct device *dev = &vdev->dev; 1128 unsigned long deadline = 0; 1129 long hret = 0; 1130 int ret = 0; 1131 1132 if (op->timeout) 1133 deadline = jiffies + msecs_to_jiffies(op->timeout); 1134 1135 while (true) { 1136 hret = plpar_hcall_norets(H_COP, op->flags, 1137 vdev->resource_id, 1138 op->in, op->inlen, op->out, 1139 op->outlen, op->csbcpb); 1140 1141 if (hret == H_SUCCESS || 1142 (hret != H_NOT_ENOUGH_RESOURCES && 1143 hret != H_BUSY && hret != H_RESOURCE) || 1144 (op->timeout && time_after(deadline, jiffies))) 1145 break; 1146 1147 dev_dbg(dev, "%s: hcall ret(%ld), retrying.\n", __func__, hret); 1148 } 1149 1150 switch (hret) { 1151 case H_SUCCESS: 1152 ret = 0; 1153 break; 1154 case H_OP_MODE: 1155 case H_TOO_BIG: 1156 ret = -E2BIG; 1157 break; 1158 case H_RESCINDED: 1159 ret = -EACCES; 1160 break; 1161 case H_HARDWARE: 1162 ret = -EPERM; 1163 break; 1164 case H_NOT_ENOUGH_RESOURCES: 1165 case H_RESOURCE: 1166 case H_BUSY: 1167 ret = -EBUSY; 1168 break; 1169 default: 1170 ret = -EINVAL; 1171 break; 1172 } 1173 1174 if (ret) 1175 dev_dbg(dev, "%s: Sync h_cop_op failure (ret:%d) (hret:%ld)\n", 1176 __func__, ret, hret); 1177 1178 op->hcall_err = hret; 1179 return ret; 1180 } 1181 EXPORT_SYMBOL(vio_h_cop_sync); 1182 1183 static struct iommu_table *vio_build_iommu_table(struct vio_dev *dev) 1184 { 1185 const __be32 *dma_window; 1186 struct iommu_table *tbl; 1187 unsigned long offset, size; 1188 1189 dma_window = of_get_property(dev->dev.of_node, 1190 "ibm,my-dma-window", NULL); 1191 if (!dma_window) 1192 return NULL; 1193 1194 tbl = kzalloc(sizeof(*tbl), GFP_KERNEL); 1195 if (tbl == NULL) 1196 return NULL; 1197 1198 of_parse_dma_window(dev->dev.of_node, dma_window, 1199 &tbl->it_index, &offset, &size); 1200 1201 /* TCE table size - measured in tce entries */ 1202 tbl->it_page_shift = IOMMU_PAGE_SHIFT_4K; 1203 tbl->it_size = size >> tbl->it_page_shift; 1204 /* offset for VIO should always be 0 */ 1205 tbl->it_offset = offset >> tbl->it_page_shift; 1206 tbl->it_busno = 0; 1207 tbl->it_type = TCE_VB; 1208 tbl->it_blocksize = 16; 1209 1210 if (firmware_has_feature(FW_FEATURE_LPAR)) 1211 tbl->it_ops = &iommu_table_lpar_multi_ops; 1212 else 1213 tbl->it_ops = &iommu_table_pseries_ops; 1214 1215 return iommu_init_table(tbl, -1); 1216 } 1217 1218 /** 1219 * vio_match_device: - Tell if a VIO device has a matching 1220 * VIO device id structure. 1221 * @ids: array of VIO device id structures to search in 1222 * @dev: the VIO device structure to match against 1223 * 1224 * Used by a driver to check whether a VIO device present in the 1225 * system is in its list of supported devices. Returns the matching 1226 * vio_device_id structure or NULL if there is no match. 1227 */ 1228 static const struct vio_device_id *vio_match_device( 1229 const struct vio_device_id *ids, const struct vio_dev *dev) 1230 { 1231 while (ids->type[0] != '\0') { 1232 if ((strncmp(dev->type, ids->type, strlen(ids->type)) == 0) && 1233 of_device_is_compatible(dev->dev.of_node, 1234 ids->compat)) 1235 return ids; 1236 ids++; 1237 } 1238 return NULL; 1239 } 1240 1241 /* 1242 * Convert from struct device to struct vio_dev and pass to driver. 1243 * dev->driver has already been set by generic code because vio_bus_match 1244 * succeeded. 1245 */ 1246 static int vio_bus_probe(struct device *dev) 1247 { 1248 struct vio_dev *viodev = to_vio_dev(dev); 1249 struct vio_driver *viodrv = to_vio_driver(dev->driver); 1250 const struct vio_device_id *id; 1251 int error = -ENODEV; 1252 1253 if (!viodrv->probe) 1254 return error; 1255 1256 id = vio_match_device(viodrv->id_table, viodev); 1257 if (id) { 1258 memset(&viodev->cmo, 0, sizeof(viodev->cmo)); 1259 if (firmware_has_feature(FW_FEATURE_CMO)) { 1260 error = vio_cmo_bus_probe(viodev); 1261 if (error) 1262 return error; 1263 } 1264 error = viodrv->probe(viodev, id); 1265 if (error && firmware_has_feature(FW_FEATURE_CMO)) 1266 vio_cmo_bus_remove(viodev); 1267 } 1268 1269 return error; 1270 } 1271 1272 /* convert from struct device to struct vio_dev and pass to driver. */ 1273 static int vio_bus_remove(struct device *dev) 1274 { 1275 struct vio_dev *viodev = to_vio_dev(dev); 1276 struct vio_driver *viodrv = to_vio_driver(dev->driver); 1277 struct device *devptr; 1278 int ret = 1; 1279 1280 /* 1281 * Hold a reference to the device after the remove function is called 1282 * to allow for CMO accounting cleanup for the device. 1283 */ 1284 devptr = get_device(dev); 1285 1286 if (viodrv->remove) 1287 ret = viodrv->remove(viodev); 1288 1289 if (!ret && firmware_has_feature(FW_FEATURE_CMO)) 1290 vio_cmo_bus_remove(viodev); 1291 1292 put_device(devptr); 1293 return ret; 1294 } 1295 1296 /** 1297 * vio_register_driver: - Register a new vio driver 1298 * @viodrv: The vio_driver structure to be registered. 1299 */ 1300 int __vio_register_driver(struct vio_driver *viodrv, struct module *owner, 1301 const char *mod_name) 1302 { 1303 pr_debug("%s: driver %s registering\n", __func__, viodrv->name); 1304 1305 /* fill in 'struct driver' fields */ 1306 viodrv->driver.name = viodrv->name; 1307 viodrv->driver.pm = viodrv->pm; 1308 viodrv->driver.bus = &vio_bus_type; 1309 viodrv->driver.owner = owner; 1310 viodrv->driver.mod_name = mod_name; 1311 1312 return driver_register(&viodrv->driver); 1313 } 1314 EXPORT_SYMBOL(__vio_register_driver); 1315 1316 /** 1317 * vio_unregister_driver - Remove registration of vio driver. 1318 * @viodrv: The vio_driver struct to be removed form registration 1319 */ 1320 void vio_unregister_driver(struct vio_driver *viodrv) 1321 { 1322 driver_unregister(&viodrv->driver); 1323 } 1324 EXPORT_SYMBOL(vio_unregister_driver); 1325 1326 /* vio_dev refcount hit 0 */ 1327 static void vio_dev_release(struct device *dev) 1328 { 1329 struct iommu_table *tbl = get_iommu_table_base(dev); 1330 1331 if (tbl) 1332 iommu_tce_table_put(tbl); 1333 of_node_put(dev->of_node); 1334 kfree(to_vio_dev(dev)); 1335 } 1336 1337 /** 1338 * vio_register_device_node: - Register a new vio device. 1339 * @of_node: The OF node for this device. 1340 * 1341 * Creates and initializes a vio_dev structure from the data in 1342 * of_node and adds it to the list of virtual devices. 1343 * Returns a pointer to the created vio_dev or NULL if node has 1344 * NULL device_type or compatible fields. 1345 */ 1346 struct vio_dev *vio_register_device_node(struct device_node *of_node) 1347 { 1348 struct vio_dev *viodev; 1349 struct device_node *parent_node; 1350 const __be32 *prop; 1351 enum vio_dev_family family; 1352 const char *of_node_name = of_node->name ? of_node->name : "<unknown>"; 1353 1354 /* 1355 * Determine if this node is a under the /vdevice node or under the 1356 * /ibm,platform-facilities node. This decides the device's family. 1357 */ 1358 parent_node = of_get_parent(of_node); 1359 if (parent_node) { 1360 if (!strcmp(parent_node->type, "ibm,platform-facilities")) 1361 family = PFO; 1362 else if (!strcmp(parent_node->type, "vdevice")) 1363 family = VDEVICE; 1364 else { 1365 pr_warn("%s: parent(%pOF) of %s not recognized.\n", 1366 __func__, 1367 parent_node, 1368 of_node_name); 1369 of_node_put(parent_node); 1370 return NULL; 1371 } 1372 of_node_put(parent_node); 1373 } else { 1374 pr_warn("%s: could not determine the parent of node %s.\n", 1375 __func__, of_node_name); 1376 return NULL; 1377 } 1378 1379 if (family == PFO) { 1380 if (of_get_property(of_node, "interrupt-controller", NULL)) { 1381 pr_debug("%s: Skipping the interrupt controller %s.\n", 1382 __func__, of_node_name); 1383 return NULL; 1384 } 1385 } 1386 1387 /* allocate a vio_dev for this node */ 1388 viodev = kzalloc(sizeof(struct vio_dev), GFP_KERNEL); 1389 if (viodev == NULL) { 1390 pr_warn("%s: allocation failure for VIO device.\n", __func__); 1391 return NULL; 1392 } 1393 1394 /* we need the 'device_type' property, in order to match with drivers */ 1395 viodev->family = family; 1396 if (viodev->family == VDEVICE) { 1397 unsigned int unit_address; 1398 1399 if (of_node->type != NULL) 1400 viodev->type = of_node->type; 1401 else { 1402 pr_warn("%s: node %s is missing the 'device_type' " 1403 "property.\n", __func__, of_node_name); 1404 goto out; 1405 } 1406 1407 prop = of_get_property(of_node, "reg", NULL); 1408 if (prop == NULL) { 1409 pr_warn("%s: node %s missing 'reg'\n", 1410 __func__, of_node_name); 1411 goto out; 1412 } 1413 unit_address = of_read_number(prop, 1); 1414 dev_set_name(&viodev->dev, "%x", unit_address); 1415 viodev->irq = irq_of_parse_and_map(of_node, 0); 1416 viodev->unit_address = unit_address; 1417 } else { 1418 /* PFO devices need their resource_id for submitting COP_OPs 1419 * This is an optional field for devices, but is required when 1420 * performing synchronous ops */ 1421 prop = of_get_property(of_node, "ibm,resource-id", NULL); 1422 if (prop != NULL) 1423 viodev->resource_id = of_read_number(prop, 1); 1424 1425 dev_set_name(&viodev->dev, "%s", of_node_name); 1426 viodev->type = of_node_name; 1427 viodev->irq = 0; 1428 } 1429 1430 viodev->name = of_node->name; 1431 viodev->dev.of_node = of_node_get(of_node); 1432 1433 set_dev_node(&viodev->dev, of_node_to_nid(of_node)); 1434 1435 /* init generic 'struct device' fields: */ 1436 viodev->dev.parent = &vio_bus_device.dev; 1437 viodev->dev.bus = &vio_bus_type; 1438 viodev->dev.release = vio_dev_release; 1439 1440 if (of_get_property(viodev->dev.of_node, "ibm,my-dma-window", NULL)) { 1441 if (firmware_has_feature(FW_FEATURE_CMO)) 1442 vio_cmo_set_dma_ops(viodev); 1443 else 1444 set_dma_ops(&viodev->dev, &dma_iommu_ops); 1445 1446 set_iommu_table_base(&viodev->dev, 1447 vio_build_iommu_table(viodev)); 1448 1449 /* needed to ensure proper operation of coherent allocations 1450 * later, in case driver doesn't set it explicitly */ 1451 viodev->dev.coherent_dma_mask = DMA_BIT_MASK(64); 1452 viodev->dev.dma_mask = &viodev->dev.coherent_dma_mask; 1453 } 1454 1455 /* register with generic device framework */ 1456 if (device_register(&viodev->dev)) { 1457 printk(KERN_ERR "%s: failed to register device %s\n", 1458 __func__, dev_name(&viodev->dev)); 1459 put_device(&viodev->dev); 1460 return NULL; 1461 } 1462 1463 return viodev; 1464 1465 out: /* Use this exit point for any return prior to device_register */ 1466 kfree(viodev); 1467 1468 return NULL; 1469 } 1470 EXPORT_SYMBOL(vio_register_device_node); 1471 1472 /* 1473 * vio_bus_scan_for_devices - Scan OF and register each child device 1474 * @root_name - OF node name for the root of the subtree to search. 1475 * This must be non-NULL 1476 * 1477 * Starting from the root node provide, register the device node for 1478 * each child beneath the root. 1479 */ 1480 static void vio_bus_scan_register_devices(char *root_name) 1481 { 1482 struct device_node *node_root, *node_child; 1483 1484 if (!root_name) 1485 return; 1486 1487 node_root = of_find_node_by_name(NULL, root_name); 1488 if (node_root) { 1489 1490 /* 1491 * Create struct vio_devices for each virtual device in 1492 * the device tree. Drivers will associate with them later. 1493 */ 1494 node_child = of_get_next_child(node_root, NULL); 1495 while (node_child) { 1496 vio_register_device_node(node_child); 1497 node_child = of_get_next_child(node_root, node_child); 1498 } 1499 of_node_put(node_root); 1500 } 1501 } 1502 1503 /** 1504 * vio_bus_init: - Initialize the virtual IO bus 1505 */ 1506 static int __init vio_bus_init(void) 1507 { 1508 int err; 1509 1510 if (firmware_has_feature(FW_FEATURE_CMO)) 1511 vio_cmo_sysfs_init(); 1512 1513 err = bus_register(&vio_bus_type); 1514 if (err) { 1515 printk(KERN_ERR "failed to register VIO bus\n"); 1516 return err; 1517 } 1518 1519 /* 1520 * The fake parent of all vio devices, just to give us 1521 * a nice directory 1522 */ 1523 err = device_register(&vio_bus_device.dev); 1524 if (err) { 1525 printk(KERN_WARNING "%s: device_register returned %i\n", 1526 __func__, err); 1527 return err; 1528 } 1529 1530 if (firmware_has_feature(FW_FEATURE_CMO)) 1531 vio_cmo_bus_init(); 1532 1533 return 0; 1534 } 1535 postcore_initcall(vio_bus_init); 1536 1537 static int __init vio_device_init(void) 1538 { 1539 vio_bus_scan_register_devices("vdevice"); 1540 vio_bus_scan_register_devices("ibm,platform-facilities"); 1541 1542 return 0; 1543 } 1544 device_initcall(vio_device_init); 1545 1546 static ssize_t name_show(struct device *dev, 1547 struct device_attribute *attr, char *buf) 1548 { 1549 return sprintf(buf, "%s\n", to_vio_dev(dev)->name); 1550 } 1551 static DEVICE_ATTR_RO(name); 1552 1553 static ssize_t devspec_show(struct device *dev, 1554 struct device_attribute *attr, char *buf) 1555 { 1556 struct device_node *of_node = dev->of_node; 1557 1558 return sprintf(buf, "%pOF\n", of_node); 1559 } 1560 static DEVICE_ATTR_RO(devspec); 1561 1562 static ssize_t modalias_show(struct device *dev, struct device_attribute *attr, 1563 char *buf) 1564 { 1565 const struct vio_dev *vio_dev = to_vio_dev(dev); 1566 struct device_node *dn; 1567 const char *cp; 1568 1569 dn = dev->of_node; 1570 if (!dn) { 1571 strcpy(buf, "\n"); 1572 return strlen(buf); 1573 } 1574 cp = of_get_property(dn, "compatible", NULL); 1575 if (!cp) { 1576 strcpy(buf, "\n"); 1577 return strlen(buf); 1578 } 1579 1580 return sprintf(buf, "vio:T%sS%s\n", vio_dev->type, cp); 1581 } 1582 static DEVICE_ATTR_RO(modalias); 1583 1584 static struct attribute *vio_dev_attrs[] = { 1585 &dev_attr_name.attr, 1586 &dev_attr_devspec.attr, 1587 &dev_attr_modalias.attr, 1588 NULL, 1589 }; 1590 ATTRIBUTE_GROUPS(vio_dev); 1591 1592 void vio_unregister_device(struct vio_dev *viodev) 1593 { 1594 device_unregister(&viodev->dev); 1595 if (viodev->family == VDEVICE) 1596 irq_dispose_mapping(viodev->irq); 1597 } 1598 EXPORT_SYMBOL(vio_unregister_device); 1599 1600 static int vio_bus_match(struct device *dev, struct device_driver *drv) 1601 { 1602 const struct vio_dev *vio_dev = to_vio_dev(dev); 1603 struct vio_driver *vio_drv = to_vio_driver(drv); 1604 const struct vio_device_id *ids = vio_drv->id_table; 1605 1606 return (ids != NULL) && (vio_match_device(ids, vio_dev) != NULL); 1607 } 1608 1609 static int vio_hotplug(struct device *dev, struct kobj_uevent_env *env) 1610 { 1611 const struct vio_dev *vio_dev = to_vio_dev(dev); 1612 struct device_node *dn; 1613 const char *cp; 1614 1615 dn = dev->of_node; 1616 if (!dn) 1617 return -ENODEV; 1618 cp = of_get_property(dn, "compatible", NULL); 1619 if (!cp) 1620 return -ENODEV; 1621 1622 add_uevent_var(env, "MODALIAS=vio:T%sS%s", vio_dev->type, cp); 1623 return 0; 1624 } 1625 1626 struct bus_type vio_bus_type = { 1627 .name = "vio", 1628 .dev_groups = vio_dev_groups, 1629 .uevent = vio_hotplug, 1630 .match = vio_bus_match, 1631 .probe = vio_bus_probe, 1632 .remove = vio_bus_remove, 1633 }; 1634 1635 /** 1636 * vio_get_attribute: - get attribute for virtual device 1637 * @vdev: The vio device to get property. 1638 * @which: The property/attribute to be extracted. 1639 * @length: Pointer to length of returned data size (unused if NULL). 1640 * 1641 * Calls prom.c's of_get_property() to return the value of the 1642 * attribute specified by @which 1643 */ 1644 const void *vio_get_attribute(struct vio_dev *vdev, char *which, int *length) 1645 { 1646 return of_get_property(vdev->dev.of_node, which, length); 1647 } 1648 EXPORT_SYMBOL(vio_get_attribute); 1649 1650 #ifdef CONFIG_PPC_PSERIES 1651 /* vio_find_name() - internal because only vio.c knows how we formatted the 1652 * kobject name 1653 */ 1654 static struct vio_dev *vio_find_name(const char *name) 1655 { 1656 struct device *found; 1657 1658 found = bus_find_device_by_name(&vio_bus_type, NULL, name); 1659 if (!found) 1660 return NULL; 1661 1662 return to_vio_dev(found); 1663 } 1664 1665 /** 1666 * vio_find_node - find an already-registered vio_dev 1667 * @vnode: device_node of the virtual device we're looking for 1668 * 1669 * Takes a reference to the embedded struct device which needs to be dropped 1670 * after use. 1671 */ 1672 struct vio_dev *vio_find_node(struct device_node *vnode) 1673 { 1674 char kobj_name[20]; 1675 struct device_node *vnode_parent; 1676 const char *dev_type; 1677 1678 vnode_parent = of_get_parent(vnode); 1679 if (!vnode_parent) 1680 return NULL; 1681 1682 dev_type = of_get_property(vnode_parent, "device_type", NULL); 1683 of_node_put(vnode_parent); 1684 if (!dev_type) 1685 return NULL; 1686 1687 /* construct the kobject name from the device node */ 1688 if (!strcmp(dev_type, "vdevice")) { 1689 const __be32 *prop; 1690 1691 prop = of_get_property(vnode, "reg", NULL); 1692 if (!prop) 1693 return NULL; 1694 snprintf(kobj_name, sizeof(kobj_name), "%x", 1695 (uint32_t)of_read_number(prop, 1)); 1696 } else if (!strcmp(dev_type, "ibm,platform-facilities")) 1697 snprintf(kobj_name, sizeof(kobj_name), "%s", vnode->name); 1698 else 1699 return NULL; 1700 1701 return vio_find_name(kobj_name); 1702 } 1703 EXPORT_SYMBOL(vio_find_node); 1704 1705 int vio_enable_interrupts(struct vio_dev *dev) 1706 { 1707 int rc = h_vio_signal(dev->unit_address, VIO_IRQ_ENABLE); 1708 if (rc != H_SUCCESS) 1709 printk(KERN_ERR "vio: Error 0x%x enabling interrupts\n", rc); 1710 return rc; 1711 } 1712 EXPORT_SYMBOL(vio_enable_interrupts); 1713 1714 int vio_disable_interrupts(struct vio_dev *dev) 1715 { 1716 int rc = h_vio_signal(dev->unit_address, VIO_IRQ_DISABLE); 1717 if (rc != H_SUCCESS) 1718 printk(KERN_ERR "vio: Error 0x%x disabling interrupts\n", rc); 1719 return rc; 1720 } 1721 EXPORT_SYMBOL(vio_disable_interrupts); 1722 #endif /* CONFIG_PPC_PSERIES */ 1723